1
|
Alvarez JAE, Dean SN. TEMPRO: nanobody melting temperature estimation model using protein embeddings. Sci Rep 2024; 14:19074. [PMID: 39154093 PMCID: PMC11330463 DOI: 10.1038/s41598-024-70101-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024] Open
Abstract
Single-domain antibodies (sdAbs) or nanobodies have received widespread attention due to their small size (~ 15 kDa) and diverse applications in bio-derived therapeutics. As many modern biotechnology breakthroughs are applied to antibody engineering and design, nanobody thermostability or melting temperature (Tm) is crucial for their successful utilization. In this study, we present TEMPRO which is a predictive modeling approach for estimating the Tm of nanobodies using computational methods. Our methodology integrates various nanobody biophysical features to include Evolutionary Scale Modeling (ESM) embeddings, NetSurfP3 structural predictions, pLDDT scores per sdAb region from AlphaFold2, and each sequence's physicochemical characteristics. This approach is validated with our combined dataset containing 567 unique sequences with corresponding experimental Tm values from a manually curated internal data and a recently published nanobody database, NbThermo. Our results indicate the efficacy of protein embeddings in reliably predicting the Tm of sdAbs with mean absolute error (MAE) of 4.03 °C and root mean squared error (RMSE) of 5.66 °C, thus offering a valuable tool for the optimization of nanobodies for various biomedical and therapeutic applications. Moreover, we have validated the models' performance using experimentally determined Tms from nanobodies not found in NbThermo. This predictive model not only enhances nanobody thermostability prediction, but also provides a useful perspective of using embeddings as a tool for facilitating a broader applicability of downstream protein analyses.
Collapse
Affiliation(s)
- Jerome Anthony E Alvarez
- Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, DC, USA
| | - Scott N Dean
- Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, DC, USA.
| |
Collapse
|
2
|
Li J, Kang G, Wang J, Yuan H, Wu Y, Meng S, Wang P, Zhang M, Wang Y, Feng Y, Huang H, de Marco A. Affinity maturation of antibody fragments: A review encompassing the development from random approaches to computational rational optimization. Int J Biol Macromol 2023; 247:125733. [PMID: 37423452 DOI: 10.1016/j.ijbiomac.2023.125733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Routinely screened antibody fragments usually require further in vitro maturation to achieve the desired biophysical properties. Blind in vitro strategies can produce improved ligands by introducing random mutations into the original sequences and selecting the resulting clones under more and more stringent conditions. Rational approaches exploit an alternative perspective that aims first at identifying the specific residues potentially involved in the control of biophysical mechanisms, such as affinity or stability, and then to evaluate what mutations could improve those characteristics. The understanding of the antigen-antibody interactions is instrumental to develop this process the reliability of which, consequently, strongly depends on the quality and completeness of the structural information. Recently, methods based on deep learning approaches critically improved the speed and accuracy of model building and are promising tools for accelerating the docking step. Here, we review the features of the available bioinformatic instruments and analyze the reports illustrating the result obtained with their application to optimize antibody fragments, and nanobodies in particular. Finally, the emerging trends and open questions are summarized.
Collapse
Affiliation(s)
- Jiaqi Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Guangbo Kang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Jiewen Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Haibin Yuan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Yili Wu
- Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and the Affiliated Kangning Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Oujiang Laboratory, Wenzhou, Zhejiang 325035, China
| | - Shuxian Meng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Ping Wang
- New Technology R&D Department, Tianjin Modern Innovative TCM Technology Company Limited, Tianjin 300392, China
| | - Miao Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; China Resources Biopharmaceutical Company Limited, Beijing 100029, China
| | - Yuli Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Tianjin Pharmaceutical Da Ren Tang Group Corporation Limited, Traditional Chinese Pharmacy Research Institute, Tianjin Key Laboratory of Quality Control in Chinese Medicine, Tianjin 300457, China; State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, China
| | - Yuanhang Feng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - He Huang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China.
| | - Ario de Marco
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Nova Gorica, Slovenia.
| |
Collapse
|
3
|
Kiguchi Y, Morita I, Yamaki K, Takegami S, Kobayashi N. Framework-Directed Amino-Acid Insertions Generated over 55-Fold Affinity-Matured Antibody Fragments That Enabled Sensitive Luminescent Immunoassays of Cortisol. Biol Pharm Bull 2023; 46:1661-1665. [PMID: 38044090 DOI: 10.1248/bpb.b23-00656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
We generated three single-chain Fv fragments (scFvs) specific to cortisol according to our original affinity-maturation strategy and verified their utility in developing immunoassays. These scFv mutants (m-scFvs) had insertion of one, four, or six amino acid(s) in the framework region 1 of the VH-domain and showed >55-fold higher affinity (Ka, 2.0 - 2.2 × 1010 M-1) than the unmodified scFv (wt-scFv). Each m-scFv was fused with NanoLuc luciferase (NLuc) for the use in enzyme-linked immunosorbent assays (ELISAs). In these ELISA, the m-scFv-NLuc fusions were competitively reacted with immobilized cortisol residues and cortisol standards, and then the bound NLuc activity was monitored luminometrically. The luminescent ELISAs generated dose-response curves with extremely low midpoints (approx. 3 pg/assay) and were >150-fold more sensitive than the colorimetric ELISAs using wt-scFv and >8000-fold more sensitive than the ELISA using the parental native antibody. The luminescent ELISAs showed acceptable cross-reactivity patterns with related steroids, and the determination of control sera afforded cortisol levels in the reference range with satisfactory parallelism.
Collapse
Affiliation(s)
- Yuki Kiguchi
- Kobe Pharmaceutical University
- Kyoto Pharmaceutical University
| | | | | | | | | |
Collapse
|
4
|
Kiguchi Y. A Novel System for Discovering High-affinity Antibody Mutants That Enables Immunoassays with Higher Sensitivities —Development and Application of Clonal Array Profiling (CAP)—. YAKUGAKU ZASSHI 2022; 142:1153-1159. [DOI: 10.1248/yakushi.22-00141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Kiguchi Y, Morita I, Tsuruno A, Kobayashi N. Retrieving Dissociation-Resistant Antibody Mutants: An Efficient Strategy for Developing Immunoassays with Improved Sensitivities. Biol Pharm Bull 2022; 45:1432-1437. [PMID: 36184500 DOI: 10.1248/bpb.b22-00454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previously, we generated high-affinity antibody mutants that enabled sensitive immunoassays by exploring diverse libraries of single-chain Fv fragments (scFvs) displayed on bacteriophage. To isolate rarely-occurring desirable clones, "panning" has commonly been performed but is often unsuccessful. Therefore, we previously developed a clonal array profiling (CAP) method, wherein scFv-displaying phage (scFv-Ph) clones in a library were examined individually regarding their ability to target antigens immobilized on microwells. Clones that showed strong reactivity were recovered via dissociation using an acidic treatment. The CAP successfully discovered cortisol-specific scFvs showing 17-31-fold improved Ka from libraries generated via site-directed insertions in a prototype anti-cortisol scFv (wt-scFv; Ka, 3.6 × 108 M-1), but their Ka did not exceed 1.1 × 1010 M-1. In this study, to break this possible affinity ceiling, we devised a new system employing a dissociation-independent recovery. scFv-Phs were individually reacted to target antigen (cortisol) immobilized on microwells via a linker containing a disulfide bond. Following acidic and basic treatments to eliminate scFv-Phs with "ordinary affinities," dissociation-resistant scFv-Phs remaining on the microwells were retrieved via reductive cleavage of the disulfide bonds. This system allowed for a straightforward and efficient discovery of scFv mutants with 33-56-fold increased Ka (1.2-2.0 × 1010 M-1), exceeding the previous affinity ceiling. These scFvs enabled an enzyme-linked immunosorbent assay for cortisol with 18-51-fold higher sensitivity than the assay performed using wt-scFv.
Collapse
|
6
|
Lu F, Zhang F, Qian J, Huang T, Chen L, Huang Y, Wang B, Cui L, Guo S. Preparation and application of a specific single-chain variable fragment against artemether. J Pharm Biomed Anal 2022; 220:115020. [PMID: 36049377 DOI: 10.1016/j.jpba.2022.115020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022]
Abstract
Artemether, an artemisinin derivative, is a component of the commonly used artemisinin-based combination therapy, artemether-lumefantrine. In this study, we cloned the VH and VL genes of a cell line (mAb 2G12E1) producing a monoclonal antibody specific to artemether, and used to construct a recombinant DNA of single-chain variable fragment (scFv). The scFv was constructed into prokaryotic expression vectors pET32a (+), pET22b (+), pGEX-2T, and pMAL-p5x, respectively. However, only the pMAL-p5x/scFv could be induced to express soluble scFv with comparable sensitivity and specificity to that of mAb 2G12E1. Based on the anti-artemether scFv, an indirect competitive enzyme-linked immunosorbent assay (icELISA) was developed. The 50% of inhibition concentration (IC50) value and the working range based on IC20 to IC80 were 4.33 ng mL-1 and 1.05-22.65 ng mL-1, respectively. The artemether content in different drugs were determined by the developed icELISA, and the results were consistent to those determined by ultra performance liquid chromatography (UPLC). The anti-artemether scFv prepared in the current study could be a valuable genetically engineered antibody applied for artemether monitoring and specific binding mechanism studying.
Collapse
Affiliation(s)
- Fang Lu
- School of Biotechnology and Health Sciences, Wuyi University, 529020 Jiangmen, Guangdong, China
| | - Fa Zhang
- School of Biotechnology and Health Sciences, Wuyi University, 529020 Jiangmen, Guangdong, China
| | - Jingqi Qian
- College of Agronomy and Biotechnology, China Agricultural University, 100193 Beijing, China
| | - Tingting Huang
- School of Biotechnology and Health Sciences, Wuyi University, 529020 Jiangmen, Guangdong, China
| | - Liping Chen
- School of Biotechnology and Health Sciences, Wuyi University, 529020 Jiangmen, Guangdong, China
| | - Yilin Huang
- School of Biotechnology and Health Sciences, Wuyi University, 529020 Jiangmen, Guangdong, China
| | - Baomin Wang
- College of Agronomy and Biotechnology, China Agricultural University, 100193 Beijing, China.
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Suite 304, Tampa, FL 33612, USA
| | - Suqin Guo
- School of Biotechnology and Health Sciences, Wuyi University, 529020 Jiangmen, Guangdong, China.
| |
Collapse
|
7
|
Morita I, Kiguchi Y, Oyama H, Yamaki K, Sakio N, Kashiwabara K, Kuroda Y, Ito A, Yokota A, Ikeda N, Kikura-Hanajiri R, Ueda H, Numazawa S, Yoshida T, Kobayashi N. Derivatization-assisted immunoassays: application for group-specific detection of potent methamphetamine and amphetamine enantiomers. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2745-2753. [PMID: 35785801 DOI: 10.1039/d2ay00940d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Reliable and feasible tools for detecting (S)-methamphetamine [(S)-MAP] and (S)-amphetamine [(S)-AP] are required for regulating their illicit circulation. Antibodies that react equally to these stimulants are desirable for this purpose, but have been difficult to generate because of the crucial difference between their characteristic structures: i.e., N-methylamino (MAP) and amino (AP) groups. Furthermore, their small molecular masses (Mr < 150) have hampered the generation of high-affinity antibodies. To overcome these problems, we converted (S)-MAP and -AP into their 2-(trimethylsilyl)ethyl carbamate forms, Teoc-(S)-MAP and -AP, respectively, as surrogate analytes. The Teoc-derivatization not only increases their molecular masses, but also masks their structural differences. We generated a novel monoclonal antibody that showed a satisfactory affinity to Teoc-(S)-MAP residues (Kd = 13 nM as the IgG form) and developed a competitive enzyme-linked immunosorbent assay (ELISA) using microplates containing immobilized Teoc-(S)-MAP residues. Almost overlapping dose-response curves were obtained for Teoc-(S)-MAP and -AP, with the limit of detection of 0.078 and 0.10 ng per assay, respectively. A fixed amount of test powder sample (1 mg) was derivatized with Teoc-O-succinimidyl for 5 min, and subjected to ELISA using Teoc-(S)-MAP as the calibration standard. Under this protocol, (S)-MAP and -AP were converted to their Teoc derivatives with 30% and 34% yield, respectively, determined using ELISA as "Teoc-(S)-MAP equivalent," being distinguished from the derivatization products of (R)-MAP, (R)-AP, ephedrine, (S)-methylenedioxymethamphetamine, tyramine, dopamine, and β-alanine. This ELISA detected as little as 10 μg of (S)-MAP and -AP, and (S)-MAP in urine obtained from (S)-MAP-administered rats. Immunochromatography devices were also developed using gold nanoparticles coated with the monoclonal antibody, with which 0.10 mg of (S)-MAP and -AP was detected by the naked eye. We conclude that the present derivatization-assisted immunoassays may be useful for the detection of (S)-MAP and/or -AP in early stage screening of suspicious substances.
Collapse
Affiliation(s)
- Izumi Morita
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe 658-8558, Japan.
| | - Yuki Kiguchi
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe 658-8558, Japan.
| | - Hiroyuki Oyama
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe 658-8558, Japan.
| | - Kouya Yamaki
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe 658-8558, Japan.
| | - Nami Sakio
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe 658-8558, Japan.
| | - Keisuke Kashiwabara
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe 658-8558, Japan.
| | - Yumi Kuroda
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe 658-8558, Japan.
| | - Aya Ito
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe 658-8558, Japan.
| | - Asaka Yokota
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe 658-8558, Japan.
| | - Natsumi Ikeda
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe 658-8558, Japan.
| | - Ruri Kikura-Hanajiri
- National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan
| | - Hiroshi Ueda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| | - Satoshi Numazawa
- Department of Pharmacology, Toxicology, and Therapeutics, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Takemi Yoshida
- Department of Pharmacology, Toxicology, and Therapeutics, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
- Council on Pharmacists Credentials, 1-9-2 Nishi-shinbashi, Minato-ku, Tokyo 105-0003, Japan
| | - Norihiro Kobayashi
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe 658-8558, Japan.
| |
Collapse
|
8
|
Morita I, Kiguchi Y, Nakamura S, Yoshida A, Kubo H, Ishida M, Oyama H, Kobayashi N. More than 370-Fold Increase in Antibody Affinity to Estradiol-17β by Exploring Substitutions in the V H-CDR3. Biol Pharm Bull 2022; 45:851-855. [PMID: 35786593 DOI: 10.1248/bpb.b22-00187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Antibodies that specifically target biomarkers are essential in clinical diagnosis. Genetic engineering has assisted in designing novel antibodies that offer greater antigen-binding affinities, thus providing more sensitive immunoassays. We have succeeded in generating a single-chain Fv fragment (scFv) targeted estradiol-17β (E2) with more than 370-fold improved affinity, based on a strategy focusing the complementarity-determining region 3 in the VH domain (VH-CDR3). Systematic exploration of amino acid substitutions therein, using a clonal array profiling, revealed a cluster of four substitutions, containing H99P and a serial substitution E100eN-I100fA-L100gQ that lead to a 90-fold increase in E2-binding affinity. This substitution quartet in the VH-CDR3, combined with the substitution cluster I29V/L36M/S77G in the VL domain, resulted in a scFv fragment with a further increase in the affinity (Ka, 3.2 × 1010 M-1). This enabled a highly sensitive enzyme-linked immunosorbent assay capable of detecting up to 0.78 pg/assay. The current study has, thus, focused on the significance of reevaluating the potential of mutagenesis targeting the VH-CDR3, and encouraging the production and use of engineered antibodies that enable enhanced sensitivities as next-generation diagnostic tools.
Collapse
|
9
|
Frick R, Høydahl LS, Hodnebrug I, Vik ES, Dalhus B, Sollid LM, Gray JJ, Sandlie I, Løset GÅ. Affinity maturation of TCR-like antibodies using phage display guided by structural modeling. Protein Eng Des Sel 2022; 35:gzac005. [PMID: 35871543 PMCID: PMC9536190 DOI: 10.1093/protein/gzac005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 12/01/2022] Open
Abstract
TCR-like antibodies represent a unique type of engineered antibodies with specificity toward pHLA, a ligand normally restricted to the sensitive recognition by T cells. Here, we report a phage display-based sequential development path of such antibodies. The strategy goes from initial lead identification through in silico informed CDR engineering in combination with framework engineering for affinity and thermostability optimization, respectively. The strategy allowed the identification of HLA-DQ2.5 gluten peptide-specific TCR-like antibodies with low picomolar affinity. Our method outlines an efficient and general method for development of this promising class of antibodies, which should facilitate their utility including translation to human therapy.
Collapse
Affiliation(s)
- Rahel Frick
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
- Centre for Immune Regulation and Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Lene S Høydahl
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
- Centre for Immune Regulation and Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
- KG Jebsen Coeliac Disease Research Centre, University of Oslo, Sognsvannsveien 20, 0372 Oslo, Norway
| | - Ina Hodnebrug
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
- Centre for Immune Regulation and Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - Erik S Vik
- Nextera AS, Gaustadalléen 21, 0349 Oslo, Norway
| | - Bjørn Dalhus
- Department for Medical Biochemistry, Institute for Clinical Medicine, University of Oslo, Sognsvannsveien 20, 0372 Oslo, Norway
- Department for Microbiology, Clinic for Laboratory Medicine, Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
| | - Ludvig M Sollid
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
- KG Jebsen Coeliac Disease Research Centre, University of Oslo, Sognsvannsveien 20, 0372 Oslo, Norway
| | - Jeffrey J Gray
- Program in Molecular Biophysics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering and Institute of NanoBioTechnology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, 733 N Broadway, Baltimore, MD 21205, USA
| | - Inger Sandlie
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
- Centre for Immune Regulation and Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - Geir Åge Løset
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
- Centre for Immune Regulation and Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
- Nextera AS, Gaustadalléen 21, 0349 Oslo, Norway
| |
Collapse
|
10
|
Morita I, Kiguchi Y, Oyama H, Takeuchi A, Tode C, Tanaka R, Ogata J, Kikura-Hanajiri R, Kobayashi N. Derivatization-assisted enzyme-linked immunosorbent assay for identifying hallucinogenic mushrooms with enhanced sensitivity. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3954-3962. [PMID: 34528944 DOI: 10.1039/d1ay01157j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A sensitive immunochemical method for identifying hallucinogenic mushrooms (magic mushrooms) is required for regulating their illicit use. We have previously generated a monoclonal antibody (mAb) that targets psilocin (Psi), the major psychoactive compound in hallucinogenic mushrooms, and developed an enzyme-linked immunosorbent assay (ELISA). However, this ELISA failed to achieve the expected low-picomole-range sensitivity, as a result of insufficient affinity of the mAb to Psi. It is recognized that haptenic antigens with a larger molecular mass tend to induce antibodies with higher affinities. Thus, we herein report a "derivatization-assisted ELISA," in which the "real analyte" Psi was determined as a "surrogate analyte," the tert-butyldimethylsilyl ether analog thereof (TBS/Psi) having a 1.6-fold greater molecular mass (Mr 318.53) than Psi. A novel mAb against TBS/Psi, prepared by immunizing mice with a TBS/Psi-albumin conjugate showed a 69-fold higher affinity to TBS/Psi residues (Ka = 3.6 × 107 M-1 as IgG) than that of our previous mAb against Psi. This mAb consequently enabled a competitive ELISA for measuring TBS/Psi with the desired sensitivity: the dose-response curve midpoint (12.1 pmol per assay) was >100-fold lower than that of the previous ELISA for determining Psi. Extracts of dried mushroom powders were mixed with TBS triflate for 30 min at room temperature, converting Psi into TBS/Psi in approximately 50% yield. The reaction mixture was then subjected to an ELISA using the anti-TBS/Psi mAb to determine TBS/Psi. Psilocybe cubensis, a species of hallucinogenic mushrooms, gave rise to positive signals, indicating the presence of Psi therein in the expected quantity, while no detectable response was observed for four kinds of edible mushrooms available in the markets.
Collapse
Affiliation(s)
- Izumi Morita
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe 658-8558, Japan.
| | - Yuki Kiguchi
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe 658-8558, Japan.
| | - Hiroyuki Oyama
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe 658-8558, Japan.
| | - Atsuko Takeuchi
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe 658-8558, Japan.
| | - Chisato Tode
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe 658-8558, Japan.
| | - Rie Tanaka
- National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan
| | - Jun Ogata
- National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan
| | - Ruri Kikura-Hanajiri
- National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan
| | - Norihiro Kobayashi
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe 658-8558, Japan.
| |
Collapse
|