1
|
Xu M, Taylor MS, Hill BG, Li X, Rouchka EC, McClain CJ, Song M. Intestine epithelial-specific hypoxia-inducible factor-1α overexpression ameliorates western diet-induced MASLD. Hepatol Commun 2024; 8:e0572. [PMID: 39585307 PMCID: PMC11596589 DOI: 10.1097/hc9.0000000000000572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/15/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Intestine epithelial hypoxia-inducible factor-1α (HIF-1α) plays a critical role in maintaining gut barrier function. The aim of this study was to determine whether pharmacological or genetic activation of intestinal HIF-1α ameliorates western diet-induced metabolic dysfunction-associated steatotic liver disease. METHODS Metabolic effects of pharmacological activation of HIF-1α by dimethyloxalylglycine were evaluated in HIF-α luciferase reporter (ODD-luc) mice. Male and/or female intestinal epithelial-specific Hif1α overexpression mice (Hif1αLSL/LSL;VilERcre) and wild-type littermates (Hif1αLSL/LSL) were fed with regular chow diet, high fructose (HFr) or high-fat (60% Kcal) high-fructose diet (HFHFr) for 8 weeks. Metabolic phenotypes were profiled. RESULTS Dimethyloxalylglycine treatment led to increased intestine HIF-α luciferase activity and decreased blood glucose levels in HFr diet-fed male ODD-luc mice. Male Hif1αLSL/LSL;VilERcre mice exhibited markedly improved glucose tolerance compared to Hif1αLSL/LSL mice in response to HFr diet. Eight weeks HFHFr feeding led to obesity in both Hif1αLSL/LSL;VilERcre and Hif1αLSL/LSL mice. However, male Hif1αLSL/LSL;VilERcre mice exhibited markedly attenuated hepatic steatosis along with reduced liver size and liver weight compared to male Hif1αLSL/LSL mice. Moreover, HFHFr-induced systemic inflammatory responses were mitigated in male Hif1αLSL/LSL;VilERcre mice compared to male Hif1αLSL/LSL mice, and those responses were not evident in female mice. Ileum RNA-seq analysis revealed that glycolysis/gluconeogenesis was up in male Hif1αLSL/LSL;VilERcre mice, accompanied by increased epithelial cell proliferation. Moreover, an in vitro study showed that HIF stabilization enhances glycolysis in intestine organoids. CONCLUSIONS Our data provide evidence that pharmacological or genetic activation of intestinal HIF-1α markedly ameliorates western diet-induced metabolic dysfunction-associated steatotic liver disease in a sex-dependent manner. The underlying mechanism is likely attributed to HIF-1α activation-induced upregulation of glycolysis, which, in turn, leads to enhanced epithelial cell proliferation and augmented gut barrier function.
Collapse
Affiliation(s)
- Manman Xu
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Madison S. Taylor
- Department of Medicine, Division of Environmental Medicine, Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Bradford G. Hill
- Department of Medicine, Division of Environmental Medicine, Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Xiaohong Li
- Kentucky Biomedical Research Infrastructure Network Bioinformatics Core, Louisville, Kentucky, USA
| | - Eric C. Rouchka
- Kentucky Biomedical Research Infrastructure Network Bioinformatics Core, Louisville, Kentucky, USA
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Craig J. McClain
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Hepatobiology & Toxicology Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
- University of Louisville Alcohol Research Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky, USA
| | - Ming Song
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Hepatobiology & Toxicology Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
2
|
Han J, Rindone AN, Elisseeff JH. Immunoengineering Biomaterials for Musculoskeletal Tissue Repair across Lifespan. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311646. [PMID: 38416061 PMCID: PMC11239302 DOI: 10.1002/adma.202311646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/23/2024] [Indexed: 02/29/2024]
Abstract
Musculoskeletal diseases and injuries are among the leading causes of pain and morbidity worldwide. Broad efforts have focused on developing pro-regenerative biomaterials to treat musculoskeletal conditions; however, these approaches have yet to make a significant clinical impact. Recent studies have demonstrated that the immune system is central in orchestrating tissue repair and that targeting pro-regenerative immune responses can improve biomaterial therapeutic outcomes. However, aging is a critical factor negatively affecting musculoskeletal tissue repair and immune function. Hence, understanding how age affects the response to biomaterials is essential for improving musculoskeletal biomaterial therapies. This review focuses on the intersection of the immune system and aging in response to biomaterials for musculoskeletal tissue repair. The article introduces the general impacts of aging on tissue physiology, the immune system, and the response to biomaterials. Then, it explains how the adaptive immune system guides the response to injury and biomaterial implants in cartilage, muscle, and bone and discusses how aging impacts these processes in each tissue type. The review concludes by highlighting future directions for the development and translation of personalized immunomodulatory biomaterials for musculoskeletal tissue repair.
Collapse
Affiliation(s)
- Jin Han
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University; Baltimore, MD 21231, USA
| | - Alexandra N. Rindone
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University; Baltimore, MD 21231, USA
| | - Jennifer H. Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University; Baltimore, MD 21231, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine; Baltimore, MD 21231, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University; Baltimore, MD 21231, USA
| |
Collapse
|
3
|
Bačáková L, Chlupáč J, Filová E, Musílková J, Tomšů J, Wu YC, Svobodová L, Pražák Š, Brož A. Vascular Damage and Repair - Are Small-Diameter Vascular Grafts Still the "Holy Grail" of Tissue Engineering? Physiol Res 2024; 73:S335-S363. [PMID: 38836460 PMCID: PMC11412351 DOI: 10.33549/physiolres.935294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Cardiovascular diseases are the most important cause of morbidity and mortality in the civilized world. Stenosis or occlusion of blood vessels leads not only to events that are directly life-threatening, such as myocardial infarction or stroke, but also to a significant reduction in quality of life, for example in lower limb ischemia as a consequence of metabolic diseases. The first synthetic polymeric vascular replacements were used clinically in the early 1950s. However, they proved to be suitable only for larger-diameter vessels, where the blood flow prevents the attachment of platelets, pro-inflammatory cells and smooth muscle cells on their inner surface, whereas in smaller-diameter grafts (6 mm or less), these phenomena lead to stenosis and failure of the graft. Moreover, these polymeric vascular replacements, like biological grafts (decellularized or devitalized), are cell-free, i.e. there are no reconstructed physiological layers of the blood vessel wall, i.e. an inner layer of endothelial cells to prevent thrombosis, a middle layer of smooth muscle cells to perform the contractile function, and an outer layer to provide innervation and vascularization of the vessel wall. Vascular substitutes with these cellular components can be constructed by tissue engineering methods. However, it has to be admitted that even about 70 years after the first polymeric vascular prostheses were implanted into human patients, there are still no functional small-diameter vascular grafts on the market. The damage to small-diameter blood vessels has to be addressed by endovascular approaches or by autologous vascular substitutes, which leads to some skepticism about the potential of tissue engineering. However, new possibilities of this approach lie in the use of modern technologies such as 3D bioprinting and/or electrospinning in combination with stem cells and pre-vascularization of tissue-engineered vascular grafts. In this endeavor, sex-related differences in the removal of degradable biomaterials by the cells and in the behavior of stem cells and pre-differentiated vascular cells need to be taken into account. Key words: Blood vessel prosthesis, Regenerative medicine, Stem cells, Footprint-free iPSCs, sr-RNA, Dynamic bioreactor, Sex-related differences.
Collapse
Affiliation(s)
- L Bačáková
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Ahlback A, Gentek R. Fate-Mapping Macrophages: From Ontogeny to Functions. Methods Mol Biol 2024; 2713:11-43. [PMID: 37639113 DOI: 10.1007/978-1-0716-3437-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Macrophages are vital to the physiological function of most tissues, but also contribute to disease through a multitude of pathological roles. They are thus highly plastic and heterogeneous. It is now well recognized that macrophages develop from several distinct progenitors from embryogenesis onwards and extending throughout life. Tissue-resident macrophages largely originate from embryonic sources and in many cases self-maintain independently without monocyte input. However, in certain tissues, monocyte-derived macrophages replace these over time or as a result of tissue injury and inflammation. This additional layer of heterogeneity has introduced many questions regarding the influence of origin on fate and function of macrophages in health and disease. To comprehensively address these questions, appropriate methods of tracing macrophage ontogeny are required. This chapter explores why ontogeny is of vital importance in macrophage biology and how to delineate macrophage populations by origin through genetic fate mapping. First, we summarize the current view of macrophage ontogeny and briefly discuss how origin may influence macrophage function in homeostasis and pathology. We go on to make the case for genetic fate mapping as the gold standard and briefly review different fate-mapping models. We then put forward our recommendations for fate-mapping strategies best suited to answer specific research questions and finally discuss the strengths and limitations of currently available models.
Collapse
Affiliation(s)
- Anna Ahlback
- The University of Edinburgh, Institute for Regeneration and Repair, Centre for Reproductive Health & Centre for Inflammation Research, Edinburgh, UK
| | - Rebecca Gentek
- The University of Edinburgh, Institute for Regeneration and Repair, Centre for Reproductive Health & Centre for Inflammation Research, Edinburgh, UK.
| |
Collapse
|
5
|
Dubner AM, Lu S, Jolly AJ, Noble T, Hinthorn T, Nemenoff RA, Moulton KS, Majesky MW, Weiser-Evans MCM. Confounding Effects of Tamoxifen: Cautionary and Practical Considerations for the Use of Tamoxifen-Inducible Mouse Models in Atherosclerosis Research-Brief Report. Arterioscler Thromb Vasc Biol 2023; 43:2223-2230. [PMID: 37706321 PMCID: PMC10615862 DOI: 10.1161/atvbaha.123.319922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/31/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND In recent years, fate-mapping lineage studies in mouse models have led to major advances in vascular biology by allowing investigators to track specific cell populations in vivo. One of the most frequently used lineage tracing approaches involves tamoxifen-inducible CreERT-LoxP systems. However, tamoxifen treatment can also promote effects independent of Cre recombinase activation, many of which have not been fully explored. METHODS To elucidate off-target effects of tamoxifen, male and female mice were either unmanipulated or injected with tamoxifen or corn oil. All mice received PCSK9 (proprotein convertase subtilisin/kexin type 9)-AAV (adeno-associated virus) injections and a modified Western diet to induce hypercholesterolemia. After 2 weeks, serum cholesterol and liver morphology were assessed. To determine the duration of any tamoxifen effects in long-term atherosclerosis experiments, mice received either 12 days of tamoxifen at baseline or 12 days plus 2 sets of 5-day tamoxifen boosters; all mice received PCSK9-AAV injections and a modified Western diet to induce hypercholesterolemia. After 24 weeks, serum cholesterol and aortic sinus plaque burden were measured. RESULTS After 2 weeks of atherogenic treatment, mice injected with tamoxifen demonstrated significantly reduced serum cholesterol levels compared with uninjected- or corn oil-treated mice. However, there were no differences in PCSK9-mediated knockdown of LDL (low-density lipoprotein) receptors between the groups. Additionally, tamoxifen-treated mice exhibited significantly increased hepatic lipid accumulation compared with the other groups. Finally, the effects of tamoxifen remained for at least 8 weeks after completion of injections, with mice demonstrating persistent decreased serum cholesterol and impaired atherosclerotic plaque formation. CONCLUSIONS In this study, we establish that tamoxifen administration results in decreased serum cholesterol, decreased plaque formation, and increased hepatic lipid accumulation. These alterations represent significant confounding variables in atherosclerosis research, and we urge future investigators to take these findings into consideration when planning and executing their own atherosclerosis experiments.
Collapse
Affiliation(s)
- Allison M Dubner
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Integrated Physiology PhD Program, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Sizhao Lu
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- School of Medicine, Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Austin J Jolly
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Medical Scientist Training Program, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Tysen Noble
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Biomedical Sciences and Biotechnology MS program, University of Colorado Graduate School, Anschutz Medical Campus, Aurora, CO, USA
| | - Tyler Hinthorn
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Biomedical Sciences and Biotechnology MS program, University of Colorado Graduate School, Anschutz Medical Campus, Aurora, CO, USA
| | - Raphael A Nemenoff
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- School of Medicine, Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Karen S Moulton
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mark W Majesky
- Center for Developmental Biology & Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA 98101
- Departments of Pediatrics and Pathology, University of Washington, Seattle, WA, 98195
| | - Mary CM Weiser-Evans
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Integrated Physiology PhD Program, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
- Medical Scientist Training Program, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
- School of Medicine, Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Cardiovascular Pulmonary Research Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
6
|
Abstract
Although sex differences have been noted in cellular function and behavior, therapy efficacy, and disease incidence and outcomes, the adoption of sex as a biological variable in tissue engineering and regenerative medicine remains limited. Furthering the development of personalized, precision medicine requires considering biological sex at the bench and in the clinic. This review provides the basis for considering biological sex when designing tissue-engineered constructs and regenerative therapies by contextualizing sex as a biological variable within the tissue engineering triad of cells, matrices, and signals. To achieve equity in biological sex within medicine requires a cultural shift in science and engineering research, with active engagement by researchers, clinicians, companies, policymakers, and funding agencies.
Collapse
Affiliation(s)
- Josephine B Allen
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida, USA;
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA;
| | - Christopher Ludtka
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA;
| | - Bryan D James
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA;
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| |
Collapse
|
7
|
Mirhaidari GJ, Barker JC, Breuer CK, Reinhardt JW. Implanted Tissue-Engineered Vascular Graft Cell Isolation with Single-Cell RNA Sequencing Analysis. Tissue Eng Part C Methods 2023; 29:72-84. [PMID: 36719780 PMCID: PMC9968626 DOI: 10.1089/ten.tec.2022.0189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/17/2023] [Indexed: 02/01/2023] Open
Abstract
The advent of single-cell RNA sequencing (scRNA-Seq) has brought with it the ability to gain greater insights into the cellular composition of tissues and heterogeneity in gene expression within specific cell types. For tissue-engineered blood vessels, this is particularly impactful to better understand how neotissue forms and remodels into tissue resembling a native vessel. A notable challenge, however, is the ability to separate cells from synthetic biomaterials to generate high-quality single-cell suspensions to interrogate the cellular composition of our tissue-engineered vascular grafts (TEVGs) during active remodeling in situ. We present here a simple, commercially available approach to separate cells within our TEVG from the residual scaffold for downstream use in a scRNA-Seq workflow. Utilizing this method, we identified the cell populations comprising explanted TEVGs and compared these with results from immunohistochemical analysis. The process began with explanted TEVGs undergoing traditional mechanical and enzymatic dissociation to separate cells from scaffold and extracellular matrix proteins. Magnetically labeled antibodies targeting murine origin cells were incubated with enzymatic digests of TEVGs containing cells and scaffold debris in suspension allowing for separation by utilizing a magnetic separator column. Single-cell suspensions were processed through 10 × Genomics and data were analyzed utilizing R to generate cell clusters. Expression data provided new insights into a diverse composition of phenotypically unique subclusters within the fibroblast, macrophage, smooth muscle cell, and endothelial cell populations contributing to the early neotissue remodeling stages of TEVGs. These populations were correlated qualitatively and quantitatively with immunohistochemistry highlighting for the first time the potential of scRNA-Seq to provide exquisite detail into the host cellular response to an implanted TEVG. These results additionally demonstrate magnetic cell isolation is an effective method for generating high-quality cell suspensions for scRNA-Seq. While this method was utilized for our group's TEVGs, it has broader applications to other implantable materials that use biodegradable synthetic materials as part of scaffold composition. Impact statement Single-cell RNA sequencing is an evolving technology with the ability to provide detailed information on the cellular composition of remodeling biomaterials in vivo. This present work details an effective approach for separating nondegraded biomaterials from cells for downstream RNA-sequencing analysis. We applied this method to implanted tissue-engineered vascular grafts and for the first time describe the cellular composition of the remodeling graft at a single-cell gene expression level. While this method was effective in our scaffold, it has broad applicability to other implanted biomaterials that necessitate separation of cell from residual scaffold materials for single-cell RNA sequencing.
Collapse
Affiliation(s)
- Gabriel J.M. Mirhaidari
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Jenny C. Barker
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Plastic and Reconstructive Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Christopher K. Breuer
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - James W. Reinhardt
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| |
Collapse
|
8
|
Tan W, Boodagh P, Selvakumar PP, Keyser S. Strategies to counteract adverse remodeling of vascular graft: A 3D view of current graft innovations. Front Bioeng Biotechnol 2023; 10:1097334. [PMID: 36704297 PMCID: PMC9871289 DOI: 10.3389/fbioe.2022.1097334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Vascular grafts are widely used for vascular surgeries, to bypass a diseased artery or function as a vascular access for hemodialysis. Bioengineered or tissue-engineered vascular grafts have long been envisioned to take the place of bioinert synthetic grafts and even vein grafts under certain clinical circumstances. However, host responses to a graft device induce adverse remodeling, to varied degrees depending on the graft property and host's developmental and health conditions. This in turn leads to invention or failure. Herein, we have mapped out the relationship between the design constraints and outcomes for vascular grafts, by analyzing impairment factors involved in the adverse graft remodeling. Strategies to tackle these impairment factors and counteract adverse healing are then summarized by outlining the research landscape of graft innovations in three dimensions-cell technology, scaffold technology and graft translation. Such a comprehensive view of cell and scaffold technological innovations in the translational context may benefit the future advancements in vascular grafts. From this perspective, we conclude the review with recommendations for future design endeavors.
Collapse
Affiliation(s)
- Wei Tan
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, United States,*Correspondence: Wei Tan,
| | - Parnaz Boodagh
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Sean Keyser
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
9
|
Blum KM, Mirhaidari GJM, Zbinden JC, Breuer C, Barker JC. Tamoxifen reduces silicone implant capsule formation in a mouse model. FASEB Bioadv 2022; 4:638-647. [PMID: 36238364 PMCID: PMC9536088 DOI: 10.1096/fba.2022-00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 05/19/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022] Open
Abstract
Capsular contracture as a result of the foreign body response (FBR) is a common issue after implant-based breast reconstruction, affecting up to 20% of patients. New evidence suggests that tamoxifen may mitigate the FBR. C57BL/6 female mice were treated with daily tamoxifen or control injections and implanted with bilateral silicone implants in the submammary glandular plane. Implants were removed en bloc after 2 weeks and the implant capsules were evaluated histologically. Tamoxifen treatment decreased capsule thickness, decreased the number of αSMA+ cells (477 ± 156 cells/mm control vs 295 ± 121 cells/mm tamoxifen, p = 0.005 unpaired t test), and decreased CD31+ cells (173.9 ± 96.1 cells/mm2 control vs 106.3 ± 51.8 cells/mm2 tamoxifen, p = 0.043 unpaired t test). There were similar amounts of pro- and anti-inflammatory macrophages (iNOS 336.1 ± 226.3 cells/mm control vs 290.6 ± 104.2 cells/mm tamoxifen, p > 0.999 Mann-Whitney test and CD163 136.6 ± 76.4 cells/mm control vs 94.1 ± 45.9 cells/mm tamoxifen, p = 0.108 unpaired t test). Tamoxifen treatment in the mouse silicone breast implant model decreased capsule formation through modulation of myofibroblasts, neovascularization, and collagen deposition. Tamoxifen may be useful for reducing or preventing capsule formation in clinical breast implantations.
Collapse
Affiliation(s)
- Kevin M. Blum
- Center for Regenerative Medicine, The Abigail Wexner Research InstituteNationwide Children's HospitalColumbusOhioUSA
- Department of Biomedical EngineeringThe Ohio State UniversityColumbusOhioUSA
| | - Gabriel J. M. Mirhaidari
- Center for Regenerative Medicine, The Abigail Wexner Research InstituteNationwide Children's HospitalColumbusOhioUSA
- Biological Sciences Graduate ProgramThe Ohio State UniversityColumbusOhioUSA
| | - Jacob C. Zbinden
- Center for Regenerative Medicine, The Abigail Wexner Research InstituteNationwide Children's HospitalColumbusOhioUSA
- Department of Biomedical EngineeringThe Ohio State UniversityColumbusOhioUSA
| | - Christopher K. Breuer
- Center for Regenerative Medicine, The Abigail Wexner Research InstituteNationwide Children's HospitalColumbusOhioUSA
| | - Jenny C. Barker
- Center for Regenerative Medicine, The Abigail Wexner Research InstituteNationwide Children's HospitalColumbusOhioUSA
- Department of Plastic and Reconstructive Surgery, Wexner Medical CenterThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
10
|
Šisl D, Flegar D, Filipović M, Turčić P, Planinić P, Šućur A, Kovačić N, Grčević D, Kelava T. Tamoxifen Ameliorates Cholestatic Liver Fibrosis in Mice: Upregulation of TGFβ and IL6 Is a Potential Protective Mechanism. Biomedicines 2022; 10:biomedicines10051209. [PMID: 35625945 PMCID: PMC9138605 DOI: 10.3390/biomedicines10051209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 01/20/2023] Open
Abstract
The available treatments for cholestatic liver fibrosis are limited, and the disease often progresses to liver cirrhosis. Tamoxifen is a selective modulator of estrogen receptors, commonly used in breast cancer therapy. A recent in vitro study showed that tamoxifen deactivates hepatic stellate cells, suggesting its potential as an antifibrotic therapeutic, but its effects in vivo remain poorly investigated. In the present study, we show that tamoxifen protects against the cholestatic fibrosis induced by a diet supplemented with 0.025% 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). Mice fed with a DDC-supplemented diet for four weeks and treated with tamoxifen developed a significantly milder degree of liver fibrosis than vehicle-treated mice, as evidenced by a lower percentage of Sirius red-stained area (60.4% decrease in stained area in male and 42% decrease in female mice, p < 0.001 and p < 0.01, respectively) and by lower hydroxyproline content. The finding was further confirmed by qPCR analysis, which showed a lower expression of genes for Col1a1, Acta2, Sox9, Pdgf, and Krt19, indicating the inhibitory effect on hepatic stellate cells, collagen production, and biliary duct proliferation. The degree of protection was similar in male and female mice. Tamoxifen per se, injected into standard-diet-fed mice, increased the expression of genes for Il6 (p < 0.01 and p < 0.001 in male and female mice, respectively) and Tgfβ (p < 0.01 for both sexes), and had no adverse effects. We showed that tamoxifen sex-independently protects against cholestatic DDC-induced liver fibrosis. The increased expression of Il6 and Tgfβ seems to be a plausible protective mechanism that should be the primary focus of further research.
Collapse
Affiliation(s)
- Dino Šisl
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (D.Š.); (D.F.); (M.F.); (A.Š.); (N.K.); (D.G.)
- Department of Physiology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Darja Flegar
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (D.Š.); (D.F.); (M.F.); (A.Š.); (N.K.); (D.G.)
- Department of Physiology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Maša Filipović
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (D.Š.); (D.F.); (M.F.); (A.Š.); (N.K.); (D.G.)
- Department of Physiology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Petra Turčić
- Department of Pharmacology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia;
| | - Pavao Planinić
- Department of Physiology, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina;
| | - Alan Šućur
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (D.Š.); (D.F.); (M.F.); (A.Š.); (N.K.); (D.G.)
- Department of Physiology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Nataša Kovačić
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (D.Š.); (D.F.); (M.F.); (A.Š.); (N.K.); (D.G.)
- Department of Anatomy, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Danka Grčević
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (D.Š.); (D.F.); (M.F.); (A.Š.); (N.K.); (D.G.)
- Department of Physiology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Tomislav Kelava
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (D.Š.); (D.F.); (M.F.); (A.Š.); (N.K.); (D.G.)
- Department of Physiology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Correspondence: ; Tel.: +385-14-56-69-45
| |
Collapse
|
11
|
Koch SE, de Kort BJ, Holshuijsen N, Brouwer HFM, van der Valk DC, Dankers PYW, van Luijk JAKR, Hooijmans CR, de Vries RBM, Bouten CVC, Smits AIPM. Animal studies for the evaluation of in situ tissue-engineered vascular grafts - a systematic review, evidence map, and meta-analysis. NPJ Regen Med 2022; 7:17. [PMID: 35197483 PMCID: PMC8866508 DOI: 10.1038/s41536-022-00211-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
Vascular in situ tissue engineering (TE) is an approach that uses bioresorbable grafts to induce endogenous regeneration of damaged blood vessels. The evaluation of newly developed in situ TE vascular grafts heavily relies on animal experiments. However, no standard for in vivo models or study design has been defined, hampering inter-study comparisons and translational efficiency. To provide input for formulating such standard, the goal of this study was to map all animal experiments for vascular in situ TE using off-the-shelf available, resorbable synthetic vascular grafts. A literature search (PubMed, Embase) yielded 15,896 studies, of which 182 studies met the inclusion criteria (n = 5,101 animals). The reports displayed a wide variety of study designs, animal models, and biomaterials. Meta-analysis on graft patency with subgroup analysis for species, age, sex, implantation site, and follow-up time demonstrated model-specific variations. This study identifies possibilities for improved design and reporting of animal experiments to increase translational value.
Collapse
Affiliation(s)
- Suzanne E Koch
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Bente J de Kort
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Noud Holshuijsen
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Hannah F M Brouwer
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Dewy C van der Valk
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Patricia Y W Dankers
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Judith A K R van Luijk
- SYstematic Review Centre for Laboratory animal Experimentation (SYRCLE), Department for Health Evidence, Radboud Institute for Health Sciences, Radboud UMC, Nijmegen, The Netherlands
| | - Carlijn R Hooijmans
- SYstematic Review Centre for Laboratory animal Experimentation (SYRCLE), Department for Health Evidence, Radboud Institute for Health Sciences, Radboud UMC, Nijmegen, The Netherlands
| | - Rob B M de Vries
- SYstematic Review Centre for Laboratory animal Experimentation (SYRCLE), Department for Health Evidence, Radboud Institute for Health Sciences, Radboud UMC, Nijmegen, The Netherlands
| | - Carlijn V C Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Anthal I P M Smits
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands. .,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
12
|
Reinhardt JW, Breuer CK. Fibrocytes: A Critical Review and Practical Guide. Front Immunol 2021; 12:784401. [PMID: 34975874 PMCID: PMC8718395 DOI: 10.3389/fimmu.2021.784401] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/30/2021] [Indexed: 01/18/2023] Open
Abstract
Fibrocytes are hematopoietic-derived cells that directly contribute to tissue fibrosis by producing collagen following injury, during disease, and with aging. The lack of a fibrocyte-specific marker has led to the use of multiple strategies for identifying these cells in vivo. This review will detail how past studies were performed, report their findings, and discuss their strengths and limitations. The motivation is to identify opportunities for further investigation and promote the adoption of best practices during future study design.
Collapse
Affiliation(s)
- James W. Reinhardt
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Christopher K. Breuer
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Surgery, Nationwide Children’s Hospital, Columbus, OH, United States
| |
Collapse
|
13
|
Immuno-regenerative biomaterials for in situ cardiovascular tissue engineering - Do patient characteristics warrant precision engineering? Adv Drug Deliv Rev 2021; 178:113960. [PMID: 34481036 DOI: 10.1016/j.addr.2021.113960] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/20/2021] [Accepted: 08/30/2021] [Indexed: 02/07/2023]
Abstract
In situ tissue engineering using bioresorbable material implants - or scaffolds - that harness the patient's immune response while guiding neotissue formation at the site of implantation is emerging as a novel therapy to regenerate human tissues. For the cardiovascular system, the use of such implants, like blood vessels and heart valves, is gradually entering the stage of clinical translation. This opens up the question if and to what extent patient characteristics influence tissue outcomes, necessitating the precision engineering of scaffolds to guide patient-specific neo-tissue formation. Because of the current scarcity of human in vivo data, herein we review and evaluate in vitro and preclinical investigations to predict the potential role of patient-specific parameters like sex, age, ethnicity, hemodynamics, and a multifactorial disease profile, with special emphasis on their contribution to the inflammation-driven processes of in situ tissue engineering. We conclude that patient-specific conditions have a strong impact on key aspects of in situ cardiovascular tissue engineering, including inflammation, hemodynamic conditions, scaffold resorption, and tissue remodeling capacity, suggesting that a tailored approach may be required to engineer immuno-regenerative biomaterials for safe and predictive clinical applicability.
Collapse
|