1
|
Liu L, Tang W, Wu S, Ma J, Wei K. Pulmonary succinate receptor 1 elevation in high-fat diet mice exacerbates lipopolysaccharides-induced acute lung injury via sensing succinate. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167119. [PMID: 38479484 DOI: 10.1016/j.bbadis.2024.167119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/23/2024] [Accepted: 03/06/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Individuals with obesity have higher level of circulating succinate, which acts as a signaling factor that initiates inflammation. It is obscure whether succinate and succinate receptor 1 (SUCNR1) are involved in the process of obesity aggravating acute lung injury (ALI). METHODS The lung tissue and blood samples from patients with obesity who underwent lung wedgectomy or segmental resection were collected. Six-week-old male C57BL/6J mice were fed a high-fat diet for 12 weeks to induce obesity and lipopolysaccharides (LPS) were injected intratracheally (100 μg, 1 mg/ml) for 24 h to establish an ALI model. The pulmonary SUCNR1 expression and succinate level were measured. Exogenous succinate was supplemented to assess whether succinate exacerbated the LPS-induced lung injury. We next examined the cellular localization of pulmonary SUCNR1. Furthermore, the role of the succinate-SUCNR1 pathway in LPS-induced inflammatory responses in MH-s macrophages and obese mice was investigated. RESULT The pulmonary SUCNR1 expression and serum succinate level were significantly increased in patients with obesity and in HFD mice. Exogenous succinate supplementation significantly increased the severity of ALI and inflammatory response. SUCNR1 was mainly expressed on lung macrophages. In LPS-stimulated MH-s cells, knockdown of SUCNR1 expression significantly inhibited pro-inflammatory cytokines' expression, the increase of hypoxia-inducible factor-1α (HIF-1α) expression, inhibitory κB-α (IκB-α) phosphorylation, p65 phosphorylation and p65 translocation to nucleus. In obese mice, SUCNR1 inhibition significantly alleviated LPS-induced lung injury and decreased the HIF-1α expression and IκB-α phosphorylation. CONCLUSION The high expression of pulmonary SUCNR1 and serum succinate accumulation at least partly participate in the process of obesity aggravating LPS-induced lung injury.
Collapse
Affiliation(s)
- Ling Liu
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wenjing Tang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Siqi Wu
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jingyue Ma
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ke Wei
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
2
|
Dubourg V, Schwerdt G, Schreier B, Kopf M, Mildenberger S, Benndorf RA, Gekle M. EGFR activation differentially affects the inflammatory profiles of female human aortic and coronary artery endothelial cells. Sci Rep 2023; 13:22827. [PMID: 38129563 PMCID: PMC10739936 DOI: 10.1038/s41598-023-50148-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
Endothelial cells (EC) are key players in vascular function, homeostasis and inflammation. EC show substantial heterogeneity due to inter-individual variability (e.g. sex-differences) and intra-individual differences as they originate from different organs or vessels. This variability may lead to different responsiveness to external stimuli. Here we compared the responsiveness of female human primary EC from the aorta (HAoEC) and coronary arteries (HCAEC) to Epidermal Growth Factor Receptor (EGFR) activation. EGFR is an important signal integration hub for vascular active substances with physiological and pathophysiological relevance. Our transcriptomic analysis suggested that EGFR activation differentially affects the inflammatory profiles of HAoEC and HCAEC, particularly by inducing a HCAEC-driven leukocyte attraction but a downregulation of adhesion molecule and chemoattractant expression in HAoEC. Experimental assessments of selected inflammation markers were performed to validate these predictions and the results confirmed a dual role of EGFR in these cells: its activation initiated an anti-inflammatory response in HAoEC but a pro-inflammatory one in HCAEC. Our study highlights that, although they are both arterial EC, female HAoEC and HCAEC are distinguishable with regard to the role of EGFR and its involvement in inflammation regulation, what may be relevant for vascular maintenance but also the pathogenesis of endothelial dysfunction.
Collapse
Affiliation(s)
- Virginie Dubourg
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06112, Halle, Germany.
| | - Gerald Schwerdt
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06112, Halle, Germany
| | - Barbara Schreier
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06112, Halle, Germany
| | - Michael Kopf
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06112, Halle, Germany
| | - Sigrid Mildenberger
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06112, Halle, Germany
| | - Ralf A Benndorf
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Michael Gekle
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06112, Halle, Germany
| |
Collapse
|
3
|
Ferris HR, Stine NC, Hill-Eubanks DC, Nelson MT, Wellman GC, Koide M. Epidermal Growth Factor Receptors in Vascular Endothelial Cells Contribute to Functional Hyperemia in the Brain. Int J Mol Sci 2023; 24:16284. [PMID: 38003472 PMCID: PMC10671586 DOI: 10.3390/ijms242216284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/06/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Functional hyperemia-activity-dependent increases in local blood perfusion-underlies the on-demand delivery of blood to regions of enhanced neuronal activity, a process that is crucial for brain health. Importantly, functional hyperemia deficits have been linked to multiple dementia risk factors, including aging, chronic hypertension, and cerebral small vessel disease (cSVD). We previously reported crippled functional hyperemia in a mouse model of genetic cSVD that was likely caused by depletion of phosphatidylinositol 4,5-bisphosphate (PIP2) in capillary endothelial cells (EC) downstream of impaired epidermal growth factor receptor (EGFR) signaling. Here, using EC-specific EGFR-knockout (KO) mice, we directly examined the role of endothelial EGFR signaling in functional hyperemia, assessed by measuring increases in cerebral blood flow in response to contralateral whisker stimulation using laser Doppler flowmetry. Molecular characterizations showed that EGFR expression was dramatically decreased in freshly isolated capillaries from EC-EGFR-KO mice, as expected. Notably, whisker stimulation-induced functional hyperemia was significantly impaired in these mice, an effect that was rescued by administration of PIP2, but not by the EGFR ligand, HB-EGF. These data suggest that the deletion of the EGFR specifically in ECs attenuates functional hyperemia, likely via depleting PIP2 and subsequently incapacitating Kir2.1 channel functionality in capillary ECs. Thus, our study underscores the role of endothelial EGFR signaling in functional hyperemia of the brain.
Collapse
Affiliation(s)
- Hannah R. Ferris
- Department of Pharmacology, Larner College of Medicine University of Vermont, Burlington, VT 05405, USA; (H.R.F.); (N.C.S.)
| | - Nathan C. Stine
- Department of Pharmacology, Larner College of Medicine University of Vermont, Burlington, VT 05405, USA; (H.R.F.); (N.C.S.)
| | - David C. Hill-Eubanks
- Department of Pharmacology, Larner College of Medicine University of Vermont, Burlington, VT 05405, USA; (H.R.F.); (N.C.S.)
| | - Mark T. Nelson
- Department of Pharmacology, Larner College of Medicine University of Vermont, Burlington, VT 05405, USA; (H.R.F.); (N.C.S.)
- Vermont Center for Cardiovascular and Brain Health, Larner College of Medicine University of Vermont, Burlington, VT 05405, USA
- Division of Cardiovascular Sciences, University of Manchester, Manchester M13 9PL, UK
| | - George C. Wellman
- Department of Pharmacology, Larner College of Medicine University of Vermont, Burlington, VT 05405, USA; (H.R.F.); (N.C.S.)
| | - Masayo Koide
- Department of Pharmacology, Larner College of Medicine University of Vermont, Burlington, VT 05405, USA; (H.R.F.); (N.C.S.)
- Vermont Center for Cardiovascular and Brain Health, Larner College of Medicine University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
4
|
Gekle M, Dubourg V, Schwerdt G, Benndorf RA, Schreier B. The role of EGFR in vascular AT1R signaling: From cellular mechanisms to systemic relevance. Biochem Pharmacol 2023; 217:115837. [PMID: 37777161 DOI: 10.1016/j.bcp.2023.115837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
The epidermal growth factor receptor (EGFR) belongs to the ErbB-family of receptor tyrosine kinases that are of importance in oncology. During the last years, substantial evidence accumulated for a crucial role of EGFR concerning the action of the angiotensin II type 1 receptor (AT1R) in blood vessels, resulting form AT1R-induced EGFR transactivation. This transactivation occurs through the release of membrane-anchored EGFR-ligands, cytosolic tyrosine kinases, heterocomplex formation or enhanced ligand expression. AT1R-EGFR crosstalk amplifies the signaling response and enhances the biological effects of angiotensin II. Downstream signaling cascades include ERK1/2 and p38 MAPK, PLCγ and STAT. AT1R-induced EGFR activation contributes to vascular remodeling and hypertrophy via e.g. smooth muscle cell proliferation, migration and extracellular matrix production. EGFR transactivation results in increased vessel wall thickness and reduced vascular compliance. AT1R and EGFR signaling pathways are also implicated the induction of vascular inflammation. Again, EGFR transactivation exacerbates the effects, leading to endothelial dysfunction that contributes to vascular inflammation, dysfunction and remodeling. Dysregulation of the AT1R-EGFR axis has been implicated in the pathogenesis of various cardiovascular diseases and inhibition or prevention of EGFR signaling can attenuate part of the detrimental impact of enhanced renin-angiotensin-system (RAAS) activity, highlighting the importance of EGFR for the adverse consequences of AT1R activation. In summary, EGFR plays a critical role in vascular AT1R action, enhancing signaling, promoting remodeling, contributing to inflammation, and participating in the pathogenesis of cardiovascular diseases. Understanding the interplay between AT1R and EGFR will foster the development of effective therapeutic strategies of RAAS-induced disorders.
Collapse
Affiliation(s)
- Michael Gekle
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 6, D-06112 Halle (Saale), Germany.
| | - Virginie Dubourg
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 6, D-06112 Halle (Saale), Germany
| | - Gerald Schwerdt
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 6, D-06112 Halle (Saale), Germany
| | - Ralf A Benndorf
- Institute of Pharmacy, Martin-Luther-University, Halle, Germany
| | - Barbara Schreier
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 6, D-06112 Halle (Saale), Germany
| |
Collapse
|
5
|
Okyere AD, Nayak TK, Patwa V, Teplitsky D, McEachern E, Carter RL, Xu H, Gao E, Zhou Y, Tilley DG. Myeloid cell-specific deletion of epidermal growth factor receptor aggravates acute cardiac injury. Clin Sci (Lond) 2023; 137:1513-1531. [PMID: 37728308 PMCID: PMC10758753 DOI: 10.1042/cs20230804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 09/21/2023]
Abstract
Myeloid cells, including macrophages, play important roles as first responders to cardiac injury and stress. Epidermal growth factor receptor (EGFR) has been identified as a mediator of macrophage responsiveness to select diseases, though its impact on cardiac function or remodeling following acute ischemic injury is unknown. We aimed to define the role of myeloid cell-specific EGFR in the regulation of cardiac function and remodeling following acute myocardial infarction (MI)-induced injury. Floxed EGFR mice were bred with homozygous LysM-Cre (LMC) transgenic mice to yield myeloid-specific EGFR knockout (mKO) mice. Via echocardiography, immunohistochemistry, RNA sequencing and flow cytometry, the impact of myeloid cell-specific EGFR deletion on cardiac structure and function was assessed at baseline and following injury. Compared with LMC controls, myeloid cell-specific EGFR deletion led to an increase in cardiomyocyte hypertrophy at baseline. Bulk RNASeq analysis of isolated cardiac Cd11b+ myeloid cells revealed substantial changes in mKO cell transcripts at baseline, particularly in relation to predicted decreases in neovascularization. In response to myocardial infarction, mKO mice experienced a hastened decline in cardiac function with isolated cardiac Cd11b+ myeloid cells expressing decreased levels of the pro-reparative mediators Vegfa and Il10, which coincided with enhanced cardiac hypertrophy and decreased capillary density. Overall, loss of EGFR qualitatively alters cardiac resident macrophages that promotes a low level of basal stress and a more rapid decrease in cardiac function along with worsened repair following acute ischemic injury.
Collapse
Affiliation(s)
- Ama D. Okyere
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, U.S.A
| | - Tapas K. Nayak
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, U.S.A
| | - Viren Patwa
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, U.S.A
| | - David Teplitsky
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, U.S.A
| | - Erin McEachern
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, U.S.A
| | - Rhonda L. Carter
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, U.S.A
| | - Heli Xu
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, U.S.A
| | - Erhe Gao
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, U.S.A
| | - Yan Zhou
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA 19111, U.S.A
| | - Douglas G. Tilley
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, U.S.A
| |
Collapse
|
6
|
Ferris HR, Hill-Eubanks DC, Nelson MT, Wellman GC, Koide M. Epidermal growth factor receptors in vascular endothelial cells contribute to functional hyperemia in the brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.15.557981. [PMID: 37745396 PMCID: PMC10516026 DOI: 10.1101/2023.09.15.557981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Functional hyperemia - activity-dependent increases in local blood perfusion - underlies the on-demand delivery of blood to regions of enhanced neuronal activity, a process that is crucial for brain health. Importantly, functional hyperemia deficits have been linked to multiple dementia risk factors, including aging, chronic hypertension, and cerebral small vessel disease (cSVD). We previously reported crippled functional hyperemia in a mouse model of genetic cSVD that was likely caused by depletion of phosphatidylinositol 4,5-bisphosphate (PIP2) in capillary endothelial cells (EC) downstream of impaired epidermal growth factor receptor (EGFR) signaling. Here, using EC-specific EGFR-knockout (KO) mice, we directly examined the role of endothelial EGFR signaling in functional hyperemia, assessed by measuring increases in cerebral blood flow in response to contralateral whisker stimulation using laser Doppler flowmetry. Molecular characterizations showed that EGFR expression was dramatically decreased in freshly isolated capillaries from EC-EGFR-KO mice, as expected. Notably, whisker stimulation-induced functional hyperemia was significantly impaired in these mice, an effect that was rescued by exogenous administration of PIP2, but not by the EGFR ligand, HB-EGF. These data suggest that the deletion of the EGFR specifically in ECs depletes PIP2 and attenuates functional hyperemia, underscoring the central role of the endothelial EGFR signaling in cerebral blood flow regulation.
Collapse
Affiliation(s)
- Hannah R. Ferris
- Department of Pharmacology, Larner College of Medicine University of Vermont, Burlington, VT, USA
| | - David C. Hill-Eubanks
- Department of Pharmacology, Larner College of Medicine University of Vermont, Burlington, VT, USA
| | - Mark T. Nelson
- Department of Pharmacology, Larner College of Medicine University of Vermont, Burlington, VT, USA
- Vermont Center for Cardiovascular and Brain Health, Larner College of Medicine University of Vermont, Burlington, VT, USA
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - George C. Wellman
- Department of Pharmacology, Larner College of Medicine University of Vermont, Burlington, VT, USA
| | - Masayo Koide
- Department of Pharmacology, Larner College of Medicine University of Vermont, Burlington, VT, USA
- Vermont Center for Cardiovascular and Brain Health, Larner College of Medicine University of Vermont, Burlington, VT, USA
| |
Collapse
|
7
|
Schreier B, Stern C, Rabe S, Mildenberger S, Gekle M. Assessment of the Role of Endothelial and Vascular Smooth Muscle EGFR for Acute Blood Pressure Effects of Angiotensin II and Adrenergic Stimulation in Obese Mice. Biomedicines 2023; 11:2241. [PMID: 37626737 PMCID: PMC10452314 DOI: 10.3390/biomedicines11082241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
(1) Background: Obesity is associated with hypertension because of endocrine dysregulation of the adrenergic and the renin-angiotensin-aldosterone systems. The epidermal growth factor receptor (EGFR) is an important signaling hub in the cardiovascular system. In this study, we investigate the role of smooth muscle cell (VSMC) and endothelial cell (EC) EGFRs for blood pressure homeostasis and acute vascular reactivity in vivo. (2) Methods: Mice with deletion of the EGFR in the respective cell type received either a high-fat (HFD) or standard-fat diet (SFD) for 18 weeks. Intravascular blood pressure was measured via a Millar catheter in anesthetized animals upon vehicle load, angiotensin II (AII) and phenylephrine (PE) stimulation. (3) Results: We confirmed that deletion of the EGFR in VSMCs leads to reduced blood pressure and a most probably compensatory heart rate increase. EC-EGFR and VSMC-EGFR had only a minor impact on volume-load-induced blood pressure changes in lean as well as in obese wild-type animals. Regarding vasoactive substances, EC-EGFR seems to have no importance for angiotensin II action and counteracting HFD-induced prolonged blood pressure increase upon PE stimulation. VSMC-EGFR supports the blood pressure response to adrenergic and angiotensin II stimulation in lean animals. The responsiveness to AII and alpha-adrenergic stimulation was similar in lean and obese animals despite the known enhanced activity of the RAAS and the sympathetic nervous system under a high-fat diet. (4) Conclusions: We demonstrate that EGFRs in VSMCs and to a lesser extent in ECs modulate short-term vascular reactivity to AII, catecholamines and volume load in lean and obese animals.
Collapse
Affiliation(s)
- Barbara Schreier
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University Halle-Wittenberg, 06112 Halle, Germany
| | | | | | | | | |
Collapse
|
8
|
Orofiamma LA, Vural D, Antonescu CN. Control of cell metabolism by the epidermal growth factor receptor. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119359. [PMID: 36089077 DOI: 10.1016/j.bbamcr.2022.119359] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The epidermal growth factor receptor (EGFR) triggers the activation of many intracellular signals that control cell proliferation, growth, survival, migration, and differentiation. Given its wide expression, EGFR has many functions in development and tissue homeostasis. Some of the cellular outcomes of EGFR signaling involve alterations of specific aspects of cellular metabolism, and alterations of cell metabolism are emerging as driving influences in many physiological and pathophysiological contexts. Here we review the mechanisms by which EGFR regulates cell metabolism, including by modulation of gene expression and protein function leading to control of glucose uptake, glycolysis, biosynthetic pathways branching from glucose metabolism, amino acid metabolism, lipogenesis, and mitochondrial function. We further examine how this regulation of cell metabolism by EGFR may contribute to cell proliferation and differentiation and how EGFR-driven control of metabolism can impact certain diseases and therapy outcomes.
Collapse
Affiliation(s)
- Laura A Orofiamma
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada; Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada
| | - Dafne Vural
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada; Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada
| | - Costin N Antonescu
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada; Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada.
| |
Collapse
|
9
|
Harris ZM, Sun Y, Joerns J, Clark B, Hu B, Korde A, Sharma L, Shin HJ, Manning EP, Placek L, Unutmaz D, Stanley G, Chun H, Sauler M, Rajagopalan G, Zhang X, Kang MJ, Koff JL. Epidermal Growth Factor Receptor Inhibition Is Protective in Hyperoxia-Induced Lung Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9518592. [PMID: 36193076 PMCID: PMC9526641 DOI: 10.1155/2022/9518592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 01/01/2023]
Abstract
Aims Studies have linked severe hyperoxia, or prolonged exposure to very high oxygen levels, with worse clinical outcomes. This study investigated the role of epidermal growth factor receptor (EGFR) in hyperoxia-induced lung injury at very high oxygen levels (>95%). Results Effects of severe hyperoxia (100% oxygen) were studied in mice with genetically inhibited EGFR and wild-type littermates. Despite the established role of EGFR in lung repair, EGFR inhibition led to improved survival and reduced acute lung injury, which prompted an investigation into this protective mechanism. Endothelial EGFR genetic knockout did not confer protection. EGFR inhibition led to decreased levels of cleaved caspase-3 and poly (ADP-ribosyl) polymerase (PARP) and decreased terminal dUTP nick end labeling- (TUNEL-) positive staining in alveolar epithelial cells and reduced ERK activation, which suggested reduced apoptosis in vivo. EGFR inhibition decreased hyperoxia (95%)-induced apoptosis and ERK in murine alveolar epithelial cells in vitro, and CRISPR-mediated EGFR deletion reduced hyperoxia-induced apoptosis and ERK in human alveolar epithelial cells in vitro. Innovation. This work defines a protective role of EGFR inhibition to decrease apoptosis in lung injury induced by 100% oxygen. This further characterizes the complex role of EGFR in acute lung injury and outlines a novel hyperoxia-induced cell death pathway that warrants further study. Conclusion In conditions of severe hyperoxia (>95% for >24 h), EGFR inhibition led to improved survival, decreased lung injury, and reduced cell death. These findings further elucidate the complex role of EGFR in acute lung injury.
Collapse
Affiliation(s)
- Zachary M. Harris
- Section of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA 06510
| | - Ying Sun
- Section of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA 06510
| | - John Joerns
- Division of Pulmonary and Critical Care; Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA 75390
| | - Brian Clark
- Section of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA 06510
| | - Buqu Hu
- Section of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA 06510
| | - Asawari Korde
- Section of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA 06510
| | - Lokesh Sharma
- Section of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA 06510
| | - Hyeon Jun Shin
- Section of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA 06510
| | - Edward P. Manning
- Section of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA 06510
- VA Connecticut Healthcare System, West Haven, CT, USA
| | - Lindsey Placek
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA
| | - Derya Unutmaz
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA
| | - Gail Stanley
- Section of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA 06510
| | - Hyung Chun
- Section of Cardiovascular Medicine; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA 06510
| | - Maor Sauler
- Section of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA 06510
| | - Govindarajan Rajagopalan
- Section of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA 06510
| | - Xuchen Zhang
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA 06510
| | - Min-Jong Kang
- Section of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA 06510
| | - Jonathan L. Koff
- Section of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA 06510
| |
Collapse
|
10
|
Gurung S, Restrepo NK, Chestnut B, Klimkaite L, Sumanas S. Single-cell transcriptomic analysis of vascular endothelial cells in zebrafish embryos. Sci Rep 2022; 12:13065. [PMID: 35906287 PMCID: PMC9338088 DOI: 10.1038/s41598-022-17127-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Vascular endothelial cells exhibit substantial phenotypic and transcriptional heterogeneity which is established during early embryogenesis. However, the molecular mechanisms involved in establishing endothelial cell diversity are still not well understood. Zebrafish has emerged as an advantageous model to study vascular development. Despite its importance, the single-cell transcriptomic profile of vascular endothelial cells during zebrafish development is still missing. To address this, we applied single-cell RNA-sequencing (scRNA-seq) of vascular endothelial cells isolated from zebrafish embryos at the 24 hpf stage. Six distinct clusters or subclusters related to vascular endothelial cells were identified which include arterial, two venous, cranial, endocardial and endothelial progenitor cell subtypes. Furthermore, we validated our findings by characterizing novel markers for arterial, venous, and endocardial cells. We experimentally confirmed the presence of two transcriptionally different venous cell subtypes, demonstrating heterogeneity among venous endothelial cells at this early developmental stage. This dataset will be a valuable resource for future functional characterization of vascular endothelial cells and interrogation of molecular mechanisms involved in the establishment of their heterogeneity and cell-fate decisions.
Collapse
Affiliation(s)
- Suman Gurung
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, 560 Channelside Dr, Tampa, FL, 33602, USA
| | - Nicole K Restrepo
- Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, 560 Channelside Dr, Tampa, FL, 33602, USA
| | - Brendan Chestnut
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Laurita Klimkaite
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Saulius Sumanas
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA. .,Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, 560 Channelside Dr, Tampa, FL, 33602, USA.
| |
Collapse
|
11
|
Shraim BA, Moursi MO, Benter IF, Habib AM, Akhtar S. The Role of Epidermal Growth Factor Receptor Family of Receptor Tyrosine Kinases in Mediating Diabetes-Induced Cardiovascular Complications. Front Pharmacol 2021; 12:701390. [PMID: 34408653 PMCID: PMC8365470 DOI: 10.3389/fphar.2021.701390] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus is a major debilitating disease whose global incidence is progressively increasing with currently over 463 million adult sufferers and this figure will likely reach over 700 million by the year 2045. It is the complications of diabetes such as cardiovascular, renal, neuronal and ocular dysfunction that lead to increased patient morbidity and mortality. Of these, cardiovascular complications that can result in stroke and cardiomyopathies are 2- to 5-fold more likely in diabetes but the underlying mechanisms involved in their development are not fully understood. Emerging research suggests that members of the Epidermal Growth Factor Receptor (EGFR/ErbB/HER) family of tyrosine kinases can have a dual role in that they are beneficially required for normal development and physiological functioning of the cardiovascular system (CVS) as well as in salvage pathways following acute cardiac ischemia/reperfusion injury but their chronic dysregulation may also be intricately involved in mediating diabetes-induced cardiovascular pathologies. Here we review the evidence for EGFR/ErbB/HER receptors in mediating these dual roles in the CVS and also discuss their potential interplay with the Renin-Angiotensin-Aldosterone System heptapeptide, Angiotensin-(1-7), as well the arachidonic acid metabolite, 20-HETE (20-hydroxy-5, 8, 11, 14-eicosatetraenoic acid). A greater understanding of the multi-faceted roles of EGFR/ErbB/HER family of tyrosine kinases and their interplay with other key modulators of cardiovascular function could facilitate the development of novel therapeutic strategies for treating diabetes-induced cardiovascular complications.
Collapse
Affiliation(s)
- Bara A Shraim
- College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Moaz O Moursi
- College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Ibrahim F Benter
- Faculty of Medicine, Eastern Mediterranean University, Famagusta, North Cyprus
| | - Abdella M Habib
- College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Saghir Akhtar
- College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
12
|
Palanisamy S, Xue C, Ishiyama S, Naga Prasad SV, Gabrielson K. GPCR-ErbB transactivation pathways and clinical implications. Cell Signal 2021; 86:110092. [PMID: 34303814 DOI: 10.1016/j.cellsig.2021.110092] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 11/18/2022]
Abstract
Cell surface receptors including the epidermal growth factor receptor (EGFR) family and G-protein coupled receptors (GPCRs) play quintessential roles in physiology, and in diseases, including cardiovascular diseases. While downstream signaling from these individual receptor families has been well studied, the cross-talk between EGF and GPCR receptor families is still incompletely understood. Including members of both receptor families, the number of receptor and ligand combinations for unique interactions is vast, offering a frontier of pharmacologic targets to explore for preventing and treating disease. This molecular cross-talk, called receptor transactivation, is reviewed here with a focus on the cardiovascular system featuring the well-studied GPCR receptors, but also discussing less-studied receptors from both families for a broad understanding of context of expansile interactions, repertoire of cellular signaling, and disease consequences. Attention is given to cell type, level of chronicity, and disease context given that transactivation and comorbidities, including diabetes, hypertension, coronavirus infection, impact cardiovascular disease and health outcomes.
Collapse
Affiliation(s)
| | - Carolyn Xue
- University of California, Los Angeles, 101 Hershey Hall, 612 Charles E. Young Drive South, Los Angeles, CA 90095, USA.
| | - Shun Ishiyama
- Sidney Kimmel Cancer Center, Department of Surgery, Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Coloproctological Surgery, Juntendo University School of Medicine, Tokyo, Japan.
| | - Sathyamangla Venkata Naga Prasad
- NB50, Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, 1, Cleveland, OH 44195, USA.
| | - Kathleen Gabrielson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, School of Medicine, 733 North Broadway, Miller Research Building, Room 807, Baltimore, MD 21205-2196, USA.
| |
Collapse
|