1
|
Zhang X, Chen Z, Xiong Y, Zhou Q, Zhu LQ, Liu D. The emerging role of nitric oxide in the synaptic dysfunction of vascular dementia. Neural Regen Res 2025; 20:402-415. [PMID: 38819044 PMCID: PMC11317957 DOI: 10.4103/nrr.nrr-d-23-01353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/23/2023] [Accepted: 11/30/2023] [Indexed: 06/01/2024] Open
Abstract
With an increase in global aging, the number of people affected by cerebrovascular diseases is also increasing, and the incidence of vascular dementia-closely related to cerebrovascular risk-is increasing at an epidemic rate. However, few therapeutic options exist that can markedly improve the cognitive impairment and prognosis of vascular dementia patients. Similarly in Alzheimer's disease and other neurological disorders, synaptic dysfunction is recognized as the main reason for cognitive decline. Nitric oxide is one of the ubiquitous gaseous cellular messengers involved in multiple physiological and pathological processes of the central nervous system. Recently, nitric oxide has been implicated in regulating synaptic plasticity and plays an important role in the pathogenesis of vascular dementia. This review introduces in detail the emerging role of nitric oxide in physiological and pathological states of vascular dementia and summarizes the diverse effects of nitric oxide on different aspects of synaptic dysfunction, neuroinflammation, oxidative stress, and blood-brain barrier dysfunction that underlie the progress of vascular dementia. Additionally, we propose that targeting the nitric oxide-sGC-cGMP pathway using certain specific approaches may provide a novel therapeutic strategy for vascular dementia.
Collapse
Affiliation(s)
- Xiaorong Zhang
- Department of Pathology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi Province, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi Province, China
- Center for Cognitive Science and Transdisciplinary Studies, Jiujiang University, Jiangxi Province, China
| | - Zhiying Chen
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi Province, China
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi Province, China
| | - Yinyi Xiong
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi Province, China
- Department of Rehabilitation, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi Province, China
| | - Qin Zhou
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi Province, China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Dan Liu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
2
|
Fan LL, Fang H, Zheng JY, Qiu YH, Wu GL, Cai YF, Chen YB, Zhang SJ. Taohong Siwu decoction alleviates cognitive impairment by suppressing endoplasmic reticulum stress and apoptosis signaling pathway in vascular dementia rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118407. [PMID: 38824979 DOI: 10.1016/j.jep.2024.118407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Taohong Siwu Decoction (TSD), a classic traditional Chinese medicine formula, is used for the treatment of vascular diseases, including vascular dementia (VD). However, the mechanisms remain unclear. AIM OF STUDY This study aimed to investigate whether TSD has a positive effect on cognitive impairment in VD rats and to confirm that the mechanism of action is related to the Endoplasmic Reticulum stress (ERs) and cell apoptosis signaling pathway. MATERIALS AND METHODS A total of 40 male adult Sprague-Dawley rats were divided into four groups: sham-operated group (Sham), the two-vessel occlusion group (2VO), the 2VO treated with 4.5 g/kg/d TSD group (2VO + TSD-L), the 2VO treated with 13.5 g/kg/d TSD group (2VO + TSD-H). The rats underwent either 2VO surgery or sham surgery. Postoperative TSD treatment was given for 4 consecutive weeks. Behavioral tests were initiated at the end of gastrulation. Open-field test (OFT) was used to detect the activity level. The New Object Recognition test (NOR) was used to test long-term memory. The Morris water maze (MWM) test was used to examine the foundation of spatial learning and memory. As a final step, the hippocampus was taken for molecular testing. The protein levels of GRP78 (Bip), p-PERK, PERK, IRE1α, p-IRE1α, ATF6, eIF2α, p-eIF2α, ATF4, XBP1, Bcl-2 and Bax were determined by Western blot. Immunofluorescence visualizes molecular expression. RESULTS In the OFT, residence time in the central area was significantly longer in both TSD treatment groups compared to the 2VO group. In the NOR, the recognition index was obviously elevated in both TSD treatment groups. The 2VO group had a significantly longer escape latency and fewer times in crossing the location of the platform compared with the Sham group in MWM. TSD treatment reversed this notion. Pathologically, staining observations confirmed that TSD inhibited hippocampal neuronal loss and alleviated the abnormal reduction of the Nissl body. In parallel, TUNEL staining illustrated that TSD decelerated neuronal apoptosis. Western Blot demonstrated that TSD reduces the expression of ERs and apoptotic proteins. CONCLUSION In this study, the significant ameliorative effect on cognitive impairment of TSD has been determined by comparing the behavioral data of the 4 groups of rats. Furthermore, it was confirmed that this effect of TSD was achieved by suppressing the ERs-mediated apoptosis signaling pathway.
Collapse
Affiliation(s)
- Ling-Ling Fan
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM Guangzhou, 510000, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Hao Fang
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Jia-Yi Zheng
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yu-Hui Qiu
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Guang-Liang Wu
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM Guangzhou, 510000, China
| | - Ye-Feng Cai
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM Guangzhou, 510000, China.
| | - Yun-Bo Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China.
| | - Shi-Jie Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM Guangzhou, 510000, China.
| |
Collapse
|
3
|
Li J, Ye H, Xu F, Yang Y, Ge C, Yao M, Huang P, Wang L, Wang N, Zhou X, Chang D. Tong-Qiao-Huo-Xue Decoction promotes synaptic remodeling via cAMP/PKA/CREB pathway in vascular dementia rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156166. [PMID: 39461198 DOI: 10.1016/j.phymed.2024.156166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/29/2024] [Accepted: 10/06/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND Tong-Qiao-Huo-Xue Decoction (TQHXD) is a traditional Chinese medicinal formula widely used in the treatment of vascular dementia (VD). Although it has demonstrated good clinical efficacy, the specific molecular mechanisms underlying its therapeutic effects on VD remain unclear. OBJECTIVE This study aimed to elucidate the neuroprotective mechanisms of TQHXD to provide a scientific basis for the clinical treatment of VD. METHODS The chemical components of TQHXD were qualitatively analyzed using ultra-performance liquid chromatography (UPLC) and gas chromatography (GC). Network pharmacology predicted the potential protective mechanisms of TQHXD against VD. A rat model of VD was established through bilateral vessel occlusion (2-VO), and an oxygen-glucose deprivation/reperfusion (OGD/R) model was used to induce damage to neuronal cells of the hippocampus. In vivo experiments assessed changes in cerebral blood flow, learning and memory capabilities, hippocampal neuronal morphology, dendritic length, dendritic spine density, and synapse number in rats. We examined the expression of synaptic remodeling-related proteins and pathway proteins in the hippocampal region. In vitro assays evaluated cell viability, apoptosis, reactive oxygen species (ROS) levels, and expression of synaptic remodeling-related proteins and signaling pathway. RESULTS Multiple active components were identified in TQHXD. KEGG enrichment analysis suggested that the therapeutic effects of TQHXD on VD may be related to the cAMP signaling pathway. Treatment with TQHXD significantly improved learning and memory performance in VD rats, improved hippocampus morphology, and increased dendritic length, dendritic spine density, and number of synapses. Furthermore, TQHXD improved cell viability, reduced apoptosis, and decreased intracellular ROS levels in vitro. Western blotting, immunofluorescence, and enzyme-linked immunosorbent assay results collectively demonstrated that TQHXD upregulated the expression of synaptic remodeling-related proteins and pathway-related proteins both in vivo and in vitro. CONCLUSIONS TQHXD treated VD by promoting synaptic remodeling in hippocampal neurons, likely through activation of the cAMP/PKA/CREB pathway.
Collapse
Affiliation(s)
- Jiacheng Li
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Haiyong Ye
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Fan Xu
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Yuting Yang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Traditional Chinese Medicine, 103 Meishan Road, Shushan District, Hefei, Anhui 230038, China
| | - Chaowen Ge
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Min Yao
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Ping Huang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Lei Wang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, China.
| | - Ning Wang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, China.
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, Sydney, NSW 2145, Australia
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Westmead, Sydney, NSW 2145, Australia
| |
Collapse
|
4
|
Yang JD, Lin SC, Kuo HL, Chen YS, Weng PY, Chen CM, Liu SH, Huang CF, Guan SS, Liao PL, Su YH, Lee KI, Wang PY, Chuang HL, Wu CT. Imperatorin ameliorates ferroptotic cell death, inflammation, and renal fibrosis in a unilateral ureteral obstruction mouse model. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156066. [PMID: 39341130 DOI: 10.1016/j.phymed.2024.156066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/01/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Imperatorin is a naturally occurring furocoumarin derivative found in traditional Chinese medicine Angelica dahurica for its anticancer, antihypertensive, and antidiabetic properties. Chronic kidney disease (CKD) is a global health issue, characterized by a high prevalence, significant morbidity and mortality, and a range of related complications. OBJECTIVE This study aims to investigate the protective effects of imperatorin treatment and the specific underlying mechanisms in progressive CKD. METHODS Imperatorin was orally administrated for 14 consecutive days to mice with unilateral ureteral obstruction (UUO) to investigate the renal pathological alternations, pro-inflammatory mediators, antioxidant response, and ferroptotic death signaling. Imperatorin was also tested in the erastin-induced injury of renal proximal tubular cells (NRK-52E). Cell viability, ferroptosis protein markers, erastin-induced oxidative stress, and lipid peroxidation were assessed. RESULTS In vivo, imperatorin treatment alleviated kidney histology alternations and attenuated the protein expression of fibrotic markers. Furthermore, imperatorin administration reduced inflammatory cell infiltration, and alleviated the oxidative stress burden by downregulating protein markers such as catalase, superoxide dismutase 2 (SOD-2), NADPH oxidase 4 (NOX-4), and thioredoxin reductase 1 (Trxr-1). It also mitigated ferroptosis markers such as glutathione peroxidase 4 (GPX4), solute carrier family 7 member 11/cystine transporter (SLC7A11/xCT), and transferrin receptor 1 (TFR-1), and attenuated renal cell apoptosis. In vitro, imperatorin treatment effectively decreased erastin-induced feroptotic cell death, restored the antioxidant enzyme levels, and mitigated lipid peroxidation as well as the expression of ferroptosis-related markers (XCT, GPX4, and p-p53) in a dose-dependent manner. CONCLUSION Our finding demonstrated for the first time, that imperatorin treatment holds therapeutic potential in a UUO mouse model of CKD and inhibits the erastin-induced oxidative stress, ferroptosis, and subsequent lipid peroxidation in vitro. This highlights the potential of imperatorin as a future therapeutic target for ferroptosis to improve the progression of CKD.
Collapse
Affiliation(s)
- Jr-Di Yang
- Division of Urology, Department of Surgery, National Yang-Ming Chiao Tung University Hospital, Yilan, Taiwan
| | - Ssu Chia Lin
- Department of Nutrition, China Medical University, Taichung 40402, Taiwan
| | - Huey Liang Kuo
- Division of Nephrology, Department of Internal Medicine, China Medical University Hospital, Taichung 40402, Taiwan; School of Medicine, College of Medicine, China Medical University, Taichung 40402, Taiwan; Clinical Nutrition, China Medical University Hospital, Taichung 40402, Taiwan
| | - Yu Syuan Chen
- Department of Nutrition, China Medical University, Taichung 40402, Taiwan
| | - Pei Yu Weng
- Department of Nutrition, China Medical University, Taichung 40402, Taiwan
| | - Chang Mu Chen
- Division of Neurosurgery, Department of Surgery, College of Medicine and Hospital, National Taiwan University, Taipei 10051, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Chun Fa Huang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan; Department of Nursing, College of Medical and Health Science, Asia University, Taichung, 413, Taiwan
| | - Siao Syun Guan
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan 32546, Taiwan
| | - Po Lin Liao
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University-Yang ming Campus, 155, Sec. 2, Linong Street, Taipei 11221, Taiwan
| | - Yen Hao Su
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei 235, Taiwan; Department of General Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Kuan-I Lee
- Department of Emergency, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan
| | - Pei Yun Wang
- Department of Nutrition, China Medical University, Taichung 40402, Taiwan
| | - Haw Ling Chuang
- Department of Emergency, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan.
| | - Cheng Tien Wu
- Department of Nutrition, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
5
|
Ningning Y, Ying X, Xiang L, Yue S, Zhongda W, Ruoyu J, Hanwen S, Weiwei T, Yafeng Z, Junjie M, Xiaolan C. Danggui-Shaoyao San alleviates cognitive impairment via enhancing HIF-1α/EPO axis in vascular dementia rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118306. [PMID: 38723920 DOI: 10.1016/j.jep.2024.118306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Invigorating blood circulation to remove blood stasis is a primary strategy in TCM for treating vascular dementia (VaD). Danggui-Shaoyao San (DSS), as a traditional prescription for neuroprotective activity, has been proved to be effective in VaD treatment. However, its precise molecular mechanisms remain incompletely understood. AIM OF THE STUDY The specific mechanism underlying the therapeutic effects of DSS on VaD was explored by employing network pharmacology as well as in vivo and in viro experiment validation. MATERIALS AND METHODS We downloaded components of DSS from the BATMAN-TCM database for target prediction. The intersection between the components of DSS and targets, PPI network, as well as GO and KEGG enrichment analysis were then performed. Subsequently, the potential mechanism of DSS predicted by network pharmacology was assessed and validated through VaD rat model induced by 2VO operation and CoCl2-treated PC12 cells. Briefly, the DSS extract were first quantified by HPLC. Secondly, the effect of DSS on VaD was studied using MWM test, HE staining and TUNEL assay. Finally, the molecular mechanism of DSS against VaD was validated by Western blot and RT-QPCR experiments. RESULTS Through network analysis, 137 active ingredients were obtained from DSS, and 67 potential targets associated with DSS and VaD were identified. GO and KEGG analysis indicated that the action of DSS on VaD primarily involves hypoxic terms and HIF-1 pathway. In vivo validation, cognitive impairment and neuron mortality were markedly ameliorated by DSS. Additionally, DSS significantly reduced the expression of proteins related to synaptic plasticity and neuron apoptosis including PSD-95, SYP, Caspase-3 and BCL-2. Mechanistically, we confirmed DSS positively modulated the expression of HIF-1α and its downstream proteins including EPO, p-EPOR, STAT5, EPOR, and AKT1 in the hippocampus of VaD rats as well as CoCl2-induced PC12 cells. HIF-1 inhibitor YC-1 significantly diminished the protection of DSS on CoCl2-induced PC12 cell damage, with decreased HIF-1α, EPO, EPOR expression. CONCLUSION Our results initially demonstrated DSS could exert neuroprotective effects in VaD. The pharmacological mechanism of DSS may be related to its positive regulation on HIF-1α/EPO pathway.
Collapse
Affiliation(s)
- Yuan Ningning
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xu Ying
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Li Xiang
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Su Yue
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wang Zhongda
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiang Ruoyu
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shi Hanwen
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tao Weiwei
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhang Yafeng
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, 214071, China.
| | - Ma Junjie
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Cheng Xiaolan
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
6
|
Zhong G, Wang X, Zhang Q, Zhang X, Fang X, Li S, Pan Y, Ma Y, Wang X, Wan T, Wang Q. Exploring the therapeutic implications of natural compounds modulating apoptosis in vascular dementia. Phytother Res 2024. [PMID: 39223915 DOI: 10.1002/ptr.8316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
Vascular dementia (VaD) is a prevalent form of dementia stemming from cerebrovascular disease, manifesting in memory impairment and executive dysfunction, thereby imposing a substantial societal burden. Unfortunately, no drugs have been approved for the treatment of VaD due to its intricate pathogenesis, and the development of innovative and efficacious medications is urgently needed. Apoptosis, a programmed cell death process crucial for eliminating damaged or unwanted cells within an organism, assumes pivotal roles in embryonic development and tissue homeostasis maintenance. An increasing body of evidence indicates that apoptosis may significantly influence the onset and progression of VaD, and numerous natural compounds have demonstrated significant therapeutic potential. Here, we discuss the molecular mechanisms underlying apoptosis and its correlation with VaD. We also provide a crucial reference for developing innovative pharmaceuticals by systematically reviewing the latest research progress concerning the neuroprotective effects of natural compounds on VaD by regulating apoptosis. Further high-quality clinical studies are imperative to firmly ascertain these natural compounds' clinical efficacy and safety profiles in the treatment of VaD.
Collapse
Affiliation(s)
- Guangcheng Zhong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinyue Wang
- Department of Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qian Zhang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xueying Zhang
- The Eighth Clinical Medical College, Guangzhou University of Chinese Medicine, Foshan, China
| | - Xiaoling Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuting Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yaru Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yujie Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuejing Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ting Wan
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
7
|
Zhang L, Chen Y, Fan Y, Shi L. Treadmill exercise pretreatment ameliorated structural synaptic plasticity impairments of medial prefrontal cortex in vascular dementia rat and improved recognition memory. Sci Rep 2024; 14:7116. [PMID: 38531892 DOI: 10.1038/s41598-024-57080-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
This study aimed to investigate structural synaptic plasticity in the medial prefrontal cortex of rats under treadmill exercise pretreatment or naive conditions in a vascular dementia model, followed by recognition memory performance in a novel object recognition task. In this study, 24 Sprague-Dawley rats were obtained and randomly assigned into 4 groups as follows: control group (Con group, n = 6), vascular dementia (VD group, n = 6), exercise and vascular dementia group (Exe + VD group, n = 6), and exercise group (Exe group, n = 6). Initially, 4 weeks of treadmill exercise intervention was administered to the rats in the Exe + VD and Exe groups. Then, to establish the vascular dementia model, the rats both in the VD and Exe + VD groups were subjected to bilateral common carotids arteries surgery. One week later, open-field task and novel recognition memory task were adopted to evaluate anxiety-like behavior and recognition memory in each group. Then, immunofluorescence and Golgi staining were used to evaluate neuronal number and spine density in the rat medial prefrontal cortex. Transmission electron microscopy was used to observe the synaptic ultrastructure. Finally, microdialysis coupled with high-performance liquid chromatography was used to assess the levels of 5-HT and dopamine in the medial prefrontal cortex. The behavior results showed that 4 weeks of treadmill exercise pretreatment significantly alleviated recognition memory impairment and anxiety-like behavior in VD rats (P < 0.01), while the rats in VD group exhibited impaired recognition memory and anxiety-like behavior when compared with the Con group (P < 0.001). Additionally, NeuN immunostaining results revealed a significant decrease of NeuN-marked neuron in the VD group compared to Con group (P < 0.01), but a significantly increase in this molecular marker was found in the Exe + VD group compared to the Con group (P < 0.01). Golgi staining results showed that the medial prefrontal cortex neurons in the VD group displayed fewer dendritic spines than those in the Con group (P < 0.01), and there were more spines on the dendrites of medial prefrontal cortex cells in Exe + VD rats than in VD rats (P < 0.01). Transmission electron microscopy further revealed that there was a significant reduction of synapses intensity in the medial prefrontal cortex of rats in the VD group when compared with the Con group(P < 0.01), but physical exercise was found to significantly increased synapses intensity in the VD model (P < 0.01). Lastly, the levels of dopamine and 5-HT in the medial prefrontal cortex of rats in the VD group was significantly lower compared to the Con group (P < 0.01), and treadmill exercise was shown to significantly increased the levels of dopamine and 5-HT in the VD rats (P < 0.05). Treadmill exercise pretreatment ameliorated structural synaptic plasticity impairments of medial prefrontal cortex in VD rat and improved recognition memory.
Collapse
Affiliation(s)
- Linlin Zhang
- Department of Physical Education, Henan Normal University, Xinxiang, 453007, China
| | - Yuanyuan Chen
- Department of Psychology and Education, Shantou Polytechnic, Shantou, 515071, China
| | - Yongzhao Fan
- Department of Physical Education, Henan Normal University, Xinxiang, 453007, China
| | - Lin Shi
- Department of Physical Education and Sport, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
8
|
Liu L, Jiang L, Zhang J, Ma Y, Wan M, Hu X, Yang L. Imperatorin inhibits oxidative stress injury and neuroinflammation via the PI3K/AKT signaling pathway in the MPTP-induced Parkinson's disease mouse. Neuroreport 2024; 35:175-184. [PMID: 38305108 DOI: 10.1097/wnr.0000000000001997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Parkinson's disease (PD) is a disorder of neurodegeneration. Imperatorin is an active natural furocoumarin characterized by antioxidant, anti-inflammatory, and potent vasodilatory properties. Therefore, we aimed to investigate the biological functions of imperatorin and its mechanisms against PD progression. C57BL/6 mice were intraperitoneally injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP; 30 mg/kg) daily for 5 consecutive days to mimic PD conditions in vivo. The MPTP-induced PD model mice were intraperitoneally injected with imperatorin (5 mg/kg) for 25 consecutive days after MPTP administration. The motor and cognitive functions of mice were examined by rotarod test, hanging test, narrow beam test and Morris water maze test. After analysis of MWM test, the expression levels of tyrosine hydroxylase and Iba-1 in the substantia nigra pars compacta were measured by immunohistochemistry staining, immunofluorescence staining and western blotting. The expression levels of striatal dopamine and its metabolite 3,4-dihydroxyphenylacetic acid were also measured. The protein levels of inducible nitric-oxide synthase, cyclooxygenase-2, phosphorylated phosphatidylinositol 3-kinase (PI3K) and phosphorylated protein kinase B (Akt) in the mouse striatum were estimated by western blotting. The expression levels of proinflammatory cytokines including tumor necrosis factor, interleukin (IL)-1β and IL-6 in the mouse striatum were measured by ELISA kits. The expression levels of superoxide dismutase, malondialdehyde and glutathione in the mouse midbrains were measured with commercially available kits. TUNEL staining was performed to identify the apoptosis of midbrain cells. Histopathologic changes in the mouse striata were assessed by hematoxylin-eosin staining. Imperatorin treatment markedly improved spatial learning and memory abilities of MPTP-induced PD mice. The MPTP-induced dopaminergic neuron loss in the mouse striata was inhibited by imperatorin. Imperatorin also suppressed neuroinflammation and neuronal oxidative stress in the midbrains of MPTP-induced PD mice. Mechanistically, imperatorin treatment inhibited the MPTP-induced reduction in the PI3K/Akt pathway. Imperatorin treatment can prevent dopaminergic neuron degeneration and improve cognitive functions via its potent antioxidant and anti-inflammatory properties in an MPTP-induced PD model in mice by regulating the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Li Liu
- Encephalopathy Department 2, Wuhan Hospital of Traditional Chinese Medicine
| | - Lei Jiang
- Encephalopathy Department 2, Wuhan Hospital of Traditional Chinese Medicine
| | - Jinglan Zhang
- Encephalopathy Department 2, Wuhan Hospital of Traditional Chinese Medicine
| | - Yan Ma
- Encephalopathy Department 2, Wuhan Hospital of Traditional Chinese Medicine
| | - Min Wan
- Department of Clinical laboratory, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Xueqing Hu
- Encephalopathy Department 2, Wuhan Hospital of Traditional Chinese Medicine
| | - Lian Yang
- Encephalopathy Department 2, Wuhan Hospital of Traditional Chinese Medicine
| |
Collapse
|
9
|
Kundu S, Ghosh A, Yadav KS, Mugale MN, Sahu BD. Imperatorin ameliorates kidney injury in diabetic mice by regulating the TGF-β/Smad2/3 signaling axis, epithelial-to-mesenchymal transition, and renal inflammation. Eur J Pharmacol 2024; 963:176250. [PMID: 38092315 DOI: 10.1016/j.ejphar.2023.176250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/11/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
Diabetic nephropathy (DN) is a serious concern in patients with diabetes mellitus. Prolonged hyperglycemia induces oxidative damage, chronic inflammation, and build-up of extracellular matrix (ECM) components in the renal cells, leading to kidney structural and functional changes. Imperatorin (IMP) is a naturally occurring furanocoumarin derivative with proven antioxidative and anti-inflammatory properties. We investigated whether IMP could improve DN and employed high glucose (HG)-induced HK-2 cells and high-fat diet-fed streptozotocin (HFD/STZ)-generated DN experimental model in C57BL/6 mice. In vitro, IMP effectively reduced the HG-activated reactive oxygen species generation, disturbance in the mitochondrial membrane potential (MMP) and epithelial-to-mesenchymal transition (EMT)-related markers, and the transforming growth factor (TGF)-β and collagen 1 expression in HK-2 cells. In vivo, we found an elevation of serum creatinine, kidney histology alterations, and collagen build-up in the kidneys of the DN control group. Also, we found an altered expression of EMT-related markers, upregulation of the TGF-β/Smad2/3 axis, and elevated pro-inflammatory molecules, TNF-α, IL-1β, IL-18 and phospho-NF-kB (p65) in the DN control group. IMP treatment did not significantly reduce the blood glucose level compared to the DN control group. However, IMP treatment effectively improved renal damage by ameliorating kidney histological changes and serum renal injury markers. IMP treatment restored renal antioxidants and exhibited anti-inflammatory effects in the kidneys. Moreover, the abnormal manifestation of EMT-related attributes and elevated levels of TGF-β, phospho-Smad2/3, and collagen 1 were also normalized in the IMP treatment group. Our findings highlight that IMP may be a potential candidate for treating DN.
Collapse
Affiliation(s)
- Sourav Kundu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India
| | - Ankana Ghosh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India
| | - Karan Singh Yadav
- Department of Toxicology and Experimental Medicine, CSIR- Central Drug Research Institute (CDRI), Lucknow, 226 031, India
| | - Madhav Nilakanth Mugale
- Department of Toxicology and Experimental Medicine, CSIR- Central Drug Research Institute (CDRI), Lucknow, 226 031, India
| | - Bidya Dhar Sahu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India.
| |
Collapse
|
10
|
Wu Q, Jiang L, Yan Y, Yan Q, Zhu X, Zhang J, Huang C, Zhou T, Ren C, Wen F, Pei J. Geographical distribution-based differentiation of cultivated Angelica dahurica, exploring the relationship between the secretory tract and the quality. Sci Rep 2023; 13:21733. [PMID: 38066026 PMCID: PMC10709555 DOI: 10.1038/s41598-023-48497-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Based on geographical distribution, cultivated Chinese Angelica dahurica has been divided into Angelica dahurica cv. 'Hangbaizhi' (HBZ) and Angelica dahurica cv. 'Qibaizhi' (QBZ). Long-term geographical isolation has led to significant quality differences between them. The secretory structure in medicinal plants, as a place for accumulating effective constituents and information transmission to the environment, links the environment with the quality of medicinal materials. However, the secretory tract differences between HBZ and QBZ has not been revealed. This study aimed to explore the relationship between the secretory tract and the quality of two kinds of A. dahurica. Root samples were collected at seven development phases. High-Performance Liquid Chromatography (HPLC) and Desorption Electrospray Ionization Mass Spectrometry Imaging (DESI-MSI) were used for the content determination and spatial location of coumarins. Paraffin section was used to observe and localize the root secretory tract. Origin, CaseViewer, and HDI software were used for data analysis and image processing. The results showed that compared to QBZ, HBZ, with better quality, has a larger area of root secretory tracts. Hence, the root secretory tract can be included in the quality evaluation indicators of A. dahurica. Additionally, DESI-MSI technology was used for the first time to elucidate the temporal and spatial distribution of coumarin components in A. dahurica root tissues. This study provides a theoretical basis for the quality evaluation and breeding of improved varieties of A. dahurica and references the DESI-MSI technology used to analyze the metabolic differences of various compounds, including coumarin and volatile oil, in different tissue parts of A. dahurica.
Collapse
Affiliation(s)
- Qinghua Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lan Jiang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuhang Yan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qi Yan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xinglong Zhu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jiaxu Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chengfeng Huang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tao Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chaoxiang Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Feiyan Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jin Pei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China.
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
11
|
Tsai CF, Chen YC, Li YZ, Wu CT, Chang PC, Yeh WL. Imperatorin ameliorates pulmonary fibrosis via GDF15 expression. Front Pharmacol 2023; 14:1292137. [PMID: 38111379 PMCID: PMC10725920 DOI: 10.3389/fphar.2023.1292137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/20/2023] [Indexed: 12/20/2023] Open
Abstract
Background: Pulmonary fibrosis features in damaged pulmonary structure or over-produced extracellular matrix and impaired lung function, leading to respiratory failure and eventually death. Fibrotic lungs are characterized by the secretion of pro-fibrotic factors, transformation of fibroblasts to myofibroblasts, and accumulation of matrix proteins. Hypothesis/purpose: Imperatorin shows anti-inflammatory effects on alveolar macrophages against acute lung injury. We attempt to evaluate the properties of imperatorin on the basis of fibroblasts. Methods: In in vitro, zymosan was introduced to provoke pro-fibrotic responses in NIH/3T3 or MRC-5 pulmonary fibroblasts. Imperatorin was given for examining its effects against fibrosis. The mice were stimulated by bleomycin, and imperatorin was administered to evaluate the prophylactic potential in vivo. Results: The upregulated expression of connective tissue growth factor (CTGF), α-smooth muscle actin (α-SMA), and collagen protein due to zymosan introduction was decreased by imperatorin in fibroblasts. Zymosan induced the activity of transglutaminase 2 (TGase2) and lysyl oxidase (LOX), which was also inhibited by the administration of imperatorin. Imperatorin alone enhanced sirtuin 1 (SIRT1) activity and growth differentiation factor 15 (GDF15) secretion in fibroblasts via LKB1/AMPK/CREB pathways. In addition, GDF15 exerted a beneficial effect by reducing the protein expression of CTGF, α-SMA, and collagen and the activities of TGase and LOX. Moreover, orally administered imperatorin showed prophylactic effects on bleomycin-induced pulmonary fibrosis in mice. Conclusion: Imperatorin reduces fibrotic marker expression in fibroblasts and also increases GDF15 secretion via the LKB1/AMPK/CREB pathway, attenuating pro-fibrotic responses in vitro. Imperatorin also alleviates pulmonary fibrosis induced by bleomycin in vivo.
Collapse
Affiliation(s)
- Cheng-Fang Tsai
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Yen-Chang Chen
- Institute of New Drug Development, China Medical University, Taichung, Taiwan
| | - Ya-Zhen Li
- Institute of New Drug Development, China Medical University, Taichung, Taiwan
| | - Chen-Teng Wu
- Department of Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Pei-Chun Chang
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Wei-Lan Yeh
- Institute of New Drug Development, China Medical University, Taichung, Taiwan
- Department of Biochemistry, School of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
12
|
Zhao N, Zhu X, Xie L, Guan X, Tang L, Jiang G, Pang T. The Combination of Citicoline and Nicotinamide Mononucleotide Induces Neurite Outgrowth and Mitigates Vascular Cognitive Impairment via SIRT1/CREB Pathway. Cell Mol Neurobiol 2023; 43:4261-4277. [PMID: 37812361 DOI: 10.1007/s10571-023-01416-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/17/2023] [Indexed: 10/10/2023]
Abstract
Vascular dementia (VD) is characterized with vascular cognitive impairment (VCI), which currently has few effective therapies in clinic. Neuronal damage and white matter injury are involved in the pathogenesis of VCI. Citicoline has been demonstrated to exhibit neuroprotection and neurorepair to improve cognition in cerebrovascular diseases. Nicotinamide adenine dinucleotide (NAD+)-dependent sirtuin (SIRT) signaling pathway constitutes a strong intrinsic defense system against various stresses including neuroinflammation in VCI. Our hypothesis is that the combined use of citicoline and the precursor of NAD+, nicotinamide mononucleotide (NMN), could enhance action on cognitive function in VCI. We investigated the synergistic effect of these two drugs in the rat model of VCI by bilateral common carotid artery occlusion (BCCAO). Citicoline significantly enhanced neurite outgrowth in Neuro-2a cells, and the combination of citicoline and NMN remarkably induced neurite outgrowth in Neuro-2a cells and primary cortical neuronal cells with an optimal proportion of 4:1. In the rat model of BCCAO, when two drugs in combination of 160 mg/kg citicoline and 40 mg/kg NMN, this combination administrated at 7 days post-BCCAO significantly improved the cognitive impairment in BCCAO rats compared with vehicle group by the analysis of the Morris water maze and the novel object recognition test. This combination also decreased microglial activation and neuroinflammation, and protected white matter integrity indicated by the increased myelin basic protein (MBP) expression through activation of SIRT1/TORC1/CREB signaling pathway. Our results suggest that the combination of citicoline and NMN has a synergistic effect for the treatment of VD associated with VCI.
Collapse
Affiliation(s)
- Ning Zhao
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Xiaofeng Zhu
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Luyang Xie
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Xin Guan
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Leilei Tang
- Department of Pharmacy, Affiliated Xiaoshan Hospital, Hangzhou Normal University, 728 Yucai North Road, Hangzhou, 311200, People's Republic of China
| | - Guojun Jiang
- Department of Pharmacy, Affiliated Xiaoshan Hospital, Hangzhou Normal University, 728 Yucai North Road, Hangzhou, 311200, People's Republic of China.
| | - Tao Pang
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
13
|
Wu X, Xie D, Zheng Q, Peng S, Liu Y, Ma P, Ye L, Mo X, Feng Z. Downregulation of NHE1 expression attenuates apoptosis of primary hippocampal neurons of an epilepsy model through the calpain-1 pathway. Neurosci Lett 2023; 815:137494. [PMID: 37748674 DOI: 10.1016/j.neulet.2023.137494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/10/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023]
Abstract
OBJECTIVE Na(+)/H(+) exchanger isoform 1 (NHE1), a membrane protein that regulates intracellular pH, is abundantly expressed in brain tissues. It is associated with pathophysiologies in several brain diseases. The present study aimed to investigate the effects of NHE1 on the apoptosis of primary neurons of an epilepsy model. METHODS Primary hippocampal neurons were cultured in an Mg2+-free medium to establish an epilepsy cell model. Designed shNHE1 lentivirus was used to silence NHE1 level in primary neurons. Nonselective pharmacological inhibitor MDL-28170 (20 μmol/L) was used to inhibit calpain-1 protein in neurons treated with Mg2+-free medium. The expression levels of NHE1 and calpain-1, intracellular Ca2+ (Ca2+i) and H+ (H+i) levels, and the expression levels of apoptosis-related proteins Bcl-2 and Bax were detected in neurons. TUNEL staining was performed to determine apoptosis in different groups. RESULTS NHE1 expression was increased in primary neurons treated with an Mg2+-free medium, and it was correlated with increased expression of calpain-1 and cell apoptosis. Neurons from the in vitro epilepsy model showed significantly decreased Bcl-2 protein expression and significantly increased Bax protein expression. In the presence of LV-shNHE1 and the calpain-1 inhibitor MDL-28170, the changes in the expression of apoptosis-related proteins Bcl-2 and Bax were blocked in the epileptic model, and the percentage of apoptotic neurons among neurons from the in vitro epilepsy model was significantly decreased. The increase in calpain-1 expression was suppressed by LV-shNHE1; however, the inhibition of calpain-1 did not affect NHE1 expression. CONCLUSION These results demonstrate that NHE1 participates in the promotion of neuronal apoptosis of epilepsy model in vitro through the calpain-1 pathway. Downregulation of NHE1 expression could exert a neuroprotective effect on epilepsy.
Collapse
Affiliation(s)
- Xuling Wu
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Dongjun Xie
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Qian Zheng
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shuang Peng
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ying Liu
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Pengfei Ma
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lan Ye
- The Medical Science Function Laboratory of Experimental Teaching Center of Basic Medicine, School of Basic Medical Science, Guizhou Medical University, Guiyang, China.
| | - Xiangang Mo
- Department of Comprehensive Care Ward, Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| | - Zhanhui Feng
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| |
Collapse
|
14
|
Pan J, Tang J, Gai J, Jin Y, Tang B, Fan X. Exploring the mechanism of Ginkgo biloba L. leaves in the treatment of vascular dementia based on network pharmacology, molecular docking, and molecular dynamics simulation. Medicine (Baltimore) 2023; 102:e33877. [PMID: 37233418 PMCID: PMC10219709 DOI: 10.1097/md.0000000000033877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Ginkgo biloba L. leaves (GBLs) play a substantial role in the treatment of vascular dementia (VD); however, the underlying mechanisms of action are unclear. OBJECTIVE This study was conducted to investigate the mechanisms of action of GBLs in the treatment of VD through network pharmacology, molecular docking, and molecular dynamics simulations. METHODS The active ingredients and related targets of GBLs were screened using the traditional Chinese medicine systems pharmacology, Swiss Target Prediction and GeneCards databases, and the VD-related targets were screened using the OMIM, DrugBank, GeneCards, and DisGeNET databases, and the potential targets were identified using a Venn diagram. We used Cytoscape 3.8.0 software and the STRING platform to construct traditional Chinese medicine-active ingredient-potential target and protein-protein interaction networks, respectively. After gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis of potential targets using the DAVID platform, the binding affinity between key active ingredients and targets was analyzed by molecular docking, and finally, the top 3 proteins-ligand pairs with the best binding were simulated by molecular dynamics to verify the molecular docking results. RESULTS A total of 27 active ingredients of GBLs were screened and 274 potential targets involved in the treatment of VD were identified. Quercetin, luteolin, kaempferol, and ginkgolide B were the core ingredients for treatment, and AKT1, TNF, IL6, VEGFA, IL1B, TP53, CASP3, SRC, EGFR, JUN, and EGFR were the main targets of action. The main biological processes involved apoptosis, inflammatory response, cell migration, lipopolysaccharide response, hypoxia response, and aging. PI3K/Akt appeared to be a key signaling pathway for GBLs in the treatment of VD. Molecular docking displayed strong binding affinity between the active ingredients and the targets. Molecular dynamics simulation results further verified the stability of their interactions. CONCLUSION SUBSECTIONS This study revealed the potential molecular mechanisms involved in the treatment of VD by GBLs using multi-ingredient, multi-target, and multi-pathway interactions, providing a theoretical basis for the clinical treatment and lead drug development of VD.
Collapse
Affiliation(s)
- Jienuo Pan
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiqin Tang
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jialin Gai
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yilan Jin
- School of International Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bingshun Tang
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaohua Fan
- Department of Rehabilitation Medicine, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
15
|
Olennikov DN, Chirikova NK. Hogweed Seed Oil: Physico-Chemical Characterization, LC-MS Profile, and Neuroprotective Activity of Heracleum dissectum Nanosuspension. Life (Basel) 2023; 13:life13051112. [PMID: 37240757 DOI: 10.3390/life13051112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
The seeds of dissected hogweed (Heracleum dissectum Ledeb., Apiaceae) are the source of hogweed oil (HSO), which is still underexplored and requires careful chemical and biological studies. The performed physico-chemical analysis of HSO elucidated basic physical characteristics and revealed the presence of fatty acids, essential oil components, pigments, and coumarins. High-performance liquid chromatography with photodiode array detection and electrospray ionization triple quadrupole mass spectrometric detection (HPLC-PDA-ESI-tQ-MS/MS) identified 38 coumarins that were characterized and quantified. Various furanocoumarins were the major components of HSO polyphenolics, including imperatorin, phellopterin, and isoimperatorin, and the total coumarin content in HSO varied from 181.14 to 238.42 mg/mL. The analysis of storage stability of the selected compounds in HSO indicated their good preservation after 3-year storage at cold and freezing temperatures. The application of the CO2-assisted effervescence method allowed the production of an HSO nanosuspension, which was used in a brain ischemia model of rats. The HSO nanosuspension enhanced cerebral hemodynamics and decreased the frequency of necrotic processes in the brain tissue. Thus, H. dissectum seeds are a good source of coumarins, and HSO nanosuspension promotes neuroprotection of the brain after lesions, which supports earlier ethnopharmacological data.
Collapse
Affiliation(s)
- Daniil N Olennikov
- Laboratory of Medical and Biological Research, Institute of General and Experimental Biology, Siberian Division, Russian Academy of Science, 6 Sakhyanovoy Street, 670047 Ulan-Ude, Russia
| | - Nadezhda K Chirikova
- Department of Biochemistry and Biotechnology, North-Eastern Federal University, 58 Belinsky Street, 677027 Yakutsk, Russia
| |
Collapse
|
16
|
Zhang L, Li Y, Tao D, Yang L, Zhang Y, Zhang H, Xie C. The miR-34b-5p-negative target Gnai2 aggravates fluorine combined with aluminum-induced apoptosis of rat offspring hippocampal neurons and NG108-15 cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:66822-66839. [PMID: 37186186 DOI: 10.1007/s11356-023-27135-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023]
Abstract
It is known that fluorine and aluminum are commonly found in the environment and that long-term overexposure can adversely affect the organism's nervous system, damaging the structure and function of brain tissue. Our previous study showed that fluorine combined with aluminum (FA) could trigger apoptosis in vitro and cause spatial learning and memory impairment and differentially expressed miRNAs (including miR-34b-5p) in the hippocampi in vivo. However, the detailed mechanism is unclear. Learning memory damage is implicated in excessive hippocampal neuron apoptosis, and miR-34b-5p participates in regulating the hippocampal neuron apoptosis. Thus, in the current research, Sprague-Dawley (SD) rats were subjected to FA, and NG108-15 control cells and NG108-15 cells pretransfected with miR-34b-5p agomir or antagomir were exposed to FA. We found that FA triggered apoptosis of rat hippocampal neurons and NG108-15 cells, increased miR-34b-5p expression, and decreased Gnai2, PKA, ERK and CREB expression. Inhibition of miR-34b-5p alleviated FA-induced NG108-15 cell apoptosis and further increased Gnai2, PKA, ERK, and CREB expression, and vice versa. Furthermore, miR-34b-5p modulated the level of Gnai2 by directly targeting its 3'-untranslated region (UTR), as verified through the dual Luciferase reporter assay. These outcomes suggested that miR-34b-5p participated in FA-induced neuronal apoptosis by targeting Gnai2 negatively, thereby inhibiting the PKA/ERK/CREB signaling pathway.
Collapse
Affiliation(s)
- Luwen Zhang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Yang Li
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Dan Tao
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Liu Yang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Yue Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Hua Zhang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Chun Xie
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| |
Collapse
|
17
|
Liao X, Zhang Z, Ming M, Zhong S, Chen J, Huang Y. Imperatorin exerts antioxidant effects in vascular dementia via the Nrf2 signaling pathway. Sci Rep 2023; 13:5595. [PMID: 37019901 PMCID: PMC10076271 DOI: 10.1038/s41598-022-21298-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/26/2022] [Indexed: 04/07/2023] Open
Abstract
Imperatorin, an active ingredient extracted from Angelica and Qianghuo, has anti-inflammatory, anti-oxidative stress damage, blocking calcium channels, and other properties. Our preliminary findings revealed the protective role of imperatorin in the treatment of vascular dementia, we further explored the underlying mechanisms concerning the neuroprotection function of imperatorin in vascular dementia. The cobalt chloride (COCl2)-induced chemical hypoxia and hypoglycemia of hippocampal neuronal cells was applied as in vitro vascular dementia model. Primary neuronal cells was isolated from the hippocampal tissue of SD suckling rats within 24 h of birth. Hippocampal neurons were identified by immunofluorescence staining of microtubule-associated protein 2. Silencing or overexpression of Nrf2 was conducted by transfection of corresponding plasmids in hippocampal neuronal cells. Cell viability was detected by MTT assay to determine the optimal modeling concentration of CoCl2. Mitochondrial membrane potential, intracellular reactive oxygen species and apoptosis rate was measured by flow cytometry. The expression of anti-oxidative proteins was detected by quantitative real-time PCR and western blot, including Nrf2, NQO-1 and HO-1. Nrf2 nuclear translocation was detected using laser confocal microscopy. The modeling concentration of CoCl2 was 150umol/l, and the best interventional concentration of imperatorin was 7.5umol/l. Significantly, imperatorin facilitated the nuclear localization of Nrf2, promoted the expressions of Nrf2, NQO-1, and HO-1 relative to the model-control group. Moreover, imperatorin reduced the mitochondrial membrane potential and ameliorated CoCl2-induced hypoxic apoptosis in hippocampal neurons. On the contrary, silencing Nrf2 completely abrogated the protective effects of imperatorin. Imperatorin might be an effective drug for preventing and treating vascular dementia.
Collapse
Affiliation(s)
- Xiangping Liao
- Department of Psychology, The Third People's Hospital of Ganzhou City, Ganzhou, 341000, Jiangxi, China
| | - Ziliang Zhang
- Department of Neurology, Xinfeng County People's Hospital, Ganzhou, 341000, Jiangxi, China
| | - Min Ming
- Department of Neurology, The First Affiliated Hospital of Gannan Medical University, GANZHOU, China
| | - Shanquan Zhong
- Department of Neurology, The First Affiliated Hospital of Gannan Medical University, GANZHOU, China
| | - Jianping Chen
- Ganzhou People's Hospital, Ganzhou, 341000, Jiangxi, China.
| | - Ying Huang
- Department of Neurology, The First Affiliated Hospital of Gannan Medical University, GANZHOU, China.
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, Jiangxi, China.
- Gannan Branch Center of National Geriatric Disease Clinical Medical Research Center, Gannan Medical University, Ganzhou, 341000, Jiangxi, China.
| |
Collapse
|
18
|
Wang Q, Li Y, Wang S, Xiang Z, Dong W, Li X, Wei Y, Gao P, Dai L. A review of the historical records, chemistry, pharmacology, pharmacokinetics and edibility of Angelica dahurica. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023] Open
|
19
|
Ming M, Hu W, Xie G, Chen J, Huang Y. Dendrobium Nobile Polysaccharides Attenuates Ferroptosis and Improves Cognitive Function in Vascular Dementia Rats. Am J Alzheimers Dis Other Demen 2023; 38:15333175231185236. [PMID: 37342000 PMCID: PMC10623970 DOI: 10.1177/15333175231185236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
INTRODUCTION To investigate the neuroprotective effect and mechanism of Dendrobium nobile polysaccharide (DNP) on vascular dementia (VD) rats. METHODS VD model rats were prepared by permanent ligation of bilateral common carotid arteries. Cognitive function was tested by morris water maze test, mitochondrial morphology and ultrastructure of hippocampal synapses were tested by transmission electron microscopy, GSH, xCT, GPx4, and PSD-95 expressions were tested by western blot and PCR. RESULTS The number of platform crossing was significantly increased, and the escape latency was significantly shorter in DNP group. The expressions of GSH, xCT and GPx4 in the hippocampus were up-regulated in DNP group. Moreover, the synapses of DNP group were relatively intact and synaptic vesicles increased, the length of synaptic active zone and PSD thickness were significantly increased, and PSD-95 protein expression was significantly up-regulated compared VD group. CONCLUSION DNP may take a neuroprotective effect by inhibiting ferroptosis in VD.
Collapse
Affiliation(s)
- Min Ming
- Department of Neurology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Weihua Hu
- Department of Neurology, People’s Hospital of Ganxian District, Ganzhou, Jiangxi, China
| | - Gaosheng Xie
- Department of Neurology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | | | - Ying Huang
- Department of Neurology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
- Gannan Branch Center of National Geriatric Disease Clinical Medical Research Center, Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
20
|
Weerasinghe-Mudiyanselage PDE, Ang MJ, Kang S, Kim JS, Moon C. Structural Plasticity of the Hippocampus in Neurodegenerative Diseases. Int J Mol Sci 2022; 23:3349. [PMID: 35328770 PMCID: PMC8955928 DOI: 10.3390/ijms23063349] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/10/2022] Open
Abstract
Neuroplasticity is the capacity of neural networks in the brain to alter through development and rearrangement. It can be classified as structural and functional plasticity. The hippocampus is more susceptible to neuroplasticity as compared to other brain regions. Structural modifications in the hippocampus underpin several neurodegenerative diseases that exhibit cognitive and emotional dysregulation. This article reviews the findings of several preclinical and clinical studies about the role of structural plasticity in the hippocampus in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. In this study, literature was surveyed using Google Scholar, PubMed, Web of Science, and Scopus, to review the mechanisms that underlie the alterations in the structural plasticity of the hippocampus in neurodegenerative diseases. This review summarizes the role of structural plasticity in the hippocampus for the etiopathogenesis of neurodegenerative diseases and identifies the current focus and gaps in knowledge about hippocampal dysfunctions. Ultimately, this information will be useful to propel future mechanistic and therapeutic research in neurodegenerative diseases.
Collapse
Affiliation(s)
- Poornima D. E. Weerasinghe-Mudiyanselage
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
| | - Mary Jasmin Ang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
- College of Veterinary Medicine, University of the Philippines Los Baños, Los Baños 4031, Philippines
| | - Sohi Kang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
| | - Joong-Sun Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
| |
Collapse
|
21
|
Ge JW, Deng SJ, Xue ZW, Liu PY, Yu LJ, Li JN, Xia SN, Gu Y, Bao XY, Lan Z, Xu Y, Zhu XL. Imperatorin inhibits mitogen-activated protein kinase and nuclear factor kappa-B signaling pathways and alleviates neuroinflammation in ischemic stroke. CNS Neurosci Ther 2021; 28:116-125. [PMID: 34674376 PMCID: PMC8673701 DOI: 10.1111/cns.13748] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/29/2021] [Accepted: 10/12/2021] [Indexed: 01/02/2023] Open
Abstract
AIMS Microglia-mediated neuroinflammation plays an important role in the pathological process of ischemic stroke, and the effect of imperatorin on post-stroke neuroinflammation is not fully understood. METHODS Primary microglia were treated with imperatorin for 2 h followed by LPS (100 ng/ml) for 24 h. The expression of inflammatory cytokines was detected by RT-PCR, ELISA, and Western blot. The activation of MAPK and NF-κB signaling pathways were analyzed by Western blot. The ischemic insult was determined using a transient middle cerebral artery occlusion (tMCAO) model in C57BL/6J mice. Behavior tests were used to assess the neurological deficits of MCAO mice. TTC staining was applied to measure infract volume. RESULTS Imperatorin suppressed LPS-induced activation of microglia and pro-inflammatory cytokines release and attenuated ischemic injury in MCAO mice. The results of transcriptome sequencing and Western blot revealed that downregulation of MAPK and NF-κB pathways might contribute to the protective effects of imperatorin. CONCLUSIONS Imperatorin downregulated MAPK and NF-κB signaling pathways and exerted anti-inflammatory effects in ischemic stroke, which indicated that imperatorin might be a potential compound for the treatment of stroke.
Collapse
Affiliation(s)
- Jian-Wei Ge
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China.,Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu, PR China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, PR China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, PR China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu, PR China
| | - Shi-Ji Deng
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China.,Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu, PR China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, PR China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, PR China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu, PR China
| | - Zhi-Wei Xue
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China.,Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu, PR China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, PR China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, PR China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu, PR China
| | - Pin-Yi Liu
- Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Lin-Jie Yu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China.,Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu, PR China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, PR China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, PR China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu, PR China
| | - Jiang-Nan Li
- Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Sheng-Nan Xia
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China.,Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu, PR China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, PR China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, PR China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu, PR China
| | - Yue Gu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China.,Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu, PR China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, PR China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, PR China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu, PR China
| | - Xin-Yu Bao
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China.,Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu, PR China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, PR China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, PR China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu, PR China
| | - Zhen Lan
- Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China.,Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu, PR China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, PR China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, PR China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu, PR China.,Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Xiao-Lei Zhu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China.,Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu, PR China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, PR China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, PR China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu, PR China.,Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| |
Collapse
|