1
|
Marshall AG, Neikirk K, Afolabi J, Mwesigwa N, Shao B, Kirabo A, Reddy AK, Hinton A. Update on the Use of Pulse Wave Velocity to Measure Age-Related Vascular Changes. Curr Hypertens Rep 2024; 26:131-140. [PMID: 38159167 PMCID: PMC10955453 DOI: 10.1007/s11906-023-01285-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE OF REVIEW Pulse wave velocity (PWV) is an important and well-established measure of arterial stiffness that is strongly associated with aging. Age-related alterations in the elastic properties and integrity of arterial walls can lead to cardiovascular disease. PWV measurements play an important role in the early detection of these changes, as well as other cardiovascular disease risk factors, such as hypertension. This review provides a comprehensive summary of the current knowledge of the effects of aging on arterial stiffness, as measured by PWV. RECENT FINDINGS This review highlights recent findings showing the applicability of PWV analysis for investigating heart failure, hypertension, and other cardiovascular diseases, as well as cerebrovascular diseases and Alzheimer's disease. It also discusses the clinical implications of utilizing PWV to monitor treatment outcomes, various challenges in implementing PWV assessment in clinical practice, and the development of new technologies, including machine learning and artificial intelligence, which may improve the usefulness of PWV measurements in the future. Measuring arterial stiffness through PWV remains an important technique to study aging, especially as the technology continues to evolve. There is a clear need to leverage PWV to identify interventions that mitigate age-related increases in PWV, potentially improving CVD outcomes and promoting healthy vascular aging.
Collapse
Affiliation(s)
- Andrea G Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Jeremiah Afolabi
- Department of Medicine, Vanderbilt University Medical Center, 750 Robinson Research Building, 2200 Pierce Ave, Nashville, TN, 37232-0615, USA
| | - Naome Mwesigwa
- Department of Medicine, Vanderbilt University Medical Center, 750 Robinson Research Building, 2200 Pierce Ave, Nashville, TN, 37232-0615, USA
| | - Bryanna Shao
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, 750 Robinson Research Building, 2200 Pierce Ave, Nashville, TN, 37232-0615, USA
| | - Anilkumar K Reddy
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
2
|
Singh A, Kinnebrew G, Hsu PC, Weng DY, Song MA, Reisinger SA, McElroy JP, Keller-Hamilton B, Ferketich AK, Freudenheim JL, Shields PG. Untargeted Metabolomics and Body Mass in Adolescents: A Cross-Sectional and Longitudinal Analysis. Metabolites 2023; 13:899. [PMID: 37623843 PMCID: PMC10456720 DOI: 10.3390/metabo13080899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
Obesity in children and adolescents has increased globally. Increased body mass index (BMI) during adolescence carries significant long-term adverse health outcomes, including chronic diseases such as cardiovascular disease, stroke, diabetes, and cancer. Little is known about the metabolic consequences of changes in BMI in adolescents outside of typical clinical parameters. Here, we used untargeted metabolomics to assess changing BMI in male adolescents. Untargeted metabolomic profiling was performed on urine samples from 360 adolescents using UPLC-QTOF-MS. The study includes a baseline of 235 subjects in a discovery set and 125 subjects in a validation set. Of them, a follow-up of 81 subjects (1 year later) as a replication set was studied. Linear regression analysis models were used to estimate the associations of metabolic features with BMI z-score in the discovery and validation sets, after adjusting for age, race, and total energy intake (kcal) at false-discovery-rate correction (FDR) ≤ 0.1. We identified 221 and 16 significant metabolic features in the discovery and in the validation set, respectively. The metabolites associated with BMI z-score in validation sets are glycylproline, citrulline, 4-vinylsyringol, 3'-sialyllactose, estrone sulfate, carnosine, formiminoglutamic acid, 4-hydroxyproline, hydroxyprolyl-asparagine, 2-hexenoylcarnitine, L-glutamine, inosine, N-(2-Hydroxyphenyl) acetamide glucuronide, and galactosylhydroxylysine. Of those 16 features, 9 significant metabolic features were associated with a positive change in BMI in the replication set 1 year later. Histidine and arginine metabolism were the most affected metabolic pathways. Our findings suggest that obesity and its metabolic outcomes in the urine metabolome of children are linked to altered amino acids, lipid, and carbohydrate metabolism. These identified metabolites may serve as biomarkers and aid in the investigation of obesity's underlying pathological mechanisms. Whether these features are associated with the development of obesity, or a consequence of changing BMI, requires further study.
Collapse
Affiliation(s)
- Amarnath Singh
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210-1240, USA; (A.S.); (D.Y.W.)
| | - Garrett Kinnebrew
- Department of Biomedical Informatics, Biomedical Informatics Shared Resources (BISR), The Ohio State University, Columbus, OH 43210-1240, USA;
| | - Ping-Ching Hsu
- Department of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Daniel Y. Weng
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210-1240, USA; (A.S.); (D.Y.W.)
| | - Min-Ae Song
- College of Public Health, The Ohio State University, Columbus, OH 43210-1240, USA; (M.-A.S.); (A.K.F.)
| | - Sarah A. Reisinger
- Center for Tobacco Research, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210-1240, USA; (S.A.R.); (B.K.-H.)
| | - Joseph P. McElroy
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210-1240, USA;
| | - Brittney Keller-Hamilton
- Center for Tobacco Research, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210-1240, USA; (S.A.R.); (B.K.-H.)
- Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210-1240, USA
| | - Amy K. Ferketich
- College of Public Health, The Ohio State University, Columbus, OH 43210-1240, USA; (M.-A.S.); (A.K.F.)
| | - Jo L. Freudenheim
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY 14214, USA;
| | - Peter G. Shields
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210-1240, USA; (A.S.); (D.Y.W.)
| |
Collapse
|
3
|
Sanchez-Gimenez R, Peiró ÓM, Bonet G, Carrasquer A, Fragkiadakis GA, Bulló M, Papandreou C, Bardaji A. TCA cycle metabolites associated with adverse outcomes after acute coronary syndrome: mediating effect of renal function. Front Cardiovasc Med 2023; 10:1157325. [PMID: 37441709 PMCID: PMC10333508 DOI: 10.3389/fcvm.2023.1157325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Aims To examine relationships of tricarboxylic acid (TCA) cycle metabolites with risk of cardiovascular events and mortality after acute coronary syndrome (ACS), and evaluate the mediating role of renal function in these associations. Methods This is a prospective study performed among 309 ACS patients who were followed for a mean of 6.7 years. During this period 131 patients developed major adverse cardiovascular events (MACE), defined as the composite of myocardial infarction, hospitalization for heart failure, and all-cause mortality, and 90 deaths were recorded. Plasma concentrations of citrate, aconitate, isocitrate, succinate, malate, fumarate, α-ketoglutarate and d/l-2-hydroxyglutarate were quantified using LC-tandem MS. Multivariable Cox regression models were used to estimate hazard ratios, and a counterfactual-based mediation analysis was performed to test the mediating role of estimated glomerular filtration rate (eGFR). Results After adjustment for traditional cardiovascular risk factors and medications, positive associations were found between isocitrate and MACE (HR per 1 SD, 1.25; 95% CI: 1.03, 1.50), and between aconitate, isocitrate, d/l-2-hydroxyglutarate and all-cause mortality (HR per 1 SD, 1.41; 95% CI: 1.07, 1.84; 1.58; 95% CI: 1.23, 2.02; 1.38; 95% CI: 1.14, 1.68). However, these associations were no longer significant after additional adjustment for eGFR. Mediation analyses demonstrated that eGFR is a strong mediator of these associations. Conclusion These findings underscore the importance of TCA metabolites and renal function as conjunctive targets in the prevention of ACS complications.
Collapse
Affiliation(s)
- Raul Sanchez-Gimenez
- Department of Cardiology, Joan XXIII University Hospital, Tarragona, Spain
- Institute of Health Pere Virgili (IISPV), Tarragona-Reus, Spain
- Department of Medicine and Surgery, Rovira I Virgili University, Tarragona, Spain
| | - Óscar M. Peiró
- Department of Cardiology, Joan XXIII University Hospital, Tarragona, Spain
- Institute of Health Pere Virgili (IISPV), Tarragona-Reus, Spain
- Department of Medicine and Surgery, Rovira I Virgili University, Tarragona, Spain
| | - Gil Bonet
- Department of Cardiology, Joan XXIII University Hospital, Tarragona, Spain
- Institute of Health Pere Virgili (IISPV), Tarragona-Reus, Spain
- Department of Medicine and Surgery, Rovira I Virgili University, Tarragona, Spain
| | - Anna Carrasquer
- Department of Cardiology, Joan XXIII University Hospital, Tarragona, Spain
- Institute of Health Pere Virgili (IISPV), Tarragona-Reus, Spain
- Department of Medicine and Surgery, Rovira I Virgili University, Tarragona, Spain
| | - George A. Fragkiadakis
- Department of Nutrition and Dietetics Sciences, School of Health Sciences, Hellenic Mediterranean University, Siteia, Greece
| | - Mònica Bulló
- Institute of Health Pere Virgili (IISPV), Tarragona-Reus, Spain
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira I Virgili University, Reus, Spain
- Center of Environmental, Food and Toxicological Technology – TecnATox, Rovira i Virgili University, Reus, Spain
- CIBER Physiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, Madrid, Spain
| | - Christopher Papandreou
- Institute of Health Pere Virgili (IISPV), Tarragona-Reus, Spain
- Department of Nutrition and Dietetics Sciences, School of Health Sciences, Hellenic Mediterranean University, Siteia, Greece
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira I Virgili University, Reus, Spain
- Center of Environmental, Food and Toxicological Technology – TecnATox, Rovira i Virgili University, Reus, Spain
| | - Alfredo Bardaji
- Department of Cardiology, Joan XXIII University Hospital, Tarragona, Spain
- Institute of Health Pere Virgili (IISPV), Tarragona-Reus, Spain
- Department of Medicine and Surgery, Rovira I Virgili University, Tarragona, Spain
| |
Collapse
|
4
|
Paapstel K, Kals J. Metabolomics of Arterial Stiffness. Metabolites 2022; 12:370. [PMID: 35629874 PMCID: PMC9146333 DOI: 10.3390/metabo12050370] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 12/18/2022] Open
Abstract
Arterial stiffness (AS) is one of the earliest detectable signs of structural and functional alterations of the vessel wall and an independent predictor of cardiovascular events and death. The emerging field of metabolomics can be utilized to detect a wide spectrum of intermediates and products of metabolism in body fluids that can be involved in the pathogenesis of AS. Research over the past decade has reinforced this idea by linking AS to circulating acylcarnitines, glycerophospholipids, sphingolipids, and amino acids, among other metabolite species. Some of these metabolites influence AS through traditional cardiovascular risk factors (e.g., high blood pressure, high blood cholesterol, diabetes, smoking), while others seem to act independently through both known and unknown pathophysiological mechanisms. We propose the term 'arteriometabolomics' to indicate the research that applies metabolomics methods to study AS. The 'arteriometabolomics' approach has the potential to allow more personalized cardiovascular risk stratification, disease monitoring, and treatment selection. One of its major goals is to uncover the causal metabolic pathways of AS. Such pathways could represent valuable treatment targets in vascular ageing.
Collapse
Affiliation(s)
- Kaido Paapstel
- Endothelial Research Centre, University of Tartu, 8 Puusepa Street, 51014 Tartu, Estonia;
- Department of Cardiology, Institute of Clinical Medicine, University of Tartu, 8 Puusepa Street, 51014 Tartu, Estonia
- Heart Clinic, Tartu University Hospital, 8 Puusepa Street, 51014 Tartu, Estonia
| | - Jaak Kals
- Endothelial Research Centre, University of Tartu, 8 Puusepa Street, 51014 Tartu, Estonia;
- Department of Surgery, Institute of Clinical Medicine, University of Tartu, 8 Puusepa Street, 51014 Tartu, Estonia
- Surgery Clinic, Tartu University Hospital, 8 Puusepa Street, 51014 Tartu, Estonia
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, Centre of Excellence for Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| |
Collapse
|