1
|
Chawla D, Thao AK, Eriten M, Henak CR. Articular cartilage fatigue causes frequency-dependent softening and crack extension. J Mech Behav Biomed Mater 2024; 160:106753. [PMID: 39369619 DOI: 10.1016/j.jmbbm.2024.106753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/14/2024] [Accepted: 09/20/2024] [Indexed: 10/08/2024]
Abstract
Soft biological polymers, such as articular cartilage, possess exceptional fracture and fatigue resistance, offering inspiration for the development of novel materials. However, we lack a detailed understanding of changes in cartilage material behavior and of crack propagation following cyclic compressive loading. We investigated the structure and mechanical behavior of cartilage as a function of loading frequency and number of cycles. Microcracks were initiated in cartilage samples using microindentation, then cracks were extended under cyclic compression. Thickness, apparent stiffness, energy dissipation, phase angle, and crack length were measured to determine the effects of cyclic loading at two frequencies (1 Hz and 5 Hz). To capture the fatigue-induced material response (thickness, stiffness, energy dissipation, and phase angle), material properties were compared between pre-and-post diagnostic tests. The findings indicate that irreversible structural damage (reduced thickness), cartilage softening (reduced apparent stiffness), and reduced energy dissipation (including phase angle) increased with an increase in the number of cycles. Higher frequency loading resulted in less reduction in energy dissipation, phase angle, and thickness change. Crack lengths, quantified through brightfield imaging, increased with number of cycles and frequency. This study sheds light on the complex response of cartilage under cyclic loading resulting in softening, structural damage, and altered dynamic behavior. The findings provide better understanding of failure mechanisms in cartilage and thus may help in diagnosis and treatment of osteoarthritis.
Collapse
Affiliation(s)
- Dipul Chawla
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Alexandria K Thao
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Melih Eriten
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Corinne R Henak
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
2
|
Macica CM, Tommasini SM. Biomechanical Impact of Phosphate Wasting on Articular Cartilage Using the Murine Hyp Model of X-linked hypophosphatemia. JBMR Plus 2023; 7:e10796. [PMID: 37808393 PMCID: PMC10556269 DOI: 10.1002/jbm4.10796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/05/2023] [Accepted: 06/19/2023] [Indexed: 10/10/2023] Open
Abstract
Degenerative osteoarthritis (OA) is recognized as an early-onset comorbidity of X-linked hypophosphatemia (XLH), contributing to pain and stiffness and limiting range of motion and activities of daily living. Here, we extend prior findings describing biochemical and cellular changes of articular cartilage (AC) in the phosphate-wasting environment of XLH to determine the impact of these changes on the biomechanical properties of AC in compression and potential role in the etiology of OA. We hypothesize that despite increased proteoglycan biosynthesis, disruption of the mineralized zone of AC impacts the mechanical properties of cartilage that function to accommodate loads and that therapeutic restoration of this zone will improve the mechanical properties of AC. Data were compared between three groups: wild type (WT), Hyp, and Hyp mice treated with calcitriol and oral phosphate. EPIC microCT confirmed AC mineral deficits and responsiveness to therapy. MicroCT of the Hyp subchondral bone plate revealed that treatment improved trabecular bone volume (BV/TV) but remained significantly lower than WT mice in other trabecular microstructures (p < 0.05). Microindentation AC studies revealed that, compared with WT mice, the mean stiffness of tibial AC was significantly lower in untreated Hyp mice (2.65 ± 0.95 versus 0.87 ± 0.33 N/mm, p < 0.001) and improved with therapy (2.15 + 0.38 N/mm) to within WT values. Stress relaxation of AC under compressive loading displayed similar biphasic relaxation time constants (Taufast and Tauslow) between controls and Hyp mice, although Tauslow trended toward slowed relaxation times. In addition, Taufast and Tauslow times correlated with peak load in WT mice (r = 0.80; r = 0.78, respectively), whereas correlation coefficient values for Hyp mice (r = 0.46; r = 0.21) improved with treatment (r = 0.71; r = 0.56). These data provide rationale for therapies that both preserve AC stiffness and recovery from compression. The Hyp mouse also provides unique insight into determinants of structural stiffness and the viscoelastic properties of AC in the progression of OA. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Carolyn M Macica
- Connecticut Children's Research InstituteHartfordCTUSA
- Department of PharmacologyYale University School of MedicineNew HavenCTUSA
| | - Steven M Tommasini
- Department of Orthopaedics and RehabilitationYale University School of MedicineNew HavenCTUSA
| |
Collapse
|
3
|
Berni M, Veronesi F, Fini M, Giavaresi G, Marchiori G. Relations between Structure/Composition and Mechanics in Osteoarthritic Regenerated Articular Tissue: A Machine Learning Approach. Int J Mol Sci 2023; 24:13374. [PMID: 37686179 PMCID: PMC10487849 DOI: 10.3390/ijms241713374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
In the context of a large animal model of early osteoarthritis (OA) treated by orthobiologics, the purpose of this study was to reveal relations between articular tissues structure/composition and cartilage viscoelasticity. Twenty-four sheep, with induced knee OA, were treated by mesenchymal stem cells in various preparations-adipose-derived mesenchymal stem cells (ADSCs), stromal vascular fraction (SVF), and amniotic endothelial cells (AECs)-and euthanized at 3 or 6 months to evaluate the (i) biochemistry of synovial fluid; (ii) histology, immunohistochemistry, and histomorphometry of articular cartilage; and (iii) viscoelasticity of articular cartilage. After performing an initial analysis to evaluate the correlation and multicollinearity between the investigated variables, this study used machine learning (ML) models-Variable Selection Using Random Forests (VSURF) and Extreme Gradient Boosting (XGB)-to classify variables according to their importance and employ them for interpretation and prediction. The experimental setup revealed a potential relation between cartilage elastic modulus and cartilage thickness (CT), synovial fluid interleukin 6 (IL6), and prostaglandin E2 (PGE2), and between cartilage relaxation time and CT and PGE2. SVF treatment was the only limit on the deleterious OA effect on cartilage viscoelastic properties. This work provides indications to future studies aiming to highlight these and other relationships and focusing on advanced regeneration targets.
Collapse
Affiliation(s)
- Matteo Berni
- Medical Technology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136 Bologna, Italy;
| | - Francesca Veronesi
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136 Bologna, Italy; (G.G.); (G.M.)
| | - Milena Fini
- Scientific Direction, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136 Bologna, Italy;
| | - Gianluca Giavaresi
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136 Bologna, Italy; (G.G.); (G.M.)
| | - Gregorio Marchiori
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136 Bologna, Italy; (G.G.); (G.M.)
| |
Collapse
|
4
|
Al-Saffar Y, Moo EK, Pingguan-Murphy B, Matyas J, Korhonen RK, Herzog W. Dependence of crack shape in loaded articular cartilage on the collagenous structure. Connect Tissue Res 2023; 64:294-306. [PMID: 36853960 DOI: 10.1080/03008207.2023.2166500] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Cartilage cracks disrupt tissue mechanics, alter cell mechanobiology, and often trigger tissue degeneration. Yet, some tissue cracks heal spontaneously. A primary factor determining the fate of tissue cracks is the compression-induced mechanics, specifically whether a crack opens or closes when loaded. Crack deformation is thought to be affected by tissue structure, which can be probed by quantitative polarized light microscopy (PLM). It is unclear how the PLM measures are related to deformed crack morphology. Here, we investigated the relationship between PLM-derived cartilage structure and mechanical behavior of tissue cracks by testing if PLM-derived structural measures correlated with crack morphology in mechanically indented cartilages. METHODS Knee joint cartilages harvested from mature and immature animals were used for their distinct collagenous fibrous structure and composition. The cartilages were cut through thickness, indented over the cracked region, and processed histologically. Sample-specific birefringence was quantified as two-dimensional (2D) maps of azimuth and retardance, two measures related to local orientation and degree of alignment of the collagen fibers, respectively. The shape of mechanically indented tissue cracks, measured as depth-dependent crack opening, were compared with azimuth, retardance, or "PLM index," a new parameter derived by combining azimuth and retardance. RESULTS Of the three parameters, only the PLM index consistently correlated with the crack shape in immature and mature tissues. CONCLUSION In conclusion, we identified the relative roles of azimuth and retardance on the deformation of tissue cracks, with azimuth playing the dominant role. The applicability of the PLM index should be tested in future studies using naturally-occurring tissue cracks.
Collapse
Affiliation(s)
- Yasir Al-Saffar
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Eng Kuan Moo
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, Ontario, Canada
| | | | - John Matyas
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Rami K Korhonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
5
|
Berni M, Erani P, Lopomo NF, Baleani M. Optimization of In Situ Indentation Protocol to Map the Mechanical Properties of Articular Cartilage. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6425. [PMID: 36143736 PMCID: PMC9505484 DOI: 10.3390/ma15186425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/29/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Tissue engineering aims at developing complex composite scaffolds for articular cartilage repair. These scaffolds must exhibit a mechanical behavior similar to the whole osteochondral unit. In situ spherical indentation allows us to map the mechanical behavior of articular cartilage, avoiding removal of the underlying bone tissue. Little is known about the impact of grid spacing, indenter diameter, and induced deformation on the cartilage response to indentation. We investigated the impact of grid spacing (range: a to 3a, where a is the radius of the contact area between cartilage and indenter), indenter diameter (range: 1 to 8 mm), and deformation induced by indentation (constant indentation depth versus constant nominal deformation) on cartilage response. The bias induced by indentations performed in adjacent grid points was minimized with a 3a grid spacing. The cartilage response was indenter-dependent for diameters ranging between 1 and 6 mm with a nominal deformation of 15%. No significant differences were found using 6 mm and 8 mm indenters. Six mm and 8 mm indenters were used to map human articular cartilage with a grid spacing equal to 3a. Instantaneous elastic modulus E0 was calculated for constant indentation depth and constant nominal deformation. E0 value distribution did not change significantly by switching the two indenters, while dispersion decreased by 5-6% when a constant nominal deformation was applied. Such an approach was able to discriminate changes in tissue response due to doubling the indentation rate. The proposed procedure seems to reduce data dispersion and properly determine cartilage mechanical properties to be compared with those of complex composite scaffolds.
Collapse
Affiliation(s)
- Matteo Berni
- Laboratorio di Tecnologia Medica, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Paolo Erani
- Laboratorio di Tecnologia Medica, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | | | - Massimiliano Baleani
- Laboratorio di Tecnologia Medica, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| |
Collapse
|
6
|
Orozco GA, Tanska P, Gustafsson A, Korhonen RK, Isaksson H. Crack propagation in articular cartilage under cyclic loading using cohesive finite element modeling. J Mech Behav Biomed Mater 2022; 131:105227. [DOI: 10.1016/j.jmbbm.2022.105227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/01/2022] [Accepted: 04/02/2022] [Indexed: 11/28/2022]
|
7
|
Si Y, Tan Y, Gao L, Li R, Zhang C, Gao H, Zhang X. Mechanical properties of cracked articular cartilage under uniaxial creep and cyclic tensile loading. J Biomech 2022; 134:110988. [DOI: 10.1016/j.jbiomech.2022.110988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 10/19/2022]
|