1
|
Bostanghadiri N, Sholeh M, Navidifar T, Dadgar-Zankbar L, Elahi Z, van Belkum A, Darban-Sarokhalil D. Global mapping of antibiotic resistance rates among clinical isolates of Stenotrophomonas maltophilia: a systematic review and meta-analysis. Ann Clin Microbiol Antimicrob 2024; 23:26. [PMID: 38504262 PMCID: PMC10953290 DOI: 10.1186/s12941-024-00685-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/05/2024] [Indexed: 03/21/2024] Open
Abstract
INTRODUCTION Infections caused by Stenotrophomonas maltophilia are clinically important due to its intrinsic resistance to a broad range of antibiotics. Therefore, selecting the most appropriate antibiotic to treat S. maltophilia infection is a major challenge. AIM The current meta-analysis aimed to investigate the global prevalence of antibiotic resistance among S. maltophilia isolates to the develop more effective therapeutic strategies. METHOD A systematic literature search was performed using the appropriate search syntax after searching Pubmed, Embase, Web of Science and Scopus databases (May 2023). Statistical analysis was performed using Pooled and the random effects model in R and the metafor package. A total of 11,438 articles were retrieved. After a thorough evaluation, 289 studies were finally eligible for inclusion in this systematic review and meta-analysis. RESULT Present analysis indicated that the highest incidences of resistance were associated with doripenem (97%), cefoxitin (96%), imipenem and cefuroxime (95%), ampicillin (94%), ceftriaxone (92%), aztreonam (91%) and meropenem (90%) which resistance to Carbapenems is intrinsic. The lowest resistance rates were documented for minocycline (3%), cefiderocol (4%). The global resistance rate to TMP-SMX remained constant in two periods before and after 2010 (14.4% vs. 14.6%). A significant increase in resistance to tigecycline and ceftolozane/tazobactam was observed before and after 2010. CONCLUSIONS Minocycline and cefiderocol can be considered the preferred treatment options due to low resistance rates, although regional differences in resistance rates to other antibiotics should be considered. The low global prevalence of resistance to TMP-SMX as a first-line treatment for S. maltophilia suggests that it remains an effective treatment option.
Collapse
Affiliation(s)
- Narjess Bostanghadiri
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sholeh
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Tahereh Navidifar
- Department of Basic Sciences, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
| | - Leila Dadgar-Zankbar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Elahi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alex van Belkum
- Open Innovation & Partnerships, BaseClear, Leiden, Netherlands
| | - Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Shahid S, Abid R, Ajmal W, Almuqbil M, Almadani ME, Khan Y, Ansari AA, Rani R, Alshehri A, Alghamdi A, Asdaq SMB, Ghazanfar S. Antibiotic resistance genes prediction via whole genome sequence analysis of Stenotrophomonas maltophilia. J Infect Public Health 2024; 17:236-244. [PMID: 38128408 DOI: 10.1016/j.jiph.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Stenotrophomonas maltophilia (S. maltophilia) is the first dominant ubiquitous bacterial species identified from the genus Stenotrophomonas in 1943 from a human source. S. maltophilia clinical strains are resistance to several therapies, this study is designed to investigate the whole genome sequence and antimicrobial resistance genes prediction in Stenotrophomonas maltophilia (S. maltophilia) SARC-5 and SARC-6 strains, isolated from the nasopharyngeal samples of an immunocompromised patient. METHODS These bacterial strains were obtained from Pakistan Institute of Medical Sciences (PIMS) Hospital, Pakistan. The bacterial genome was sequenced using a whole-genome shotgun via a commercial service that used an NGS (Next Generation Sequencing) technology called as Illumina Hiseq 2000 system for genomic sequencing. Moreover, detailed in-silico analyses were done to predict the presence of antibiotic resistance genes in S. maltophilia. RESULTS Results showed that S. maltophilia is a rare gram negative, rod-shaped, non sporulating bacteria. The genome assembly results in 24 contigs (>500 bp) having a size of 4668,850 bp with 65.8% GC contents. Phylogenetic analysis showed that SARC-5 and SARC-6 were closely related to S. maltophilia B111, S. maltophilia BAB-5317, S. maltophilia AHL, S. maltophilia BAB-5307, S. maltophilia RD-AZPVI_04, S. maltophilia JFZ2, S. maltophilia RD_MAAMIB_06 and lastly with S. maltophilia sp ROi7. Moreover, the whole genome sequence analysis of both SARC-5 and SARC-6 revealed the presence of four resistance genes adeF, qacG, adeF, and smeR. CONCLUSION Our study confirmed that S. maltophilia SARC-5 and SARC-6 are one of the leading causes of nosocomial infection which carry multiple antibiotic resistance genes.
Collapse
Affiliation(s)
- Sara Shahid
- Department of Life Sciences, Abasyn University Islamabad Campus Pakistan, Pakistan
| | - Rameesha Abid
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre (NARC), Park Road, Islamabad 45500, Pakistan; Department of Microbiology, Quaid-i-Azam University, Islamabad 44100, Pakistan
| | - Wajya Ajmal
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre (NARC), Park Road, Islamabad 45500, Pakistan.
| | - Mansour Almuqbil
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Moneer E Almadani
- Department of Clinical Medicine, College of Medicine, AlMaarefa University, Dariyah, 13713 Riyadh, Saudi Arabia
| | - Yasir Khan
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre (NARC), Park Road, Islamabad 45500, Pakistan
| | - Adnan Ahmad Ansari
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad 44100, Pakistan
| | - Rehana Rani
- Department of Life Sciences, Abasyn University Islamabad Campus Pakistan, Pakistan.
| | - Ahmed Alshehri
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, King Faisal Road, Dammam 31441, Saudi Arabia
| | - Adel Alghamdi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Baha University, P.O. Box 1988, Al-Baha, Saudi Arabia
| | | | - Shakira Ghazanfar
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre (NARC), Park Road, Islamabad 45500, Pakistan.
| |
Collapse
|
3
|
Carlsen L, Grottker M, Heim M, Knobling B, Schlauß S, Wellbrock K, Knobloch JK. High Genetic Diversity in Third-Generation Cephalosporin-Resistant Escherichia coli in Wastewater Systems of Schleswig-Holstein. Pathogens 2024; 13:90. [PMID: 38276163 PMCID: PMC10820474 DOI: 10.3390/pathogens13010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
The spread of multidrug-resistant bacteria from humans or livestock is a critical issue. However, the epidemiology of resistant pathogens across wastewater pathways is poorly understood. Therefore, we performed a detailed comparison of third-generation cephalosporin-resistant Escherichia coli (3GCREC) from wastewater treatment plants (WWTPs) to analyze dissemination pathways. A total of 172 3GCREC isolated from four WWTPs were characterized via whole genome sequencing. Clonal relatedness was determined using multi-locus sequence typing (MLST) and core genome MLST. Resistance genotypes and plasmid replicons were determined. A total of 68 MLST sequence types were observed with 28 closely related clusters. Resistance genes to eight antibiotic classes were detected. In fluoroquinolone-resistant isolates, resistance was associated with three-or-more point mutations in target genes. Typing revealed high genetic diversity with only a few clonal lineages present in all WWTPs. The distribution paths of individual lines could only be traced in exceptional cases with a lack of enrichment of certain lineages. Varying resistance genes and plasmids, as well as fluoroquinolone resistance-associated point mutations in individual isolates, further corroborated the high diversity of 3GCREC in WWTPs. In total, we observed high diversity of 3GCREC inside the tested WWTPs with proof of resistant strains being released into the environment even after treatment processes.
Collapse
Affiliation(s)
- Laura Carlsen
- Institute of Medical Microbiology, Virology, and Hygiene, Department for Infection Prevention and Control, University Medical Center Hamburg–Eppendorf, Martinistraße 52, 20246 Hamburg, Germany; (L.C.); (B.K.)
| | - Matthias Grottker
- Laboratory for Urban Water and Waste Management, Technische Hochschule Lübeck, University of Applied Sciences, Mönkhofer Weg 239, 23562 Lübeck, Germany; (M.G.); (S.S.); (K.W.)
| | - Malika Heim
- Laboratory for Urban Water and Waste Management, Technische Hochschule Lübeck, University of Applied Sciences, Mönkhofer Weg 239, 23562 Lübeck, Germany; (M.G.); (S.S.); (K.W.)
| | - Birte Knobling
- Institute of Medical Microbiology, Virology, and Hygiene, Department for Infection Prevention and Control, University Medical Center Hamburg–Eppendorf, Martinistraße 52, 20246 Hamburg, Germany; (L.C.); (B.K.)
| | - Sebastian Schlauß
- Laboratory for Urban Water and Waste Management, Technische Hochschule Lübeck, University of Applied Sciences, Mönkhofer Weg 239, 23562 Lübeck, Germany; (M.G.); (S.S.); (K.W.)
| | - Kai Wellbrock
- Laboratory for Urban Water and Waste Management, Technische Hochschule Lübeck, University of Applied Sciences, Mönkhofer Weg 239, 23562 Lübeck, Germany; (M.G.); (S.S.); (K.W.)
| | - Johannes K. Knobloch
- Institute of Medical Microbiology, Virology, and Hygiene, Department for Infection Prevention and Control, University Medical Center Hamburg–Eppendorf, Martinistraße 52, 20246 Hamburg, Germany; (L.C.); (B.K.)
| |
Collapse
|
4
|
Zhuang Z, Cheng YY, Deng J, Cai Z, Zhong L, Qu JX, Wang K, Yang L. Genomic insights into the phage-defense systems of Stenotrophomonas maltophilia clinical isolates. Microbiol Res 2024; 278:127528. [PMID: 37918082 DOI: 10.1016/j.micres.2023.127528] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 11/04/2023]
Abstract
Stenotrophomonas maltophilia is a rapidly evolving multidrug-resistant opportunistic pathogen that can cause serious infections in immunocompromised patients. Although phage therapy is one of promising strategies for dealing with MDR bacteria, the main challenges of phage therapeutics include accumulation of phage resistant mutations and acquisition of the phage defense systems. To systematically evaluate the impact of (pro)phages in shaping genetic and evolutionary diversity of S. maltophilia, we collected 166 S. maltophilia isolates from three hospitals in southern China to analyze its pangenome, virulence factors, prophage regions, and anit-viral immune systems. Pangenome analysis indicated that there are 1328 saturated core genes and 26961 unsaturated accessory genes in the pangenome, suggesting existence of highly variable parts of S. maltophilia genome. The presence of genes in relation to T3SS and T6SS mechanisms suggests the great potential to secrete toxins by the S. maltophilia population, which is contrary to the conventional notion of low-virulence of S. maltophilia. Additionally, we characterized the pan-immune system maps of these clinical isolates against phage infections and revealed the co-harboring of CBASS and anti-CBASS in some strains, suggesting a never-ending arms race and the co-evolutionary dynamic between bacteria and phages. Furthermore, our study predicted 310 prophage regions in S. maltophilia with high genetic diversity. Six viral defense systems were found to be located at specific position of the S. maltophilia prophage genomes, indicating potential evolution of certain site/region similar to bacterial 'defense islands' in prophage. Our study provides novel insights into the S. maltophilia pangenome in relation to phage-defense mechanisms, which extends our understanding of bacterial-phage interactions and might guide the application of phage therapy in combating S. maltophilia infections.
Collapse
Affiliation(s)
- Zilin Zhuang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong, PR China
| | - Ying-Ying Cheng
- Shenzhen Institute of Respiratory Diseases, Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, PR China; BGI Forensic, Shenzhen 518083, PR China; The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, PR China
| | - Jie Deng
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong, PR China; Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, Guangdong, PR China
| | - Zhao Cai
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong, PR China; Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, Guangdong, PR China
| | - Lin Zhong
- Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, PR China
| | - Jiu-Xin Qu
- Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, PR China
| | - Ke Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China.
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong, PR China; Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, PR China; Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, Guangdong, PR China.
| |
Collapse
|
5
|
Bafandeh Zamanpour S, Yousefi Mashouf R, Salimizand H, Nazari M, Alikhani MY, Farajnia S. Relationship between antibiotic resistance with class 1 integron and SmeDEF efflux pump encoding genes in clinical isolates of Stenotrophomonas maltophilia. J Appl Genet 2023; 64:591-597. [PMID: 37574492 DOI: 10.1007/s13353-023-00776-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/02/2023] [Accepted: 08/01/2023] [Indexed: 08/15/2023]
Abstract
Stenotrophomonas maltophilia is an emerging multidrug-resistant organism with an increasing frequency of hospital-acquired infections predominantly in developing countries. The purpose of this study was to determine the antibiotic resistance and frequency of the smeD, class 1 integron, and sul1 genes in clinical isolates of S. maltophilia in two Iranian provinces. From January 2020 to September 2021, 38 clinical isolates of S. maltophilia were collected from patients in hospitals in Tabriz and Sanandaj provinces of Iran. S. maltophilia isolates were confirmed by standard bacteriological tests and 16S rRNA gene PCR. Disk diffusion and the MIC test strip methods were used to determine the antibiotic resistance patterns. PCR was performed to investigate the presence of smeD, class 1 integron, and sul1 genes. The antimicrobial test for the isolated S. maltophilia showed a high level of sensitivity against most of the antibiotics used. Maximum sensitivity was recorded for ciprofloxacin (100% (38/38)) and levofloxacin 100% (38/38), followed by ceftazidime (97.36% (37/38)), trimethoprim-sulfamethoxazole (81.57% (31/38)), ticarcillin-clavulanate (60.52% (23/38)), and piperacillin-tazobactam (55.26% (21/38)). We observed a high prevalence of smeD (100% (38/38)) and class 1 integron (94.73% (36/38)) genes in the isolates, and none of the isolates carried the sul1 gene. The findings from this study indicate that resistance to trimethoprim-sulfamethoxazole was not observed, and still, trimethoprim-sulfamethoxazole is the best drug with desirable antimicrobial effect in the treatment of nosocomial infections caused by S. maltophilia strains. Despite the observation of a high number of class 1 integron, the sul1 gene was not observed, which indicates the role of this gene in high-level trimethoprim-sulfamethoxazole resistance and not having a role in low-level resistance. Based on our results, clinical microbiology laboratories need continuous surveillance of resistance rates to trimethoprim-sulfamethoxazole, because of the possibility of S. maltophilia acquiring trimethoprim-sulfamethoxazole-resistance by mobile gen elements.
Collapse
Affiliation(s)
| | | | - Himen Salimizand
- Microbiology Department, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohsen Nazari
- Microbiology Department, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Yousef Alikhani
- Microbiology Department, Hamadan University of Medical Sciences, Hamadan, Iran.
- Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Safar Farajnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Kunz Coyne AJ, Herbin S, Caniff K, Rybak MJ. Steno-sphere: Navigating the enigmatic world of emerging multidrug-resistant Stenotrophomonas maltophilia. Pharmacotherapy 2023; 43:833-846. [PMID: 37199104 DOI: 10.1002/phar.2828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 05/19/2023]
Abstract
Stenotrophomonas maltophilia is an opportunistic pathogen and frequent cause of serious nosocomial infections. Patient populations at greatest risk for these infections include the immunocompromised and those with chronic respiratory illnesses and prior antibiotic exposure, notably to carbapenems. Its complex virulence and resistance profile drastically limit available antibiotics, and incomplete breakpoint and pharmacokinetic/pharmacodynamic (PK/PD) data to inform dose optimization further complicates therapeutic approaches. Clinical comparison data of first-line agents, including trimethoprim-sulfamethoxazole (TMP-SMX), quinolones, and minocycline, are limited to conflicting observational data with no clear benefit of a single agent or combination therapy. Newer antibiotic approaches, including cefiderocol and aztreonam- avibactam, are promising alternatives for extensively drug-resistant isolates; however, clinical outcomes data are needed. The potential clinical utility of bacteriophage for compassionate use in treating S. maltophilia infections remains to be determined since data is limited to in-vitro and sparse in-vivo work. This article provides a review of available literature for S. maltophilia infection management focused on related epidemiology, resistance mechanisms, identification, susceptibility testing, antimicrobial PK/PD, and emerging therapeutic strategies.
Collapse
Affiliation(s)
- Ashlan J Kunz Coyne
- Anti-Infective Research Laboratory, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | | | - Kaylee Caniff
- Anti-Infective Research Laboratory, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Michael J Rybak
- Anti-Infective Research Laboratory, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
- School of Medicine, Wayne State University, Detroit, Michigan, USA
- Department of Pharmacy Services, Detroit Receiving Hospital, Detroit, Michigan, USA
| |
Collapse
|
7
|
Chauviat A, Meyer T, Favre-Bonté S. Versatility of Stenotrophomonas maltophilia: Ecological roles of RND efflux pumps. Heliyon 2023; 9:e14639. [PMID: 37089375 PMCID: PMC10113797 DOI: 10.1016/j.heliyon.2023.e14639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
S. maltophilia is a widely distributed bacterium found in natural, anthropized and clinical environments. The genome of this opportunistic pathogen of environmental origin includes a large number of genes encoding RND efflux pumps independently of the clinical or environmental origin of the strains. These pumps have been historically associated with the uptake of antibiotics and clinically relevant molecules because they confer resistance to many antibiotics. However, considering the environmental origin of S. maltophilia, the ecological role of these pumps needs to be clarified. RND efflux systems are highly conserved within bacteria and encountered both in pathogenic and non-pathogenic species. Moreover, their evolutionary origin, conservation and multiple copies in bacterial genomes suggest a primordial role in cellular functions and environmental adaptation. This review is aimed at elucidating the ecological role of S. maltophilia RND efflux pumps in the environmental context and providing an exhaustive description of the environmental niches of S. maltophilia. By looking at the substrates and functions of the pumps, we propose different involvements and roles according to the adaptation of the bacterium to various niches. We highlight that i°) regulatory mechanisms and inducer molecules help to understand the conditions leading to their expression, and ii°) association and functional redundancy of RND pumps and other efflux systems demonstrate their complex role within S. maltophilia cells. These observations emphasize that RND efflux pumps play a role in the versatility of S. maltophilia.
Collapse
|
8
|
Loaiza WM, Ruiz AKR, Patiño CCO, Vivas MC. Bacterial Resistance in Hospital-Acquired Infections Acquired in the Intensive Care Unit: A Systematic Review. ACTA MEDICA (HRADEC KRALOVE) 2023; 66:1-10. [PMID: 37384803 DOI: 10.14712/18059694.2023.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
PURPOSE In this review we present the status of the prevalence of bacteria resistant to antibiotics and the main antibiotic resistance genes that are reported in infections acquired in intensive care units (ICU) around the world. METHODS A systematic review based on the PRISMA guide was carried out, from the Science Direct, Redalyc, Scopus, Hinari, Scielo, Dialnet, PLOS, ProQuest, Taylor, Lilacs and PubMed/Medline databases. Inclusion criteria of this review were original research study published in a scientific journal in a 10-year time span from 1 January 2017 and 30 April 2022. RESULTS A total of 1686 studies were identified, but only 114 studies were considered eligible for inclusion. Klebsiella pneumoniae and Escherichia coli resistant to carbapenems and producers of extended-spectrum β-lactamases (ESBL) are the most frequently isolated pathogens in ICUs in Asia, Africa and Latin America. The blaOXA and blaCTX were antibiotic resistance genes (ARG) most commonly reported in different geographic regions (in 30 and 28 studies, respectively). Moreover, multidrug-resistant (MDR) strains were reported in higher frequency in hospital-acquired infections. Reports of MDR strains vary between continents, with the majority of publications being in Asia and between countries, with Egypt and Iran being highlighted. There is a predominance of few bacterial clones with MDR phenotype, for example, clonal complex 5 Methicillin-Resistant Staphylococcus aureus (CC5-MRSA) circulates frequently in hospitals in the United States, clone ST23-K. pneumoniae is reported in India and Iran, and clone ST260 carbapenemase-producing P. aeruginosa in the United States and Estonia. CONCLUSION Our systematic review reveals that ESBL- and carbapenemase-producing K. pneumoniae and E. coli are the most problematic bacteria that are reported, mainly in tertiary hospitals in Asia, Africa, and Latin America. We have also found propagation of dominant clones with a high degree of MDR, becoming a problem due to its high capacity to cause morbidity, mortality and additional hospital costs.
Collapse
Affiliation(s)
| | | | | | - Mónica Chavez Vivas
- Investigation Group GIMMEIN, Colombia.
- Medicine Program, Faculty of Health Sciences, Universidad Libre, Cali, Colombia.
| |
Collapse
|
9
|
Bhatt S, Chatterjee S. Fluoroquinolone antibiotics: Occurrence, mode of action, resistance, environmental detection, and remediation - A comprehensive review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120440. [PMID: 36265724 DOI: 10.1016/j.envpol.2022.120440] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/19/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Antibiotics play an essential role in the medical healthcare world, but their widespread usage and high prevalence have posed negative environmental consequences. During the past few decades, various antibiotic drugs have been detected in aquatic and terrestrial ecosystems. Among them, the Fluoroquinolones (FQ) group is ubiquitous in the environment and has emerged as a major environmental pollutant. FQs are very significant, broad-spectrum antibiotics used in treating various pathogenic diseases of humans and animals. The most known and used FQs are ciprofloxacin, norfloxacin, ofloxacin, levofloxacin, enrofloxacin, danofloxacin, and moxifloxacin. After human and animal administration, about 70% of these drugs are excreted out in unaltered form into the environment. Besides, wastewater discharge from pharmaceutical industries, hospitals, and agriculture runoff is the major contributor to the accumulation of FQs into the ecosystem. Their long-term presence in the environment creates selection pressure on microorganisms and contributes to the emergence of multi-drug-resistant bacteria. In addition to the resistance, these antibiotics also impose ecotoxicological effects on various animals and plant species. The presence of the fluorine atom in Fluoroquinolones makes them highly electronegative, strong, recalcitrant, and less compatible with microbial degradation. Many biological and chemical processes have been invented and successfully implemented during the past few decades for the elimination of these pollutants from the environment. This review provides a detailed overview of the classification, occurrence, distribution, and ecotoxicological effects of Fluoroquinolones. Their modes of action, resistance mechanism, detection and analysis methods, and remediation strategies have also been discussed in detail.
Collapse
Affiliation(s)
- Sunidhi Bhatt
- Bioremediation and Metabolomics Research Group, Department of Environmental Sciences, Central University of Himachal Pradesh, Academic Block, Shahpur District, Kangra, Himachal Pradesh, 176206, India
| | - Subhankar Chatterjee
- Bioremediation and Metabolomics Research Group, Department of Environmental Sciences, Central University of Himachal Pradesh, Academic Block, Shahpur District, Kangra, Himachal Pradesh, 176206, India; Bioremediation and Metabolomics Research Group, Dept. of Ecology & Environmental Sciences, School of Life Sciences, Pondicherry University, R.V. Nagar, Kalapet, Puducherry, 605 014, India.
| |
Collapse
|
10
|
Drug Resistance among Major Non-fermenting Gram-negative Pathogens Isolated from Respiratory Tract Infections in a Tertiary Care Hospital of South Karnataka. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.3.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Non-fermenting gram-negative bacteria (NFGNB) frequently exhibit drug resistance. The purpose of this study was to determine the drug resistance pattern among the NFGNB isolates causing respiratory tract infections (RTIs). A retrospective analysis of the antimicrobial susceptibility pattern of non-fermenters causing RTIs over four years (2016- 2019) was done and the change in drug resistance pattern was studied. A total of 653 cases were obtained that included 191 (29.2%) Moraxella catarrhalis, 283 (43.3%) Pseudomonas aeruginosa, and 132 (20.2%) Acinetobacter baumannii, 47 (7.2%) Stenotrophomonas maltophilia isolates. A higher resistance (82.6%) was observed for piperacillin-tazobactam and cefpirome, followed by imipenem (79.5%) and ciprofloxacin (76.5 %) for A. baumannii isolates. A sharp decline in resistance pattern for piperacillin, cefpirome, Imipenem and cefoperazone-sulbactam in 2019 and an increasing resistance to gentamycin and ciprofloxacin were noted. Among P. aeruginosa isolates, 94% aztreonam and 83.4% cefoperazone-sulbactam resistance were detected. There was an increased resistance for cefpirome and piperacillin and a decreased resistance for Imipenem was recorded in 2019. In cases of M. catarrhalis, 22.51% of isolates were resistant to ciprofloxacin, followed by erythromycin (18.32%) and tetracycline (17.80 %). S. maltophilia showed a 100% sensitivity for co-trimoxazole and 2.1% resistance for ciprofloxacin. A constantly changing antibiotic-resistant pattern of non-fermenters compels for a continuous update of drug-resistant trends through a longitudinal surveillance program in different geographical areas.
Collapse
|
11
|
Bocharova YA, Savinova TA, Lyamin AV, Kondratenko OV, Polikarpova SV, Zhilina SV, Fedorova NI, Semykin SY, Chaplin AV, Korostin DO, Mayansky NA, Chebotar IV. Characteristics of Stenotrophomonas maltophilia isolates from cystic fibrosis patients in Russia. Klin Lab Diagn 2022; 67:315-320. [PMID: 35613352 DOI: 10.51620/0869-2084-2022-67-5-315-320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Stenotrophomonas maltophilia is a common opportunistic microorganism and an important respiratory pathogen in cystic fibrosis (CF). The aim of this study was to determine antimicrobial resistance phenotypes, sequence-types (ST) and genetic determinants of antibiotic resistance in S. maltophilia strains recovered from CF patients in Russia. S. maltophilia isolates recovered from 170 CF patients were analyzed. Minimum inhibitory concentrations of antibacterial agents were determined using Sensititre Gram Negative GNX2F plates and the results were interpreted according to Clinical and Laboratory Standards Institute (CLSI) criteria. Whole-genome sequencing (WGS) was performed on MGISEQ-2000 platform. SPAdes software, Galaxy, ResFinder, Integrall and PubMLST were used for analysis of WGS data. S. maltophilia strains were identified from 24/170 (14%) CF patients. In total, 25 isolates were detected, two strains were isolated from the same patient. The isolates belonged to 17 different STs, including 5 new STs; ST4 was the most prevalent ST. Resistance to ceftazidime was observed in 60% of strains, to ticarcillin-clavulanate - in 32%, to levofloxacin - in 24%, to trimethoprim/sulfamethoxazole - in 12% of strains. All isolates were susceptible to minocycline. All ST4 isolates were resistant or intermediate to ceftazidime and ticarcillin-clavulanate. In two isolates, the sul1 gene was detected. In one isolate, sul1 was part of a class 1 integron. The detected integron also contained the blaGES-7 and aac(6')-Ib-cr genes. The ST4 sequence-type was the most prevalent ST among S. maltophilia strains recovered from CF patients in Russia. Antibiotic resistance genes, including sul1, blaGES-7, aac(6')-Ib-cr, were detected in single strains.
Collapse
Affiliation(s)
| | - T A Savinova
- Pirogov Russian National Research Medical University
| | | | | | | | | | - N I Fedorova
- Pirogov Russian National Research Medical University
| | - S Yu Semykin
- Pirogov Russian National Research Medical University
| | - A V Chaplin
- Pirogov Russian National Research Medical University
| | - D O Korostin
- Pirogov Russian National Research Medical University
| | - N A Mayansky
- Pirogov Russian National Research Medical University
| | - I V Chebotar
- Pirogov Russian National Research Medical University
| |
Collapse
|
12
|
Majumdar R, Hariharan K, Vaishnavi S, Sugumar S. Review on Stenotrophomonas maltophilia: an emerging multidrug-resistant opportunistic pathogen. Recent Pat Biotechnol 2022; 16:329-354. [PMID: 35549857 DOI: 10.2174/1872208316666220512121205] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/10/2021] [Accepted: 12/23/2021] [Indexed: 11/22/2022]
Abstract
Stenotrophomonas maltophilia is an opportunistic pathogen that results in nosocomial infections in immunocompromised individuals. These bacteria colonize on the surface of medical devices and therapeutic equipment like urinary catheters, endoscopes, and ventilators, causing respiratory and urinary tract infections. The low outer membrane permeability of multidrug-resistance efflux systems and the two chromosomally encoded β-lactamases present in S.maltophilia are challenging for arsenal control. The cell-associated and extracellular virulence factors in S.maltophilia are involved in colonization and biofilm formation on the host surfaces. The spread of antibiotic-resistant genes in the pathogenic S.maltophilia attributes to bacterial resistance against a wide range of antibiotics, including penicillin, quinolones, and carbapenems. So far, tetracycline derivatives, fluoroquinolones, and trimethoprim-sulfamethoxazole (TMP-SMX) are considered promising antibiotics against S.maltophilia. Due to the adaptive nature of the intrinsically resistant mechanism towards the number of antibiotics and its ability to acquire new resistance via mutation and horizontal gene transfer, it is quite tricky for medicinal contribution against S.maltophilia. The current review summarizes the literary data of pathogenicity, quorum sensing, biofilm formation, virulence factors, and antibiotic resistance of S.maltophilia.
Collapse
Affiliation(s)
- Rikhia Majumdar
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur-603203, Tamilnadu, India
| | - K Hariharan
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur-603203, Tamilnadu, India
| | - S Vaishnavi
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur-603203, Tamilnadu, India
| | - Shobana Sugumar
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur-603203, Tamilnadu, India
| |
Collapse
|
13
|
Pathogenic potential of bacteria isolated from commercial biostimulants. Arch Microbiol 2022; 204:162. [PMID: 35119529 PMCID: PMC8816496 DOI: 10.1007/s00203-022-02769-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 11/08/2022]
Abstract
Microbial-based products are a promising alternative to agrochemicals in sustainable agriculture. However, little is known about their impact on human health even if some of them, i.e., Bacillus and Paenibacillus species, have been increasingly implicated in different human diseases. In this study, 18 bacteria were isolated from 2 commercial biostimulants, and they were genotypically and phenotypically characterized to highlight specific virulence properties. Some isolated bacteria were identified as belonging to the genus Bacillus by BLAST and RDP analyses, a genus in-depth studied for plant growth-promoting ability. Moreover, 16S rRNA phylogenetic analysis showed that seven isolates grouped with Bacillus species while two and four clustered, respectively, with Neobacillus and Peribacillus. Unusually, bacterial strains belonging to Franconibacter and Stenotrophomonas were isolated from biostimulants. Although Bacillus species are generally considered nonpathogenic, most of the species have shown to swim, swarm, and produced biofilms, that can be related to bacterial virulence. The evaluation of toxins encoding genes revealed that five isolates had the potential ability to produce the enterotoxin T. In conclusion, the pathogenic potential of microorganisms included in commercial products should be deeply verified, in our opinion. The approach proposed in this study could help in this crucial step.
Collapse
|
14
|
Zając OM, Tyski S, Laudy AE. Phenotypic and Molecular Characteristics of the MDR Efflux Pump Gene-Carrying Stenotrophomonas maltophilia Strains Isolated in Warsaw, Poland. BIOLOGY 2022; 11:biology11010105. [PMID: 35053103 PMCID: PMC8772754 DOI: 10.3390/biology11010105] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 02/05/2023]
Abstract
Simple Summary Nosocomial infections caused by Stenotrophomonas maltophilia have been increasing worldwide. These bacteria are intrinsically resistant to most antibiotics. The underestimated resistance mechanism of Gram-negative rods is an overexpression of multidrug-resistant (MDR) efflux pumps. The aim of this study was to analyze the genetic diversity of isolates derived from various clinical materials, including blood, and the prevalence of MDR efflux pump genes and susceptibility profiles to the anti-S. maltophilia drugs. The research was conducted on 94 S. maltophilia isolates derived from hospitalized patients and outpatients in Warsaw, Poland. All isolates were susceptible to trimethoprim-sulfamethoxazole and minocycline, while 44/94 isolates demonstrated reduction in susceptibility to levofloxacin. A large genetic variation was observed among these isolates. However, a clonal relationship was revealed among two groups of bloodstream isolates from one hospital ward: (1) nine isolates, (2) six isolates. Moreover, the presence of genes encoding ten different efflux pumps from the resistance-nodulation-division family and the ATP-binding cassette family was shown in the majority of the 94 isolates. The obtained knowledge about the prevalence of efflux pump genes in clinical S. maltophilia strains makes it possible to predict the scale of the risk of resistance emergence in strains as a result of gene overexpression. Abstract An increase of nosocomial infections caused by Stenotrophomonas maltophilia strains has recently been observed all over the world. The isolation of these bacteria from the blood is of particular concern. In this study we performed the phenotypic and genotypic characterization of 94 S. maltophilia isolates, including isolates from patients hospitalized in a tertiary Warsaw hospital (n = 79) and from outpatients (n = 15). All isolates were found to be susceptible to trimethoprim-sulfamethoxazole and minocycline, while 44/94 isolates demonstrated a reduction in susceptibility to levofloxacin. A large genetic variation was observed among the isolates tested by pulsed-field gel electrophoresis. A clonal relationship with 100% similarity was observed between isolates within two sub-pulsotypes: the first included nine bloodstream isolates and the second involved six. Multilocus sequence typing showed two new sequence types (ST498 and ST499) deposited in public databases for molecular typing. Moreover, the presence of genes encoding ten different efflux pumps from the resistance-nodulation-division family and the ATP-binding cassette family was shown in the majority of the 94 isolates. The obtained knowledge about the prevalence of efflux pump genes in clinical S. maltophilia strains makes it possible to predict the scale of the risk of resistance emergence in strains as a result of gene overexpression.
Collapse
Affiliation(s)
- Olga M. Zając
- Department of Pharmaceutical Microbiology, Medical University of Warsaw, 02091 Warsaw, Poland; (O.M.Z.); (S.T.)
| | - Stefan Tyski
- Department of Pharmaceutical Microbiology, Medical University of Warsaw, 02091 Warsaw, Poland; (O.M.Z.); (S.T.)
- Department of Antibiotics and Microbiology, National Medicines Institute, 02091 Warsaw, Poland
| | - Agnieszka E. Laudy
- Department of Pharmaceutical Microbiology, Medical University of Warsaw, 02091 Warsaw, Poland; (O.M.Z.); (S.T.)
- Correspondence:
| |
Collapse
|