1
|
Liang K, Guo Z, Zhang S, Chen D, Zou R, Weng Y, Peng C, Xu Z, Zhang J, Liu X, Pang X, Ji Y, Liao D, Lai M, Peng H, Ke Y, Wang Z, Wang Y. GPR37 expression as a prognostic marker in gliomas: a bioinformatics-based analysis. Aging (Albany NY) 2023; 15:10146-10167. [PMID: 37837549 PMCID: PMC10599758 DOI: 10.18632/aging.205063] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/21/2023] [Indexed: 10/16/2023]
Abstract
BACKGROUND Gliomas are the most frequently diagnosed primary brain tumors, and are associated with multiple molecular aberrations during their development and progression. GPR37 is an orphan G protein-coupled receptor (GPCR) that is implicated in different physiological pathways in the brain, and has been linked to various malignancies. The aim of this study was to explore the relationship between GPR37 gene expression and the clinicopathological factors, patient prognosis, tumor-infiltrating immune cell signature GSEA and methylation levels in glioma. METHODS We explored the diagnostic value, clinical relevance, and molecular function of GPR37 in glioma using TCGA, STRING, cBioPortal, Tumor Immunity Estimation Resource (TIMER) database and MethSurv databases. Besides, the "ssGSEA" algorithm was conducted to estimate immune cells infiltration abundance, with 'ggplot2' package visualizing the results. Immunohistochemical staining of clinical samples were used to verify the speculations of bioinformatics analysis. RESULTS GPR37 expression was significantly higher in the glioma tissues compared to the normal brain tissues, and was linked to poor prognosis. Functional annotation of GPR37 showed enrichment of ether lipid metabolism, fat digestion and absorption, and histidine metabolism. In addition, GSEA showed that GPR37 was positively correlated to the positive regulation of macrophage derived foam cell differentiation, negative regulation of T cell receptor signaling pathway, neuroactive ligand receptor interaction, calcium signaling pathway, and negatively associated with immunoglobulin complex, immunoglobulin complex circulating, ribosome and spliceosome mediated by circulating immunoglobulin etc. TIMER2.0 and ssGSEA showed that GPR37 expression was significantly associated with the infiltration of T cells, CD8 T cell, eosinophils, macrophages, neutrophils, NK CD56dim cells, NK cells, plasmacytoid DCs (pDCs), T helper cells and T effector memory (Tem) cells. In addition, high GPR37 expression was positively correlated with increased infiltration of M2 macrophages, which in turn was associated with poor prognosis. Furthermore, GPR37 was positively correlated with various immune checkpoints (ICPs). Finally, hypomethylation of the GPR37 promoter was associated with its high expression levels and poor prognosis in glioma. CONCLUSION GPR37 had diagnostic and prognostic value in glioma. The possible biological mechanisms of GPR37 provide novel insights into the clinical diagnosis and treatment of glioma.
Collapse
Affiliation(s)
- Kairong Liang
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Zhaoxiong Guo
- Science and Technology Innovation Center, Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Shizhen Zhang
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Danmin Chen
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Renheng Zou
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Yuhao Weng
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Chengxiang Peng
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Zhichao Xu
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Jingbai Zhang
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Xiaorui Liu
- Department of Pharmacy, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, China
| | - Xiao Pang
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Yunxiang Ji
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Degui Liao
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Miaoling Lai
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Huaidong Peng
- Department of Pharmacy, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Yanbin Ke
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Zhaotao Wang
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Yezhong Wang
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| |
Collapse
|
2
|
Bolinger AA, Frazier A, La JH, Allen JA, Zhou J. Orphan G Protein-Coupled Receptor GPR37 as an Emerging Therapeutic Target. ACS Chem Neurosci 2023; 14:3318-3334. [PMID: 37676000 PMCID: PMC11144446 DOI: 10.1021/acschemneuro.3c00479] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are successful druggable targets, making up around 35% of all FDA-approved medications. However, a large number of receptors remain orphaned, with no known endogenous ligand, representing a challenging but untapped area to discover new therapeutic targets. Among orphan GPCRs (oGPCRs) of interest, G protein-coupled receptor 37 (GPR37) is highly expressed in the central nervous system (CNS), particularly in the spinal cord and oligodendrocytes. While its cellular signaling mechanisms and endogenous receptor ligands remain elusive, GPR37 has been implicated in several important neurological conditions, including Parkinson's disease (PD), inflammation, pain, autism, and brain tumors. GPR37 structure, signaling, emerging physiology, and pharmacology are reviewed while integrating a discussion on potential therapeutic indications and opportunities.
Collapse
Affiliation(s)
- Andrew A. Bolinger
- Department of Pharmacology and Toxicology, Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Andrew Frazier
- Department of Pharmacology and Toxicology, Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jun-Ho La
- Department of Neurobiology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - John A. Allen
- Department of Pharmacology and Toxicology, Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jia Zhou
- Department of Pharmacology and Toxicology, Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
3
|
Li J, Du Q, Sun J, Xiang L, Wang S. Identification and validation of a novel phagocytosis regulators-related signature with potential prognostic and immunotherapeutic value in patients with lung adenocarcinoma. Front Oncol 2022; 12:988332. [PMID: 36408131 PMCID: PMC9666737 DOI: 10.3389/fonc.2022.988332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/21/2022] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is a malignant tumor that seriously affects the prognosis of patients. Tumor-associated macrophages (TAMs) play a vital role in the tumor microenvironment and can be used as a potential target for tumor therapy, and phagocytosis regulators (PRs) are particularly important in this process. However, the PRs-related signature that can predict the potential prognostic and immunotherapeutic value in patients with LUAD has not been discovered. METHODS In this study, we mainly analyzed the effect of phagocytosis regulators on the prognosis of LUAD, and based on multiple screening analyses including differential analysis, univariate Cox analysis, and Lasso analysis, we constructed a prognostic risk model consisting of five genes. To verify the stability of the model, survival analysis and ROC curve verification were carried out through multiple data sets. In addition, we also combined many factors, such as immune infiltrating cells, clinical grouping characteristics, immune examination sites, pro-inflammatory factors, and other factors as well as in vitro cell experiments and clinical tissue samples for further validation analysis. RESULTS After identifying 29 differentially expressed PRs in LUAD samples, we further constructed a prognostic model consisting of five prognostic signatures (FURIN, KIF23, SASH3, GNPNAT1, and ITGAL). Further survival analysis tests, ROC verification, as well as univariate and multivariate Cox regression analysis showed that the risk score of the model could well predict the prognosis of LUAD patients and could be used as an independent prognostic factor. In addition, we further found that these phagocytic regulators-related signatures were closely related to the immune microenvironment and immunotherapy in LUAD patients, and could well predict the efficacy of immunotherapy in patients. In vitro cell experiments and Immunohistochemistry of clinical tissues showed that the expressions of FURIN, KIF23, SASH3, GNPNAT1 and ITGAL in normal lung cells/tissues and LUAD cells/tissues were consistent with bioinformatics results, and 3 of them had significant differences. CONCLUSION Our study identified a novel PRs-related signature that has potential application value in predicting the prognosis of LUAD patients and predicting the efficacy of immunotherapy. This provides a new basis for the prognosis assessment of LUAD patients and provides a novel target for immunotherapy of LUAD patients.
Collapse
Affiliation(s)
- Jingyang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qinyun Du
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiayi Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Zhang S, Yang G. IL22RA1/JAK/STAT Signaling Acts As a Cancer Target Through Pan-Cancer Analysis. Front Immunol 2022; 13:915246. [PMID: 35874683 PMCID: PMC9304570 DOI: 10.3389/fimmu.2022.915246] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022] Open
Abstract
Cytokines and cytokine receptors are important mediators in immunity and cancer development. Interleukin 22 (IL22) is one of the most important cytokines which has protumor effect. Given that common and specific roles of cytokines/receptors in multiple cancers, we conducted a pan-cancer study to investigate the role of IL22RA1 in cancer using The Cancer Genome Atlas (TCGA) database. Notably, we found IL22RA1 transcript was upregulated in 11 cancer types compared with their corresponding control. The mRNA expression level of IL22RA1 was highest in the pancreas among tumor tissues. The higher expression of IL22RA1 was associated with worse overall survival rate in patients. A total of 30 IL22RA1-correlated genes (e.g. IL17D, IL22RA2, IL20RB, IL10RA, IL10RB, TSLP and TYK2) are involved in the JAK/STAT pathway which promotes tumor progression. The upregulation of IL22RA1 in tumors was correlated with immune cell infiltration level. Higher expression of IL22RA2, IL20RB, IL10RA, IL10RB, TSLP, TYK2, STAT1 and STAT3 was associated with decreased overall survival rate in patients. IL22RA1 mutation was observed more in uterine cancer and melanoma compared with the other cancer types. Deactivation of IL22RA1 induced a lot of changes in gene expression. IL22RA1 mutants had upregulated DNA damage/repair genes in uterine cancer, whereas downregulated genes in the FoxO signaling pathway. In melanoma, mutation of IL22RA1 can upregulate the HIF signaling pathway but downregulate metabolic pathways. Our study suggests that IL22RA1/JAK/STAT signaling can be an important target for cancer treatment.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Pathology and Laboratory Medicine, Davis Health, University of California, Sacramento, CA, United States
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Guiyan Yang
- Department of Pathology and Laboratory Medicine, Davis Health, University of California, Sacramento, CA, United States
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- *Correspondence: Guiyan Yang,
| |
Collapse
|