1
|
Shafiq M, Obinwanne Okoye C, Nazar M, Ali Khattak W, Algammal AM. Ecological consequences of antimicrobial residues and bioactive chemicals on antimicrobial resistance in agroecosystems. J Adv Res 2024:S2090-1232(24)00467-3. [PMID: 39414225 DOI: 10.1016/j.jare.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/30/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND The widespread use of antimicrobials in agriculture, coupled with bioactive chemicals like pesticides and growth-promoting agents, has accelerated the global crisis of antimicrobial resistance (AMR). Agroecosystems provides a platform in the evolution and dissemination of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs), which pose significant threats to both environmental and public health. AIM OF REVIEW This review explores the ecological consequences of antimicrobial residues and bioactive chemicals in agroecosystems, with a focus on their role in shaping AMR. It delves into the mechanisms by which these substances enter agricultural environments, their interactions with soil microbiomes, and the subsequent impacts on microbial community structure. KEY SCIENTIFIC CONCEPTS OF REVIEW Evidence indicates that the accumulation of antimicrobials promotes resistance gene transfer among microorganisms, potentially compromising ecosystem health and agricultural productivity. By synthesizing current research, we identify critical gaps in knowledge and propose strategies for mitigating the ecological risks associated with antimicrobial residues. Moreover, this review highlights the urgent need for integrated management approaches to preserve ecosystem health and combat the spread of AMR in agricultural settings.
Collapse
Affiliation(s)
- Muhammad Shafiq
- Research Institute of Clinical Pharmacy, Department of Pharmacology, Shantou University Medical College, Shantou 515041, China.
| | - Charles Obinwanne Okoye
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China; School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; Department of Zoology & Environmental Biology, University of Nigeria, Nsukka 410001, Nigeria
| | - Mudasir Nazar
- Institute of Animal Science, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
| | - Wajid Ali Khattak
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Abdelazeem M Algammal
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| |
Collapse
|
2
|
Ignácio ADC, Guerra AMDR, de Souza-Silva TG, Carmo MAVD, Paula HADA. Effects of glyphosate exposure on intestinal microbiota, metabolism and microstructure: a systematic review. Food Funct 2024; 15:7757-7781. [PMID: 38994673 DOI: 10.1039/d4fo00660g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Glyphosate is the most commercialized herbicide in Brazil and worldwide, and this has become a worrying scenario in recent years. In 2015 glyphosate was classified as potentially carcinogenic by the World Health Organization, which opened avenues for numerous debates about its safe use regarding non-target species' health, including humans. This review aimed to observe the impacts of glyphosate and its formulations on the gut microbiota, as well as on the gut microstructure and animal metabolism. A systematic review was conducted based on the PRISMA recommendations, and the search for original articles was performed in Pubmed/Medline, Scopus and Web of Science databases. The risk of bias in the studies was assessed using the SYRCLE strategy. Our findings revealed that glyphosate and its formulations are able to induce intestinal dysbiosis by altering bacterial metabolism, intestinal permeability, and mucus secretion, as well as causing damage to the microvilli and the intestinal lumen. Additionally, immunological, enzymatic and genetic changes were also observed in the animal models. At the metabolic level, damage was observed in lipid and energy metabolism, the circulatory system, cofactor and vitamin metabolism, and replication, repair, and translation processes. In this context, we pointed out that the studies revealed that these alterations, caused by glyphosate-based herbicides, can lead to intestinal and systemic diseases, such as Crohn's disease and Alzheimer's disease.
Collapse
Affiliation(s)
| | | | - Thaiany Goulart de Souza-Silva
- Institute of Biological Science, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mariana Araújo Vieira do Carmo
- Faculty of Nutrition, Federal University of Alfenas, Gabriel Monteiro da Silva, 700, Centro, CEP: 37130-001, Alfenas, Minas Gerais, Brazil.
| | - Hudsara Aparecida de Almeida Paula
- Faculty of Nutrition, Federal University of Alfenas, Gabriel Monteiro da Silva, 700, Centro, CEP: 37130-001, Alfenas, Minas Gerais, Brazil.
| |
Collapse
|
3
|
de Morais Valentim JMB, Coradi C, Viana NP, Fagundes TR, Micheletti PL, Gaboardi SC, Fadel B, Pizzatti L, Candiotto LZP, Panis C. Glyphosate as a Food Contaminant: Main Sources, Detection Levels, and Implications for Human and Public Health. Foods 2024; 13:1697. [PMID: 38890925 PMCID: PMC11171990 DOI: 10.3390/foods13111697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Glyphosate is a broad-spectrum pesticide that has become the most widely used herbicide globally. However, concerns have risen regarding its potential health impacts due to food contamination. Studies have detected glyphosate in human blood and urine samples, indicating human exposure and its persistence in the organism. A growing body of literature has reported the health risks concerning glyphosate exposure, suggesting that the daily intake of contaminated food and water poses a public health concern. Furthermore, countries with high glyphosate usage and lenient regulations regarding food and water contamination may face more severe consequences. In this context, in this review, we examined the literature regarding food contamination by glyphosate, discussed its detection methods, and highlighted its risks to human health.
Collapse
Affiliation(s)
| | - Carolina Coradi
- Center of Health Sciences, Universidade Estadual do Oeste do Paraná (UNIOESTE), Francisco Beltrão 85605-010, Brazil; (C.C.); (N.P.V.); (P.L.M.); (S.C.G.); (L.Z.P.C.)
| | - Natália Prudêncio Viana
- Center of Health Sciences, Universidade Estadual do Oeste do Paraná (UNIOESTE), Francisco Beltrão 85605-010, Brazil; (C.C.); (N.P.V.); (P.L.M.); (S.C.G.); (L.Z.P.C.)
| | - Tatiane Renata Fagundes
- Department of Biological Sciences, Universidade Estadual do Norte do Paraná (UENP), Bandeirantes 86360-000, Brazil;
| | - Pâmela Lonardoni Micheletti
- Center of Health Sciences, Universidade Estadual do Oeste do Paraná (UNIOESTE), Francisco Beltrão 85605-010, Brazil; (C.C.); (N.P.V.); (P.L.M.); (S.C.G.); (L.Z.P.C.)
| | - Shaiane Carla Gaboardi
- Center of Health Sciences, Universidade Estadual do Oeste do Paraná (UNIOESTE), Francisco Beltrão 85605-010, Brazil; (C.C.); (N.P.V.); (P.L.M.); (S.C.G.); (L.Z.P.C.)
- Instituto Federal Catarinense, Blumenau 89070-270, Brazil
| | - Bruna Fadel
- Laboratório de Biologia Molecular e Proteômica do Sangue, Instituto de Química, Universidade Federal do Rio de Janeiro (IQ-UFRJ), Rio de Janeiro 21941-909, Brazil; (B.F.); (L.P.)
| | - Luciana Pizzatti
- Laboratório de Biologia Molecular e Proteômica do Sangue, Instituto de Química, Universidade Federal do Rio de Janeiro (IQ-UFRJ), Rio de Janeiro 21941-909, Brazil; (B.F.); (L.P.)
| | - Luciano Zanetti Pessoa Candiotto
- Center of Health Sciences, Universidade Estadual do Oeste do Paraná (UNIOESTE), Francisco Beltrão 85605-010, Brazil; (C.C.); (N.P.V.); (P.L.M.); (S.C.G.); (L.Z.P.C.)
| | - Carolina Panis
- Department of Pathological Sciences, Universidade Estadual de Londrina (UEL), Londrina 86057-970, Brazil;
- Center of Health Sciences, Universidade Estadual do Oeste do Paraná (UNIOESTE), Francisco Beltrão 85605-010, Brazil; (C.C.); (N.P.V.); (P.L.M.); (S.C.G.); (L.Z.P.C.)
| |
Collapse
|
4
|
Ferreira NGC, da Silva KA, Guimarães ATB, de Oliveira CMR. Hotspots of soil pollution: Possible glyphosate and aminomethylphosphonic acid risks on terrestrial ecosystems and human health. ENVIRONMENT INTERNATIONAL 2023; 179:108135. [PMID: 37647703 DOI: 10.1016/j.envint.2023.108135] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 04/13/2023] [Accepted: 08/07/2023] [Indexed: 09/01/2023]
Abstract
The study presents a literature review of glyphosate (GLY) occurrence and its breakdown product, aminomethylphosphonic acid (AMPA), in soils worldwide, but with a specific focus on South America. In addition, an ecological risk approach based on the ecotoxicological endpoints for key soil biota (e.g., collembolans, and earthworms) assessed the impact of GLY and AMPA on these organisms. A generic probabilistic model for human health risk was also calculated for the different world regions. For what reports the risk for edaphic species and the level of pollution under the worst-case scenario, the South American continent was identified as the region of most concern. Nonetheless, other areas may also be in danger, but no risk could be calculated due to the lack of data. Since tropical countries are the top food exporters worldwide, the results obtained in this study must be carefully examined for their implications on a global scale. Some of the factors behind the high levels of these two chemicals in soils are debated (e.g., permissive protection policies, the extensive use of genetically modified crops), and some possible guidelines are presented that include, for example, further environmental characterisation and management of pesticide residues. The present review integrates data that can be used as a base by policymakers and decision-makers to develop and implement environmental policies.
Collapse
Affiliation(s)
- Nuno G C Ferreira
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; School of Biosciences - Cardiff University, Museum Avenue, Cardiff CF10 3AX, United Kingdom.
| | - Karlo Alves da Silva
- Graduate Program in Environmental Management (PPGAmb), Universidade Positivo (UP) and Centro de Pesquisa da Universidade Positivo (CPUP), Professor Pedro Viriato Parigot de Souza, 81280-330 Curitiba, Brazil
| | - Ana Tereza Bittencourt Guimarães
- Laboratory of Biological Investigations, Universidade Estadual do Oeste do Paraná, Rua Universitária, Cascavel 2069, Paraná, Brazil; Graduate Program in Biosciences and Health, Universidade Estadual do Oeste do Paraná, Rua Universitária, Cascavel 2069, Paraná, Brazil
| | - Cíntia Mara Ribas de Oliveira
- Graduate Program in Environmental Management (PPGAmb), Universidade Positivo (UP) and Centro de Pesquisa da Universidade Positivo (CPUP), Professor Pedro Viriato Parigot de Souza, 81280-330 Curitiba, Brazil.
| |
Collapse
|
5
|
Mali H, Shah C, Raghunandan BH, Prajapati AS, Patel DH, Trivedi U, Subramanian RB. Organophosphate pesticides an emerging environmental contaminant: Pollution, toxicity, bioremediation progress, and remaining challenges. J Environ Sci (China) 2023; 127:234-250. [PMID: 36522056 DOI: 10.1016/j.jes.2022.04.023] [Citation(s) in RCA: 64] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 06/17/2023]
Abstract
Organophosphates (OPs) are an integral part of modern agriculture; however, due to overexploitation, OPs pesticides residues are leaching and accumulating in the soil, and groundwater contaminated terrestrial and aquatic food webs. Acute exposure to OPs could produce toxicity in insects, plants, animals, and humans. OPs are known for covalent inhibition of acetylcholinesterase enzyme in pests and terrestrial/aquatic organisms, leading to nervous, respiratory, reproductive, and hepatic abnormalities. OPs pesticides also disrupt the growth-promoting machinery in plants by inhibiting key enzymes, permeability, and trans-cuticular diffusion, which is crucial for plant growth. Excessive use of OPs, directly/indirectly affecting human/environmental health, raise a thoughtful global concern. Developing a safe, reliable, economical, and eco-friendly methods for removing OPs pesticides from the environment is thus necessary. Bioremediation techniques coupled with microbes or microbial-biocatalysts are emerging as promising antidotes for OPs pesticides. Here, we comprehensively review the current scenario of OPs pollution, their toxicity (at a molecular level), and the recent advancements in biotechnology (modified biocatalytic systems) for detection, decontamination, and bioremediation of OP-pesticides in polluted environments. Furthermore, the review focuses on onsite applications of OPs degrading enzymes (immobilizations/biosensors/others), and it also highlights remaining challenges with future approaches.
Collapse
Affiliation(s)
- Himanshu Mali
- P. G. Department of Biosciences, UGC-Centre of Advanced Studies, Satellite Campus, Sardar Patel University, Sardar Patel Maidan, Bakrol-Vadtal Road, Bakrol 388 315, Gujarat, India
| | - Chandni Shah
- P. G. Department of Biosciences, UGC-Centre of Advanced Studies, Satellite Campus, Sardar Patel University, Sardar Patel Maidan, Bakrol-Vadtal Road, Bakrol 388 315, Gujarat, India
| | - B H Raghunandan
- P. G. Department of Biosciences, UGC-Centre of Advanced Studies, Satellite Campus, Sardar Patel University, Sardar Patel Maidan, Bakrol-Vadtal Road, Bakrol 388 315, Gujarat, India
| | - Anil S Prajapati
- P. G. Department of Biosciences, UGC-Centre of Advanced Studies, Satellite Campus, Sardar Patel University, Sardar Patel Maidan, Bakrol-Vadtal Road, Bakrol 388 315, Gujarat, India
| | - Darshan H Patel
- Charotar Institute of Paramedical Sciences, Charotar University of Science and Technology, (CHARUSAT), Changa 388421, Gujarat, India
| | - Ujjval Trivedi
- P. G. Department of Biosciences, UGC-Centre of Advanced Studies, Satellite Campus, Sardar Patel University, Sardar Patel Maidan, Bakrol-Vadtal Road, Bakrol 388 315, Gujarat, India
| | - R B Subramanian
- P. G. Department of Biosciences, UGC-Centre of Advanced Studies, Satellite Campus, Sardar Patel University, Sardar Patel Maidan, Bakrol-Vadtal Road, Bakrol 388 315, Gujarat, India.
| |
Collapse
|
6
|
Valente PM, Valente VMM, Silva MC, dos Reis LB, Silva FD, Praça-Fontes MM. Phytotoxicity and cytogenotoxicity of Dionaea muscipula Ellis extracts and its major compound against Lactuca sativa and Allium cepa. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01153-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
7
|
Bhattacharyya SS, Leite FFGD, France CL, Adekoya AO, Ros GH, de Vries W, Melchor-Martínez EM, Iqbal HMN, Parra-Saldívar R. Soil carbon sequestration, greenhouse gas emissions, and water pollution under different tillage practices. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154161. [PMID: 35231506 DOI: 10.1016/j.scitotenv.2022.154161] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 02/08/2023]
Abstract
Tillage is a common agricultural practice and a critical component of agricultural systems that is frequently employed worldwide in croplands to reduce climatic and soil restrictions while also sustaining various ecosystem services. Tillage can affect a variety of soil-mediated processes, e.g., soil carbon sequestration (SCS) or depletion, greenhouse gas (GHG) (CO2, CH4, and N2O) emission, and water pollution. Several tillage practices are in vogue globally, and they exhibit varied impacts on these processes. Hence, there is a dire need to synthesize, collate and comprehensively present these interlinked phenomena to facilitate future researches. This study deals with the co-benefits and trade-offs produced by several tillage practices on SCS and related soil properties, GHG emissions, and water quality. We hypothesized that improved tillage practices could enable agriculture to contribute to SCS and mitigate GHG emissions and leaching of nutrients and pesticides. Based on our current understanding, we conclude that sustainable soil moisture level and soil temperature management is crucial under different tillage practices to offset leaching loss of soil stored nutrients/pesticides, GHG emissions and ensuring SCS. For instance, higher carbon dioxide (CO2) and nitrous oxide (N2O) emissions from conventional tillage (CT) and no-tillage (NT) could be attributed to the fluctuations in soil moisture and temperature regimes. In addition, NT may enhance nitrate (NO3-) leaching over CT because of improved soil structure, infiltration capacity, and greater water flux, however, suggesting that the eutrophication potential of NT is high. Our study indicates that the evaluation of the eutrophication potential of different tillage practices is still overlooked. Our study suggests that improving tillage practices in terms of mitigation of N2O emission and preventing NO3- pollution may be sustainable if nitrification inhibitors are applied.
Collapse
Affiliation(s)
| | | | | | - Adetomi O Adekoya
- Department of Crop Protection and Environmental Biology, University of Ibadan, Ibadan, Nigeria
| | - Gerard H Ros
- Environmental Systems Analysis Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Wim de Vries
- Environmental Systems Analysis Group, Wageningen University and Research, Wageningen, the Netherlands
| | | | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Science, Monterrey 64849, Mexico.
| | | |
Collapse
|
8
|
Zemmouri B, Lammoglia SK, Bouras FZ, Seghouani M, Rebouh NY, Latati M. Modelling human health risks from pesticide use in innovative legume-cereal intercropping systems in Mediterranean conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113590. [PMID: 35525117 DOI: 10.1016/j.ecoenv.2022.113590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The adoption of innovative cropping systems with low pesticide inputs would reduce environmental degradation and dependency on the use of plant protection products. Evaluating the pesticide risk to human health is a growing concern in the assessment of the sustainability of cropping practices. The assessment of human health risks linked to pesticide use in either conventional or innovative cropping systems is poorly documented in the literature. OBJECTIVES This study focused on the assessment of pesticide exposure and human health risks from pesticide use in arable cropping systems (two monoculture and one intercropping system) associated with the use of various tillage practices (conventional tillage, reduced tillage, and no tillage). METHODS Human exposure (operators and residents) and health risks from pesticide use were assessed and compared between three conventional and six innovative cropping systems. We used the previously published BROWSE (Bystanders, Residents, Operators, and WorkerS Exposure) model based on data collected from interviews with the farmers and expert knowledge to compare the human health risk from pesticide use in the Setif area. Environmental conditions and the physical characteristics of the farmers were collected on three different farms from 2019 to 2021. RESULTS The modelling results demonstrate that human exposure to pesticides was systematically high under conservation tillage (no or reduced tillage) and monoculture cropping (pea and barley) conditions. It was also confirmed that operators experienced the highest cumulated exposure to pesticides (56 mg kg-1 bw day-1), followed by resident children seven days after pesticide application (0.66 mg kg-1 bw day-1). BROWSE simulations showed that dermal absorption was the most dominant route and represented more than 98% of the total amount of pesticides applied in all cropping × tillage system combinations. Regarding the overall results of the simulated human health risk, barley-pea intercropping was the most interesting system to reduce the risks for both operators and residents for all tillage practices. In addition, intercropping combined with conventional tillage was the most sustainable cropping system in terms of both agronomic performance (crop yield, Land Equivalent Ratio) and human health risk. Furthermore, the availability of advanced crop protection equipment was associated with a significant decrease in exposure and human health risk for both operators and residents. CONCLUSIONS The prediction of human health risks using BROWSE could help farmers to make the decision to adopt conventional barley-pea intercropping as a good alternative to barley monocultures and pea monocultures under conservation tillage.
Collapse
Affiliation(s)
- Bahia Zemmouri
- Ecole Nationale Supérieure Agronomique, de Productions Végétales, Laboratoire d'Amélioration Intégrative des Productions Végétales (AIPV: C2711100), Avenue Hassane Badi, El Harrach, 16200 Algiers, Algeria
| | - Sabine-Karen Lammoglia
- ABSys, Univ Montpellier, CIHEAM-IAMM, CIRAD, INRAE, Institut Agro, 34060 Montpellier, France; CIRAD, UMR ABSys, F-34398, Montpellier, France
| | - Fatima-Zohra Bouras
- Ecole Nationale Supérieure Agronomique, de Productions Végétales, Laboratoire d'Amélioration Intégrative des Productions Végétales (AIPV: C2711100), Avenue Hassane Badi, El Harrach, 16200 Algiers, Algeria
| | - Mounir Seghouani
- Ecole Nationale Supérieure Agronomique, de Productions Végétales, Laboratoire d'Amélioration Intégrative des Productions Végétales (AIPV: C2711100), Avenue Hassane Badi, El Harrach, 16200 Algiers, Algeria
| | - Nazih Yacer Rebouh
- Рeoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russian Federation
| | - Mourad Latati
- Ecole Nationale Supérieure Agronomique, de Productions Végétales, Laboratoire d'Amélioration Intégrative des Productions Végétales (AIPV: C2711100), Avenue Hassane Badi, El Harrach, 16200 Algiers, Algeria; Рeoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russian Federation.
| |
Collapse
|
9
|
Wee J, Lee YS, Kim Y, Lee YH, Lee SE, Hyun S, Cho K. Multigeneration toxicity of Geunsami® (a glyphosate-based herbicide) to Allonychiurus kimi (Lee) (Collembola) from sub-individual to population levels. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118172. [PMID: 34543960 DOI: 10.1016/j.envpol.2021.118172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Glyphosate-based herbicide (GBH) is the most widely used herbicide worldwide and has long been considered to have significantly low toxicity to non-target soil invertebrates based on short-term toxicity tests (<56 d). However, long-term GBH toxicity assessment is necessary as GBH is repeatedly applied in the same field annually because of the advent of glyphosate-resistant crops. In this study, a multigeneration test was conducted where Allonychiurus kimi (Collembola) was exposed to GBH for three generations (referred to as F0, F1, and F2) to evaluate the long-term toxic effect. The endpoints used were adult survival and juvenile production for the individual level toxicity assessment. Phospholipid profile and population age structure were the endpoints used for sub-individual and population levels, respectively. GBH was observed to have no negative effects on adult survivals of all generations, but juvenile production was found to decrease in a concentration-dependent manner, with EC50s being estimated as 572.5, 274.8, and 59.8 mg a.i. kg-1 in the F0, F1, and F2 generations, respectively. The age structure of A. kimi population produced in the test of all generations was altered by GBH exposure, mainly because of the decrease in the number of young juveniles. Further, differences between the phospholipid profiles of the control and GBH treatments became apparent over generations, with PA 16:0, PA 12:0, and PS 42:0 lipids not being detected at the highest concentration of 741 mg kg-1 in F2. Considering all our findings from sub-individual to population levels, repeated and long-term use of GBH could have significantly higher negative impacts on non-target soil organisms than expected.
Collapse
Affiliation(s)
- June Wee
- O-Jeong Eco-Resilience Institute, Korea University, Seoul, 02841, Republic of Korea
| | - Yun-Sik Lee
- O-Jeong Eco-Resilience Institute, Korea University, Seoul, 02841, Republic of Korea
| | - Yongeun Kim
- O-Jeong Eco-Resilience Institute, Korea University, Seoul, 02841, Republic of Korea
| | - Yong Ho Lee
- O-Jeong Eco-Resilience Institute, Korea University, Seoul, 02841, Republic of Korea; Institute of Ecological Phytochemistry, Hankyong National University, Ansung, 17579, Republic of Korea
| | - Sung-Eun Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Seunghun Hyun
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Kijong Cho
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
10
|
Vurm R, Tajnaiová L, Kofroňová J. The Influence of Herbicides to Marine Organisms Aliivibrio fischeri and Artemia salina. TOXICS 2021; 9:275. [PMID: 34822666 PMCID: PMC8623538 DOI: 10.3390/toxics9110275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/09/2021] [Accepted: 10/09/2021] [Indexed: 11/21/2022]
Abstract
The aim of this work was to determine the toxic effect of the most used herbicides on marine organisms, the bacterium Aliivibrio fischeri, and the crustacean Artemia salina. The effect of these substances was evaluated using a luminescent bacterial test and an ecotoxicity test. The results showed that half maximal inhibitory concentration for A. fischeri is as follows: 15minIC50 (Roundup® Classic Pro) = 236 μg·L-1, 15minIC50 (Kaput® Premium) = 2475 μg·L-1, 15minIC50 (Banvel® 480 S) = 2637 μg·L-1, 15minIC50 (Lontrel 300) = 7596 μg·L-1, 15minIC50 (Finalsan®) = 64 μg·L-1, 15minIC50 (glyphosate) = 7934 μg·L-1, 15minIC50 (dicamba) = 15,937 μg·L-1, 15minIC50 (clopyralid) = 10,417 μg·L-1, 15minIC50 (nonanoic acid) = 16,040 μg·L-1. Median lethal concentrations for A. salina were determined as follows: LC50 (Roundup® Classic Pro) = 18 μg·L-1, LC50 (Kaput® Premium) = 19 μg·L-1, LC50 (Banvel® 480 S) = 2519 μg·L-1, LC50 (Lontrel 300) = 1796 μg·L-1, LC50 (Finalsan®) = 100 μg·L-1, LC50 (glyphosate) = 811 μg·L-1, LC50 (dicamba) = 3705 μg·L-1, LC50 (clopyralid) = 2800 μg·L-1, LC50 (nonanoic acid) = 7493 μg·L-1. These findings indicate the need to monitor the herbicides used for all environmental compartments.
Collapse
Affiliation(s)
- Radek Vurm
- Faculty of Environmental Technology, Department of Environmental Chemistry, UCT Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Lucia Tajnaiová
- Faculty of Environmental Technology, Department of Environmental Chemistry, UCT Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Jana Kofroňová
- Faculty of Environmental Technology, Department of Environmental Chemistry, UCT Prague, Technická 5, 166 28 Prague, Czech Republic
| |
Collapse
|