1
|
Cui Z, Wang P, Gao W. Microbial dysbiosis in periodontitis and peri-implantitis: pathogenesis, immune responses, and therapeutic. Front Cell Infect Microbiol 2025; 15:1517154. [PMID: 40007610 PMCID: PMC11850578 DOI: 10.3389/fcimb.2025.1517154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
The oral microbiome comprises over 700 distinct species, forming complex biofilms essential for maintaining oral and systemic health. When the microbial homeostasis in the periodontium is disrupted, pathogens within the biofilm can cause periodontitis and peri-implantitis, inducing host immune responses. Understanding the role of microbial communities and the immune mechanisms in oral health and disease is crucial for developing improved preventive, diagnostic and therapeutic strategies. However, many questions remain about how changes in bacterial populations contribute to the development and progression of these conditions. An electronic and manual literature search was conducted using PubMed, Excerpta Medica, Frontiers Reports and the Wiley Online Library databases for relevant articles. Data from these publications were extracted and the overall findings were summarized in a narrative manner. The variations in microbial communities and immune responses of periodontitis and peri-implantitis are explored. Dysbiosis of the subgingival microbiome-characterized by an increase in pathogenic bacteria such as Porphyromonas gingivalis, Tannerella forsythia, and Aggregatibacter actinomycetemcomitans-plays a pivotal role in the initiation and progression of periodontitis. As for peri-implantitis, alterations include a higher abundance of opportunistic pathogens and reduced microbial diversity around implants. Moreover, oral dysbiosis potentially influencing systemic health through immune-mediated pathways. Regional immunity of periodontium involving neutrophils, T helper cells-17, and immune-related cytokines is crucial for maintaining periodontal homeostasis and responding to microbial imbalances. Additionally, the impact of non-mechanical treatments-such as probiotics and laser therapy-on the oral microbiome is discussed, demonstrating their potential in managing microbial dysbiosis. These findings underscore that bacterial dysbiosis is a central factor in the development of periodontitis and peri-implantitis. Maintaining microbial balance is essential for preventing these diseases, and interventions targeting the microbiome could enhance treatment outcomes. Strategies focusing on controlling pathogenic bacteria, modulating immune responses, and promoting tissue regeneration are key to restoring periodontal stability. Further research is needed to clarify the mechanisms underlying the transition from peri-implant mucositis to peri-implantitis and to optimize prevention and treatment approaches, considering the complex interactions between the microbiome and host immunity.
Collapse
Affiliation(s)
| | | | - Weiyue Gao
- Stomatology Center, Gansu Provincial Hospital, Lanzhou, Gansu, China
| |
Collapse
|
2
|
Mougeot JL, Beckman M, Kooshki M, Neuberger J, Shukla K, Furdui C, Bahrani Mougeot F, Porosnicu M. Salivary Microbiome Profiling of HPV+ and HPV- Oropharyngeal Head and Neck Cancer Patients Undergoing Durvalumab Immunotherapy Suggests Prevotella melaninogenica and Veillonella atypica as Key Players: A Pilot Study. Cancers (Basel) 2025; 17:452. [PMID: 39941819 PMCID: PMC11815830 DOI: 10.3390/cancers17030452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
OBJECTIVE Head and neck cancer (HNC) is a common cancer represented by nearly 80% oral cavity (OC) and oropharyngeal cancers (OPCs). Seventy percent of OPCs are associated with the Human Papilloma Virus (HPV). Immunotherapy holds the promise of future improvements in treating HNC patients. The study objective was to determine whether durvalumab immunotherapy alone, prior to curative surgery, would significantly impact the oral salivary microbiome in a pilot cohort of HPV negative and positive OC and OPC patients. METHODS Early stage OPC patients with squamous cell carcinoma were recruited: 5 HPV+ and 12 HPV-, and treated with two or three administrations of durvalumab given every two weeks, prior to surgery. Unstimulated saliva was collected and processed for bacterial DNA Isolation and V1-V3 16S rRNA gene next generation sequencing, taxa identification, and determination of relative abundance at four time points: baseline prior to surgery (A) and weekly durvalumab treatment timepoints (B, C, and D). Alpha- and beta-diversity differences for the time series were determined in Primerv7. MaAsLin2 in R was used to identify potential associations with the time series and/or HPV status. Linear decomposition model (LDM) R-package was used to investigate the relationship of salivary microbiome with HPV status. ROC curves were plotted for significant species in common between MaAsLin2 analysis and FDR-corrected Mann-Whitney U-test using XLSTAT. RESULTS Longitudinal microbiome data across four timepoints (A, B, C, D) were obtained (HPV+: n = 18 samples; HPV-: n = 46 samples). A total of 416 taxa were detected across all time points, ranging from 336 to 373 per group. There were no differences in α- and β-diversities for all longitudinal comparisons (C vs. BCD, AB vs. CD, or A vs. B, C, or D). However, comparison A vs. D showed a significant increase in Prevotella melaninogenica relative abundance, a potentially pathogenic species able to evade the immune system, after three weeks treatment. Moreover, differences in beta-diversity based on HPV status were found. LDM analysis identified Veillonella atypica, overrepresented in HPV+ group, as the top species accounting for HPV status. CONCLUSIONS The results are consistent with findings from previous studies investigating HNC patients treated with chemoradiotherapy. More research is needed to understand possible impact of immunotherapy on opportunistic bacterial species, although negligible impact from durvalumab treatment on salivary microbiome was observed.
Collapse
Affiliation(s)
- Jean-Luc Mougeot
- Carolinas Medical Center, Atrium Health, Charlotte, NC 28203, USA; (J.-L.M.); (M.B.)
| | - Micaela Beckman
- Carolinas Medical Center, Atrium Health, Charlotte, NC 28203, USA; (J.-L.M.); (M.B.)
| | - Mitra Kooshki
- School of Medicine, Wake Forest University, Winston-Salem, NC 27109, USA; (M.K.); (J.N.); (K.S.); (C.F.)
| | - Justin Neuberger
- School of Medicine, Wake Forest University, Winston-Salem, NC 27109, USA; (M.K.); (J.N.); (K.S.); (C.F.)
| | - Kirtikar Shukla
- School of Medicine, Wake Forest University, Winston-Salem, NC 27109, USA; (M.K.); (J.N.); (K.S.); (C.F.)
| | - Cristina Furdui
- School of Medicine, Wake Forest University, Winston-Salem, NC 27109, USA; (M.K.); (J.N.); (K.S.); (C.F.)
| | - Farah Bahrani Mougeot
- Carolinas Medical Center, Atrium Health, Charlotte, NC 28203, USA; (J.-L.M.); (M.B.)
| | - Mercedes Porosnicu
- School of Medicine, Wake Forest University, Winston-Salem, NC 27109, USA; (M.K.); (J.N.); (K.S.); (C.F.)
| |
Collapse
|
3
|
Santamaria MP, Mathias-Santamaria IF, Ferreira Bonafé AC, Gonzalez OA, Kirakodu S, Monteiro MDF, Casarin RCV, Shaddox LM, Miguel MMV. Microbiome and Inflammatory Biomarkers Associated With Palatal Wound Healing. J Periodontal Res 2025. [PMID: 39801488 DOI: 10.1111/jre.13373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 01/18/2025]
Abstract
AIM The clinical outcomes of a variety of surgical procedures highly depend on tissue repair and show high variability among patients. There is a gap in the literature on how the host inflammatory response, the microbiome, and the interplay between them can influence oral mucosa healing. In this pilot study, we aimed to evaluate the microbiome and biomarkers profiles in patients who had desired versus undesired wound healing in the palatal mucosa. METHODS Seventeen patients underwent a free gingival graft (FGG) for socket preservation. Palatal wound closure (WC) and epithelization (EPT) were assessed clinically. Biofilm from the palatal wound was collected before the surgical procedure and 3, 7, 14, and 30 days postoperatively. The inflammatory exudate was sampled on Days 3 and 7. At 14 days posttreatment, patients were classified into two groups based on EPT rates: (1) undesired healing (UH) and (2) desired healing (DH). RESULTS No difference was observed in alfa diversity over time or between groups. In beta diversity, both UH and DH showed microbiome changes on Days 3-7 and 7, respectively, compared with the baseline (p = 0.01), returning to its initial condition 30 days later. There was a trend toward a different microbiome profile between groups on Day 7 (p = 0.08). Bacterium composition in DH showed a balance between healthy species and oral pathogens over time, whereas UH composition was characterized by microorganisms correlated with epithelium invasion/cytotoxicity; virulence factor upregulation; and oral diseases, such as periodontitis and aphthous stomatitis, until Day 30. UH showed an increase in IL-6, MCP-1, and MIP-1α over time, and DH showed a decrease in TIMP-1, IL-1β, and MIP-1α. On Days 3 and 7, MIP-1α and MMP-2 showed greater concentrations of DH in the intergroup assessment, and MCP-1 increased on Day 7 in UH. CONCLUSION Specific microbiome/inflammatory profiles are associated with DH and UH. TRIAL REGISTRATION NCT05171400.
Collapse
Affiliation(s)
- Mauro Pedrine Santamaria
- College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
- Division of Periodontics, Institute of Science and Technology, São José dos Campos, São Paulo State University (UNESP), São Paulo, Brazil
| | | | - Ana Carolina Ferreira Bonafé
- Division of Periodontics, Institute of Science and Technology, São José dos Campos, São Paulo State University (UNESP), São Paulo, Brazil
| | | | | | | | | | | | - Manuela Maria Viana Miguel
- College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
- Division of Periodontics, Institute of Science and Technology, São José dos Campos, São Paulo State University (UNESP), São Paulo, Brazil
| |
Collapse
|
4
|
Adelfio M, Callen GE, Diaz AR, Paster BJ, He X, Hasturk H, Ghezzi CE. Underscoring long-term host-microbiome interactions in a physiologically relevant gingival tissue model. NPJ Biofilms Microbiomes 2025; 11:9. [PMID: 39789014 PMCID: PMC11718163 DOI: 10.1038/s41522-024-00641-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 12/25/2024] [Indexed: 01/12/2025] Open
Abstract
The human body houses many distinct and interconnecting microbial populations with long-lasting systemic effects, where the oral cavity serves as a pathogens' reservoir. The correlation of different disease states strongly supports the need to understand the interplay between the oral tissue niche and microbiome. Despite efforts, the recapitulation of gingival architecture and physiological characteristics of the periodontal niche has yet to be accomplished by traditional cultural strategies. Here, we are showing for the first time the investigation of host-microbiome interactions in healthy conditions within a human oral tissue model over seven days. Our results indicated long-term host and microbiome viability, host barrier integrity, phenotypic functional response, and preservation of healthy microbial populations and interbacterial dialogs. This in vitro platform can maintain tissue homeostasis at the interface of the periodontal niche, thus, offering opportunities to identify predictive disease biomarkers and to develop intervention strategies to promote oral and overall health.
Collapse
Affiliation(s)
- M Adelfio
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, 01854, MA, USA
| | - G E Callen
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, 01854, MA, USA
| | - A R Diaz
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, 01854, MA, USA
| | - B J Paster
- The ADA Forsyth Institute, 245 First St, Cambridge, 02142, MA, USA
| | - X He
- The ADA Forsyth Institute, 245 First St, Cambridge, 02142, MA, USA
| | - H Hasturk
- The ADA Forsyth Institute, 245 First St, Cambridge, 02142, MA, USA
| | - C E Ghezzi
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, 01854, MA, USA.
| |
Collapse
|
5
|
Oh S, Kim J, Shin CM, Lee HJ, Lee HS, Park KU. Metagenomic characterization of oral microbiome signatures to predict upper gastrointestinal and pancreaticobiliary cancers: a case-control study. J Transl Med 2025; 23:20. [PMID: 39762979 PMCID: PMC11702046 DOI: 10.1186/s12967-024-05989-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND This study investigated the oral microbiome signatures associated with upper gastrointestinal (GI) and pancreaticobiliary cancers. METHODS Saliva samples from cancer patients and age- and sex-matched healthy controls were analyzed using 16S rRNA-targeted sequencing, followed by comprehensive bioinformatics analysis. RESULTS Significant dissimilarities in microbial composition were observed between cancer patients and controls across esophageal cancer (EC), gastric cancer (GC), biliary tract cancer (BC), and pancreatic cancer (PC) groups (R2 = 0.067, = 0.075, = 0.068, and = 0.044; p = 0.001, = 0.001, = 0.002, and = 0.004, respectively). Additionally, the oral microbiome composition significantly differed by the four cancer sites (p = 0.001 for EC vs. GC, EC vs. BC, EC vs. PC, GC vs. BC, and GC vs. PC; p = 0.013 for BC vs. PC). We built oral metagenomic classifiers to predict cancer and selected specific microbial taxa with diagnostic properties. For EC, the classifier differentiated cancer patients and controls with good accuracy (area under the curve [AUC] = 0.791) and included three genera: Akkermansia, Escherichia-Shigella, and Subdoligranulum. For GC, the classifier exhibited high discriminative power (AUC = 0.961); it included five genera (Escherichia-Shigella, Gemella, Holdemanella, Actinomyces, and Stomatobaculum) and three species (Eubacterium sp. oral clone EI074, Ruminococcus sp. Marseille-P328, and Leptotrichia wadei F0279). However, microbial taxa with diagnostic features for BC and PC were not identified. CONCLUSIONS These findings suggested that the oral microbiome composition may serve as an indicator of tumorigenesis in upper GI and pancreaticobiliary cancers. The development of oral metagenomic classifiers for EC and GC demonstrates the potential value of microbial biomarkers in cancer screening.
Collapse
Affiliation(s)
- Sujin Oh
- Department of Laboratory Medicine, Seoul National University College of Medicine, 103, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jaihwan Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
| | - Cheol Min Shin
- Department of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
| | - Hyo-Jung Lee
- Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, 82, Gumi-ro 173beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University College of Medicine, 103, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, 103, Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea.
- Cancer Research Institute, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| | - Kyoung Un Park
- Department of Laboratory Medicine, Seoul National University College of Medicine, 103, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea.
| |
Collapse
|
6
|
Pivrncova E, Buresova L, Kotaskova I, Videnska P, Andryskova L, Piler P, Janku P, Borek I, Bohm J, Klanova J, Budinska E, Borilova Linhartova P. Impact of intrapartum antibiotic prophylaxis on the oral and fecal bacteriomes of children in the first week of life. Sci Rep 2024; 14:18163. [PMID: 39107353 PMCID: PMC11303690 DOI: 10.1038/s41598-024-68953-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Intrapartum antibiotic prophylaxis (IAP) is commonly used during C-section delivery and in Group B Streptococcus-positive women before vaginal delivery. Here, we primarily aimed to investigate the effect of IAP on the neonatal oral and fecal bacteriomes in the first week of life. In this preliminary study, maternal and neonatal oral swabs and neonatal fecal (meconium and transitional stool) swabs were selected from a pool of samples from healthy mother-neonate pairs participating in the pilot phase of CELSPAC: TNG during their hospital stay. The DNA was extracted and bacteriome profiles were determined by 16S rRNA amplicon sequencing (Illumina). In the final dataset, 33 mother-neonate pairs were exposed to antibiotics during C-section or vaginal delivery (cases; +IAP) and the vaginal delivery without IAP (controls, -IAP) took place in 33 mother-neonate pairs. Differences in alpha diversity (Shannon index, p=0.01) and bacterial composition (PERMANOVA, p<0.05) between the +IAP and -IAP groups were detected only in neonatal oral samples collected ≤48 h after birth. No significant differences between meconium bacteriomes of the +IAP and -IAP groups were observed (p>0.05). However, the IAP was associated with decreased alpha diversity (number of amplicon sequence variants, p<0.001), decreased relative abundances of the genera Bacteroides and Bifidobacterium, and increased relative abundances of genera Enterococcus and Rothia (q<0.01 for all of them) in transitional stool samples. The findings of this study suggest that exposure to IAP may significantly influence the early development of the neonatal oral and gut microbiomes. IAP affected the neonatal oral bacteriome in the first two days after birth as well as the neonatal fecal bacteriome in transitional stool samples. In addition, it highlights the necessity for further investigation into the potential long-term health impacts on children.
Collapse
Affiliation(s)
- Eliska Pivrncova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Lucie Buresova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Iva Kotaskova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
- BioVendor MDx, Karasek 1, Brno, Czech Republic
| | - Petra Videnska
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Lenka Andryskova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Pavel Piler
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Petr Janku
- Department of Gynecology and Obstetrics, University Hospital Brno, Jihlavska 20, Brno, Czech Republic
- Department of Gynecology and Obstetrics, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, Czech Republic
| | - Ivo Borek
- Department of Neonatology, University Hospital Brno, Jihlavska 20, Brno, Czech Republic
- Department of Neonatology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, Czech Republic
| | - Jan Bohm
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Jana Klanova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Eva Budinska
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Petra Borilova Linhartova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic.
- Clinic of Maxillofacial Surgery, University Hospital Brno, Jihlavska 20, Brno, Czech Republic.
| |
Collapse
|
7
|
Abdelrahman SM, El Samak M, El-Baz LMF, Hanora AMS, Satyal P, Dosoky NS. Effects of Mint Oils on the Human Oral Microbiome: A Pilot Study. Microorganisms 2024; 12:1538. [PMID: 39203382 PMCID: PMC11356387 DOI: 10.3390/microorganisms12081538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
The oral microbiome is a diverse and complex ecosystem essential for maintaining oral and systemic health. Our study is the first to define the oral microbial community in Egyptian young adults and investigate the effects of natural antimicrobials on the oral microbiome. SuperMint (SM) is a proprietary blend of peppermint, Japanese mint, bergamot mint, and spearmint essential oils encapsulated in a tiny soft beadlet. This work aimed to evaluate the effects of SM beadlets on the oral microbiome. This study recruited twenty healthy participants. A baseline investigation of the oral microbiome of the selected participants was performed by collecting saliva and swab samples before treatment. Treatment included chewing four SM beadlets twice a day for 7 days, and then, post-administration saliva and swab samples were collected at the end of treatment. The oral microbiome samples were analyzed by the high-throughput amplicon sequencing of 16S rRNA gene fragments, and the community composition was determined. The results showed that the abundance of some microbial genera and families decreased after using SM, including Prevotella, Streptococcus, Neisseria, and Haemophilus. However, some genera showed inconsistent patterns. We also found that the subject's gender and SM usage were significantly associated with diverse microbial composition. The results suggest that SM treatment decreased the abundance of several bacteria associated with halitosis and periodontal diseases, such as Actinomyces and Streptococcus. Furthermore, Corynebacterium species increased and Streptococcus decreased after SM usage. More research is needed to fully understand the antimicrobial effects of mint oils and their potential applications in maintaining good oral health.
Collapse
Affiliation(s)
- Samar M. Abdelrahman
- Department of Botany and Microbiology, Faculty of Science, Suez University, Suez 43518, Egypt
| | - Manar El Samak
- Department of Microbiology & Immunology, College of Pharmacy, Suez Canal University, Ismailia 43221, Egypt; (M.E.S.); (A.M.S.H.)
| | - Lamis M. F. El-Baz
- Department of Zoology, Faculty of Science, Suez University, Suez 43533, Egypt;
| | - Amro M. S. Hanora
- Department of Microbiology & Immunology, College of Pharmacy, Suez Canal University, Ismailia 43221, Egypt; (M.E.S.); (A.M.S.H.)
| | | | | |
Collapse
|
8
|
Unlu O, Demirci M, Paksoy T, Eden AB, Tansuker HD, Dalmizrak A, Aktan C, Senel F, Sunter AV, Yigit O, Cakir BO, Kantarci A. Oral microbial dysbiosis in patients with oral cavity cancers. Clin Oral Investig 2024; 28:377. [PMID: 38884817 PMCID: PMC11182825 DOI: 10.1007/s00784-024-05770-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
OBJECTIVES The pathogenesis of oral cavity cancers is complex. We tested the hypothesis that oral microbiota dysbiosis is associated with oral cavity cancer. MATERIALS AND METHODS Patients with primary oral cavity cancer who met the inclusion and exclusion criteria were included in the study. Matching healthy individuals were recruited as controls. Data on socio-demographic and behavioral factors, self-reported periodontal measures and habits, and current dental status were collected using a structured questionnaire and periodontal chartings. In addition to self-reported oral health measures, each participant received a standard and detailed clinical examination. DNA was extracted from saliva samples from patients and healthy controls. Next-generation sequencing was performed by targeting V3-V4 gene regions of the 16 S rRNA with subsequent bioinformatic analyses. RESULTS Patients with oral cavity cancers had a lower quality of oral health than healthy controls. Proteobacteria, Aggregatibacter, Haemophilus, and Neisseria decreased, while Firmicutes, Bacteroidetes, Actinobacteria, Lactobacillus, Gemella, and Fusobacteria increased in oral cancer patients. At the species level, C. durum, L. umeaens, N. subflava, A. massiliensis, and V. dispar were significantly lower, while G. haemolysans was significantly increased (p < 0.05). Major periodontopathogens associated with periodontal disease (P. gingivalis and F.nucleatum) increased 6.5- and 2.8-fold, respectively. CONCLUSION These data suggested that patients with oral cancer had worse oral health conditions and a distinct oral microbiome composition that is affected by personal daily habits and may be associated with the pathogenicity of the disease and interspecies interactions. CLINICAL RELEVANCE This paper demonstrates the link between oral bacteria and oral cancers, identifying mechanistic interactions between species of oral microbiome.
Collapse
Affiliation(s)
- Ozge Unlu
- Faculty of Medicine, Department of Medical Microbiology, Istanbul Atlas University, Istanbul, Turkey.
- ADA Forsyth Institute, Cambridge, MA, USA.
| | - Mehmet Demirci
- Faculty of Medicine, Department of Medical Microbiology, Kırklareli University, Kırklareli, Turkey
| | - Tugce Paksoy
- Faculty of Dentistry, Department of Periodontology, University of Health Sciences, Istanbul, Turkey
| | - Arzu Baygul Eden
- Faculty of Medicine, Department of Biostatistics, Koc University, Istanbul, Turkey
| | - Hasan Deniz Tansuker
- Faculty of Medicine, Department of Otolaryngology, Yeditepe University, Istanbul, Turkey
| | - Aysegul Dalmizrak
- Faculty of Medicine, Department of Medical Biology, Balıkesir University, Balıkesir, Turkey
| | - Cagdas Aktan
- Faculty of Medicine, Department of Medical Biology, Bandirma University, Balıkesir, Turkey
| | - Firdevs Senel
- Faculty of Dentistry, Department of Oral & Maxillofacial Surgery, Beykent University, Istanbul, Turkey
| | - Ahmet Volkan Sunter
- Department of Ear, Nose and Throat Diseases, Istanbul Sisli Hamidiye Etfal Research and Training Hospital, Istanbul, Turkey
| | - Ozgur Yigit
- Department of Ear, Nose and Throat Diseases, Istanbul Sisli Hamidiye Etfal Research and Training Hospital, Istanbul, Turkey
| | - Burak Omur Cakir
- Faculty of Medicine, Department of Ear, Nose and Throat Diseases, Istanbul Aydin University, Istanbul, Turkey
| | - Alpdogan Kantarci
- ADA Forsyth Institute, Cambridge, MA, USA
- School of Dental Medicine, Harvard University, Boston, MA, USA
| |
Collapse
|
9
|
Del Pilar Angarita-Díaz M, Fong C, Medina D. Bacteria of healthy periodontal tissues as candidates of probiotics: a systematic review. Eur J Med Res 2024; 29:328. [PMID: 38877601 PMCID: PMC11177362 DOI: 10.1186/s40001-024-01908-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 05/29/2024] [Indexed: 06/16/2024] Open
Abstract
OBJECTIVES The use of probiotics could promote the balance of the subgingival microbiota to contribute to periodontal health. This study aimed to identify the potential of bacteria commonly associated with healthy periodontal tissues as probiotic candidates. MATERIAL AND METHODS A systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines using the PubMed, Scopus, Science Direct, ProQuest, and Ovid databases as well as the combination of Medical Subject Headings (MeSH) and non-MeSH terms. Based on the selection criteria, original studies published in English and identifying the microorganisms present in the periodontium of healthy individuals and patients with periodontitis using the high-throughput 16S ribosomal gene sequencing technique were included. RESULTS Out of 659 articles, 12 met the criteria for this review. These articles were published from 2012 to 2020 and mainly originated from the United States, China, and Spain. Most of these studies reported adequate criteria for selecting participants, using standardized clinical criteria, and compliance with quality based on the tools used. In periodontal healthy tissue were identified species like Actinomyces viscosus, Actinomyces naeslundii, Haemophilus parainfluenzae, Rothia dentocariosa, Streptococcus sanguinis, Streptococcus mitis, Streptococcus oralis, Streptococcus gordonii, Streptococcus intermedius, and Prevotella nigrescens which have recognized strains with a capacity to inhibit periodontopathogens. CONCLUSIONS S. sanguinis, S. oralis, S. mitis, and S. gordonii are among the bacterial species proposed as potential probiotics because some strains can inhibit periodontopathogens and have been reported as safe for humans.
Collapse
Affiliation(s)
- María Del Pilar Angarita-Díaz
- GIOMET Group, Faculty of Dentistry, Universidad Cooperativa de Colombia, Campus Villavicencio, Carrera 35 # 36 99, Villavicencio, Colombia.
| | - Cristian Fong
- Ciencia y Pedagogía Group, School of Medicine, Universidad Cooperativa de Colombia, Campus Santa Marta, Santa Marta, Colombia
| | - Daniela Medina
- School of Dentistry, Universidad Cooperativa de Colombia, Campus Villavicencio, Villavicencio, Colombia
| |
Collapse
|
10
|
Wei Y, Yu W, Zhang Z, Liu S, Xue J, Wu C, Gao Z, Guo S. Comparative analysis of oropharyngeal microbiota in healthcare workers post-COVID-19. Front Cell Infect Microbiol 2024; 14:1347345. [PMID: 38828262 PMCID: PMC11140064 DOI: 10.3389/fcimb.2024.1347345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/25/2024] [Indexed: 06/05/2024] Open
Abstract
Background To date, more than 770 million individuals have become coronavirus disease 2019 (COVID-19) convalescents worldwide. Emerging evidence highlights the influence of COVID-19 on the oral microbiome during both acute and convalescent disease phases. Front-line healthcare workers are at an elevated risk of exposure to viral infections, and the effects of COVID-19 on their oral microbiome remain relatively unexplored. Methods Oropharyngeal swab specimens, collected one month after a negative COVID-19 test from a cohort comprising 55 healthcare workers, underwent 16S rRNA sequencing. We conducted a comparative analysis between this post-COVID-19 cohort and the pre-infection dataset from the same participants. Community composition analysis, indicator species analysis, alpha diversity assessment, beta diversity exploration, and functional prediction were evaluated. Results The Shannon and Simpson indexes of the oral microbial community declined significantly in the post-COVID-19 group when compared with the pre-infection cohort. Moreover, there was clear intergroup clustering between the two groups. In the post-COVID-19 group, the phylum Firmicutes showed a significant increase. Further, there were clear differences in relative abundance of several bacterial genera in contrast with the pre-infection group, including Streptococcus, Gemella, Granulicatella, Capnocytophaga, Leptotrichia, Fusobacterium, and Prevotella. We identified Gemella enrichment in the post-COVID-19 group, potentially serving as a recovery period performance indicator. Functional prediction revealed lipopolysaccharide biosynthesis downregulation in the post-COVID-19 group, an outcome with host inflammatory response modulation and innate defence mechanism implications. Conclusion During the recovery phase of COVID-19, the oral microbiome diversity of front-line healthcare workers failed to fully return to its pre-infection state. Despite the negative COVID-19 test result one month later, notable disparities persisted in the composition and functional attributes of the oral microbiota.
Collapse
Affiliation(s)
- Yue Wei
- Nursing of school, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wenyi Yu
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing, China
| | - Zhixia Zhang
- Nursing Department, Linfen Central Hospital, Shanxi, China
| | - Siqin Liu
- Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jianbo Xue
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing, China
| | - Chunyan Wu
- Nursing of school, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhancheng Gao
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing, China
- Institute of Chest and Lung Diseases, Shanxi Medical University, Linfen, Shanxi, China
| | - Shuming Guo
- Nursing of school, Shanxi Medical University, Taiyuan, Shanxi, China
- Nursing Department, Linfen Central Hospital, Shanxi, China
| |
Collapse
|
11
|
Lee MK, Chen IH, Hsu IL, Tsai WH, Lee TY, Jhong JH, Liu BC, Huang TY, Lin FK, Chang WW, Wu JH. The impact of Lacticaseibacillus paracasei GMNL-143 toothpaste on gingivitis and oral microbiota in adults: a randomized, double-blind, crossover, placebo-controlled trial. BMC Oral Health 2024; 24:477. [PMID: 38643116 PMCID: PMC11031891 DOI: 10.1186/s12903-024-04251-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/11/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND This study examines the oral health benefits of heat-killed Lacticaseibacillus paracasei GMNL-143, particularly its potential in oral microbiota alterations and gingivitis improvement. METHODS We assessed GMNL-143's in vitro interactions with oral pathogens and its ability to prevent pathogen adherence to gingival cells. A randomized, double-blind, crossover clinical trial was performed on gingivitis patients using GMNL-143 toothpaste or placebo for four weeks, followed by a crossover after a washout. RESULTS GMNL-143 showed coaggregation with oral pathogens in vitro, linked to its surface layer protein. In patients, GMNL-143 toothpaste lowered the gingival index and reduced Streptococcus mutans in crevicular fluid. A positive relationship was found between Aggregatibacter actinomycetemcomitans and gingival index changes, and a negative one between Campylobacter and gingival index changes in plaque. CONCLUSION GMNL-143 toothpaste may shift oral bacterial composition towards a healthier state, suggesting its potential in managing mild to moderate gingivitis. TRIAL REGISTRATION ID NCT04190485 ( https://clinicaltrials.gov/ ); 09/12/2019, retrospective registration.
Collapse
Affiliation(s)
- Min-Kang Lee
- Department of Dentistry, Kaohsiung Medical University Hospital, No.100, Shih-Chuan 1st Road, Sanmin Dist, Kaohsiung City, 807378, Taiwan
| | - I-Hui Chen
- Department of Dentistry, Kaohsiung Medical University Hospital, No.100, Shih-Chuan 1st Road, Sanmin Dist, Kaohsiung City, 807378, Taiwan
| | - I-Ling Hsu
- Research and Development Department, GenMont Biotech Incorporation, Tainan City, 741014, Taiwan
| | - Wan-Hua Tsai
- Research and Development Department, GenMont Biotech Incorporation, Tainan City, 741014, Taiwan
| | - Tzong-Yi Lee
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, 300193, Taiwan
| | - Jhih-Hua Jhong
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan City, 320315, Taiwan
| | - Bai-Chia Liu
- Research and Development Department, GenMont Biotech Incorporation, Tainan City, 741014, Taiwan
| | - Tsui-Yin Huang
- Research and Development Department, GenMont Biotech Incorporation, Tainan City, 741014, Taiwan
| | - Fang-Kuei Lin
- Research and Development Department, GenMont Biotech Incorporation, Tainan City, 741014, Taiwan
| | - Wen-Wei Chang
- Departement of Biomedical Sciences, Chung Shan Medical University, No. 110, Section 1, Chien-Kuo N. Rd, Taichung City, 402306, Taiwan.
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City, 402306, Taiwan.
| | - Ju-Hui Wu
- Department of Dentistry, Kaohsiung Medical University Hospital, No.100, Shih-Chuan 1st Road, Sanmin Dist, Kaohsiung City, 807378, Taiwan.
- Department of Oral Hygiene, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung City, 807378, Taiwan.
| |
Collapse
|
12
|
Shahzad M, Saeed M, Amin H, Binmadi N, Ullah Z, Bibi S, Andrew SC. The oral microbiome of newly diagnosed tuberculosis patients; a pilot study. Genomics 2024; 116:110816. [PMID: 38431030 DOI: 10.1016/j.ygeno.2024.110816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/15/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Changes in oral microbiota composition (dysbiosis) have long been known to play a key role in the pathogenesis of oral and systemic diseases including respiratory diseases. However, till now, no study has assessed changes in oral microbiota following tuberculosis (TB) infection in humans. AIMS This is the first study of its kind that aimed to investigate oral microbial dysbiosis in newly diagnosed, treatment naïve, TB patients. METHODS Oral swab samples were collected from newly diagnosed TB patients (n = 20) and age, gender and ethnicity matched healthy controls (n = 10). DNA was extracted and microbiota analyzed by sequencing the hypervariable (V3-V4) region of the bacterial 16S rRNA gene using Illumina MiSeq platform. Bioinformatics and statistical analyses were performed using QIIME and R. RESULTS Bacterial richness, diversity and community composition were significantly different between TB patients and healthy controls. The two groups also exhibit differential abundance at phylum, class, genus and species levels. LEfSe analysis revealed enrichment (LDA scores (log10) >2, P < 0.05) of Firmicutes (especially Streptococcus) and Actinobacteriota (especially Rothia) in TB patients relative to healthy controls. Gene function prediction analysis showed upregulation of metabolic pathways related to carbohydrates (butanoate, galactose) and fatty acids metabolism, antibiotics biosynthesis, proteosome and immune system signaling. CONCLUSION These observations suggest significant variations in diversity, relative abundance and functional potential of oral microbiota of TB patients compared to healthy controls thereby suggesting potential role of oral bacterial dysbiosis in TB pathogenesis. However, longitudinal studies using powerful metagenomic and transcriptomic approaches are crucial to more fully understand and confrim these findings.
Collapse
Affiliation(s)
- Muhammad Shahzad
- Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan; Institute of Basic Medical Sciences, Khyber Medical University, Hayat Abad Phase 5, Peshawar 25120, Pakistan.
| | - Muhammad Saeed
- Institute of Basic Medical Sciences, Khyber Medical University, Hayat Abad Phase 5, Peshawar 25120, Pakistan
| | - Humaira Amin
- Alpha Genomics Private Limited, Islamabad 45710, Pakistan
| | - Nada Binmadi
- Department of Oral Diagnostic Sciences, King Abdulaziz University Faculty of Dentistry, Jeddah, Saudi Arabia
| | - Zafar Ullah
- Institute of Basic Medical Sciences, Khyber Medical University, Hayat Abad Phase 5, Peshawar 25120, Pakistan
| | - Sana Bibi
- Alpha Genomics Private Limited, Islamabad 45710, Pakistan
| | - Simon C Andrew
- School of Biological Sciences, Health and Life Sciences Building, University of Reading, Reading RG6 6EX, UK.
| |
Collapse
|
13
|
Moran SP, Rosier BT, Henriquez FL, Burleigh MC. The effects of nitrate on the oral microbiome: a systematic review investigating prebiotic potential. J Oral Microbiol 2024; 16:2322228. [PMID: 38420038 PMCID: PMC10901185 DOI: 10.1080/20002297.2024.2322228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
Background Nitrate (NO3-) has been suggested as a prebiotic for oral health. Evidence indicates dietary nitrate and nitrate supplements can increase the proportion of bacterial genera associated with positive oral health whilst reducing bacteria implicated in oral disease(s). In contrast, chlorhexidine-containing mouthwashes, which are commonly used to treat oral infections, promote dysbiosis of the natural microflora and may induce antimicrobial resistance. Methods A systematic review of the literature was undertaken, surrounding the effects of nitrate on the oral microbiota. Results Overall, n = 12 in vivo and in vitro studies found acute and chronic nitrate exposure increased (representatives of) health-associated Neisseria and Rothia (67% and 58% of studies, respectively) whilst reducing periodontal disease-associated Prevotella (33%). Additionally, caries-associated Veillonella and Streptococcus decreased (25% for both genera). Nitrate also altered oral microbiome metabolism, causing an increase in pH levels (n = 5), which is beneficial to limit caries development. Secondary findings highlighted the benefits of nitrate for systemic health (n = 5). Conclusions More clinical trials are required to confirm the impact of nitrate on oral communities. However, these findings support the hypothesis that nitrate could be used as an oral health prebiotic. Future studies should investigate whether chlorhexidine-containing mouthwashes could be replaced or complemented by a nitrate-rich diet or nitrate supplementation.
Collapse
Affiliation(s)
- Siobhan P. Moran
- School of Health and Life Sciences, University of the West of Scotland, Blantyre, UK
| | - Bob T. Rosier
- Department of Health and Genomics, Center for Advanced Research in Public Health, FISABIO Foundation, Valencia, Spain
| | - Fiona L. Henriquez
- School of Health and Life Sciences, University of the West of Scotland, Blantyre, UK
| | - Mia C. Burleigh
- School of Health and Life Sciences, University of the West of Scotland, Blantyre, UK
| |
Collapse
|
14
|
Da D, Zhao Q, Zhang H, Wu W, Zeng X, Liang X, Jiang Y, Xiao Z, Yu J, Ding S, Zheng L, Zhang Y, Xu X, Ding D. Oral microbiome in older adults with mild cognitive impairment. J Oral Microbiol 2023; 15:2173544. [PMID: 36742284 PMCID: PMC9897770 DOI: 10.1080/20002297.2023.2173544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The association between the oral microbiome and mild cognitive impairment (MCI) remains unclear. This study aimed to investigate such an association among Chinese older adults. Participants without dementia were recruited from the community. A battery of neuropsychological tests was administered to evaluate the cognitive function. The diagnosis of MCI was based on Peterson's criteria. The non-stimulated saliva was collected to extract sequences of the oral microbiome. Forty-seven MCI and 47 cognitively normal participants were included. There was significant difference in alpha diversity and insignificant difference in beta diversity between the two groups of participants. Compared with the cognitively normal group, Gemella haemolysans and Streptococcus gordonii were two significantly decreased species while Veillonella unclassified_Veillonella and Fusobacterium sp._HMT_203 were two significantly increased species in the MCI group. The richness of Gemella haemolysans presented the best discriminate value for MCI with the AUC (Area Under Curve) of 0.707, a cut-off value of 0.008 for relative abundance, the sensitivity of 63.8% and specificity of 70.2%. The dysbiosis of oral microbiome and relative abundance of Gemella haemolysans was significantly associated with MCI. Further studies were needed to develop new treatment strategies targeting the oral microbiome for cognitive impairment.
Collapse
Affiliation(s)
- Dongxin Da
- Department of Preventive Dentistry, Shanghai Stomatological Hospital& School of Stomatology, Fudan University, Shanghai, China
| | - Qianhua Zhao
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China,National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China,MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Hao Zhang
- Department of Preventive Dentistry, Shanghai Stomatological Hospital& School of Stomatology, Fudan University, Shanghai, China,Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Wanqing Wu
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China,National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoli Zeng
- Department of Preventive Dentistry, Shanghai Stomatological Hospital& School of Stomatology, Fudan University, Shanghai, China,Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Xiaoniu Liang
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China,National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiwei Jiang
- Department of Preventive Dentistry, Shanghai Stomatological Hospital& School of Stomatology, Fudan University, Shanghai, China,Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Zhenxu Xiao
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China,National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| | - Jin Yu
- Department of Preventive Dentistry, Shanghai Stomatological Hospital& School of Stomatology, Fudan University, Shanghai, China,Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Saineng Ding
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China,National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Zheng
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China,National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Zhang
- Department of Preventive Dentistry, Shanghai Stomatological Hospital& School of Stomatology, Fudan University, Shanghai, China,Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China,CONTACT Ying Zhang Department of Preventive Dentistry, Shanghai Stomatological Hospital& School of Stomatology, Fudan University, Shanghai, China
| | - Xiaogang Xu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China,Xiaogang, Xu Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Ding Ding
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China,National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China,Ding Ding National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Téllez Corral MA, Herrera Daza E, Cuervo Jimenez HK, Bravo Becerra MDM, Villamil JC, Hidalgo Martinez P, Roa Molina NS, Otero L, Cortés ME, Parra Giraldo CM. Cryptic Oral Microbiota: What Is Its Role as Obstructive Sleep Apnea-Related Periodontal Pathogens? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1740. [PMID: 36767109 PMCID: PMC9913967 DOI: 10.3390/ijerph20031740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Periodontitis has been commonly linked to periodontopathogens categorized in Socransky's microbial complexes; however, there is a lack of knowledge regarding "other microorganisms" or "cryptic microorganisms", which are rarely thought of as significant oral pathogens and have been neither previously categorized nor connected to illnesses in the oral cavity. This study hypothesized that these cryptic microorganisms could contribute to the modulation of oral microbiota present in health or disease (periodontitis and/or obstructive sleep apnea (OSA) patients). For this purpose, the presence and correlation among these cultivable cryptic oral microorganisms were identified, and their possible role in both conditions was determined. Data from oral samples of individuals with or without periodontitis and with or without OSA were obtained from a previous study. Demographic data, clinical oral characteristics, and genera and species of cultivable cryptic oral microorganisms identified by MALDI-TOF were recorded. The data from 75 participants were analyzed to determine the relative frequencies of cultivable cryptic microorganisms' genera and species, and microbial clusters and correlations tests were performed. According to periodontal condition, dental-biofilm-induced gingivitis in reduced periodontium and stage III periodontitis were found to have the highest diversity of cryptic microorganism species. Based on the experimental condition, these findings showed that there are genera related to disease conditions and others related to healthy conditions, with species that could be related to different chronic diseases being highlighted as periodontitis and OSA comorbidities. The cryptic microorganisms within the oral microbiota of patients with periodontitis and OSA are present as potential pathogens, promoting the development of dysbiotic microbiota and the occurrence of chronic diseases, which have been previously proposed to be common risk factors for periodontitis and OSA. Understanding the function of possible pathogens in the oral microbiota will require more research.
Collapse
Affiliation(s)
- Mayra A. Téllez Corral
- Centro de Investigaciones Odontológicas, Facultad de Odontología, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia
- Unidad de Investigación en Proteómica y Micosis Humanas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia
- Faculty of Dentistry and Innovation Technology Graduate Program, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Eddy Herrera Daza
- Departamento de Matemáticas, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia
| | - Hayde K. Cuervo Jimenez
- Unidad de Investigación en Proteómica y Micosis Humanas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia
| | - María del Mar Bravo Becerra
- Unidad de Investigación en Proteómica y Micosis Humanas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia
| | - Jean Carlos Villamil
- Centro de Investigaciones Odontológicas, Facultad de Odontología, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia
| | - Patricia Hidalgo Martinez
- Sleep Clinic, Hospital Universitario San Ignacio and Faculty of Medicine, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia
| | - Nelly S. Roa Molina
- Centro de Investigaciones Odontológicas, Facultad de Odontología, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia
| | - Liliana Otero
- Centro de Investigaciones Odontológicas, Facultad de Odontología, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia
| | - María E. Cortés
- Faculty of Dentistry and Innovation Technology Graduate Program, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Claudia M. Parra Giraldo
- Unidad de Investigación en Proteómica y Micosis Humanas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia
- Departamento de Microbiología y Parasilogía, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
16
|
Contuzzi N, Casalino G, Boccaccio A, Ballini A, Charitos IA, Bottalico L, Santacroce L. Metals Biotribology and Oral Microbiota Biocorrosion Mechanisms. J Funct Biomater 2022; 14:14. [PMID: 36662061 PMCID: PMC9863779 DOI: 10.3390/jfb14010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 12/28/2022] Open
Abstract
During the last decades, metal-based biomaterials have been extensively explored to be used as biocompatible metals for biomedical applications, owing to their superior mechanical properties and corrosion resistance. Consequently, for long-term implanted medical devices, to assure the biomaterials' reliability, functionality, and biocompatibility, studying the various bio-tribological damage mechanisms to obtain the optimum properties is one of the most important goals. In this review, we consider the most important metal-based biomaterials such as stainless steel, alloys of titanium (Ti), cobalt-chromium (Co-Cr), and Nichel-Titatium (Ni-Ti), as well Magnesium (Mg) alloys and with Tantalum (Ta), emphasizing their characteristics, clinical applications, and deterioration over time. The influence of metal elements on biological safety, including significant effects of metal-based biomaterials in dentistry were discussed, considering the perspectives of surface, mechanical properties, corrosion behaviors, including interactions, bio-mechanisms with tissues, and oral environments. In addition, the role of the oral microbiota was explored due to its role in this erosion condition, in order to further understand the mechanism of metal-based biomaterials implanted on the microflora balance of aerobic and anaerobic bacteria in an oral environment.
Collapse
Affiliation(s)
- Nicola Contuzzi
- Department of Mechanics, Mathematics and Management, Polytechnic University of Bari, Via Orabona 4, 70125 Bari, Italy
| | - Giuseppe Casalino
- Department of Mechanics, Mathematics and Management, Polytechnic University of Bari, Via Orabona 4, 70125 Bari, Italy
| | - Antonio Boccaccio
- Department of Mechanics, Mathematics and Management, Polytechnic University of Bari, Via Orabona 4, 70125 Bari, Italy
| | - Andrea Ballini
- Department of Mechanics, Mathematics and Management, Polytechnic University of Bari, Via Orabona 4, 70125 Bari, Italy
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Ioannis Alexandros Charitos
- Emergency/Urgent Department, National Poisoning Center, Riuniti University Hospital of Foggia, 71122 Foggia, Italy
| | - Lucrezia Bottalico
- Interdepartmental Research Center for Pre-Latin, Latin and Oriental Rights and Culture Studies (CEDICLO), University of Bari, 70121 Bari, Italy
| | - Luigi Santacroce
- Department of Interdisciplinary Medicine, Microbiology and Virology Unit, University of Bari “Aldo Moro”, 70126 Bari, Italy
| |
Collapse
|
17
|
Toyama N, Ekuni D, Yokoi A, Fukuhara D, Islam MM, Sawada N, Nakashima Y, Nakahara M, Sumita I, Morita M. Features of the oral microbiome in Japanese elderly people with 20 or more teeth and a non-severe periodontal condition during periodontal maintenance treatment: A cross-sectional study. Front Cell Infect Microbiol 2022; 12:957890. [PMID: 36275030 PMCID: PMC9582337 DOI: 10.3389/fcimb.2022.957890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022] Open
Abstract
Introduction The aim of the present study was to characterize the profile and diversity of the oral microbiome of a periodontally non-severe group with ≥20 teeth in comparison with a severe periodontitis group of elderly Japanese people. Methods A total of 50 patients who had ≥20 teeth and aged ≥60 years were recruited, and 34 participants (13 non-severe participants) were analyzed. After oral rinse (saliva after rinsing) sample collection, the V3–V4 regions of the 16S rRNA gene were sequenced to investigate microbiome composition, alpha diversity (Shannon index, Simpson index, richness, and evenness), and beta diversity using principal coordinate analysis (PCoA) based on weighted and unweighted UniFrac distances. A linear discriminant analysis effect size was calculated to identify bacterial species in the periodontally non-severe group. Results The periodontally non-severe group showed lower alpha diversity than that of the severe periodontitis group (p <0.05); however, the beta diversities were not significantly different. A higher relative abundance of four bacterial species (Prevotella nanceiensis, Gemella sanguinis, Fusobacterium periodonticum, and Haemophilus parainfluenzae) was observed in the non-severe group than that in the severe periodontitis group. Conclusion The oral microbiome in elderly Japanese people with ≥20 teeth and a non-severe periodontal condition was characterized by low alpha diversity and the presence of four bacterial species.
Collapse
Affiliation(s)
- Naoki Toyama
- Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- *Correspondence: Naoki Toyama,
| | - Daisuke Ekuni
- Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Aya Yokoi
- Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Daiki Fukuhara
- Department of Preventive Dentistry, Okayama University Hospital, Okayama, Japan
| | - Md Monirul Islam
- Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Nanami Sawada
- Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yukiho Nakashima
- Department of Preventive Dentistry, Okayama University Hospital, Okayama, Japan
| | - Momoko Nakahara
- Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ichiro Sumita
- Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Manabu Morita
- Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
18
|
The Effect of Oral Probiotics (Streptococcus Salivarius k12) on the Salivary Level of Secretory Immunoglobulin A, Salivation Rate, and Oral Biofilm: A Pilot Randomized Clinical Trial. Nutrients 2022; 14:nu14051124. [PMID: 35268099 PMCID: PMC8912462 DOI: 10.3390/nu14051124] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/27/2022] [Accepted: 03/05/2022] [Indexed: 12/01/2022] Open
Abstract
We aimed to assess the effect of oral probiotics containing the Streptococcus salivarius K12 strain on the salivary level of secretory immunoglobulin A, salivation rate, and oral biofilm. Thirty-one consenting patients meeting the inclusion criteria were recruited in this double-blind, placebo-controlled, two-arm, parallel-group study and randomly divided into probiotic (n = 15) and placebo (n = 16) groups. Unstimulated salivation rate, concentration of salivary secretory immunoglobulin A, Turesky index, and Papillary-Marginal-Attached index were assessed after 4 weeks of intervention and 2 weeks of washout. Thirty patients completed the entire study protocol. We found no increase in salivary secretory immunoglobulin A levels and salivary flow rates in the probiotic group compared with placebo. Baseline and outcome salivary secretory immunoglobulin A concentrations (mg/L) were 226 ± 130 and 200 ± 113 for the probiotic group and 205 ± 92 and 191 ± 97 for the placebo group, respectively. A significant decrease in plaque accumulation was observed in the probiotic group at 4 and 6 weeks. Within the limitations of the present study, it may be concluded that probiotic intake (Streptococcus salivarius K12) does not affect salivation rates and secretory immunoglobulin A salivary levels but exhibits a positive effect on plaque accumulation. Trial registration NCT05039320. Funding: none.
Collapse
|
19
|
Zanetti F, Zivkovic Semren T, Battey JND, Guy PA, Ivanov NV, van der Plas A, Hoeng J. A Literature Review and Framework Proposal for Halitosis Assessment in Cigarette Smokers and Alternative Nicotine-Delivery Products Users. FRONTIERS IN ORAL HEALTH 2021; 2:777442. [PMID: 35048075 PMCID: PMC8757736 DOI: 10.3389/froh.2021.777442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/15/2021] [Indexed: 12/03/2022] Open
Abstract
Halitosis is a health condition which counts cigarette smoking (CS) among its major risk factors. Cigarette smoke can cause an imbalance in the oral bacterial community, leading to several oral diseases and conditions, including intraoral halitosis. Although the best approach to decrease smoking-related health risks is quitting smoking, this is not feasible for many smokers. Switching to potentially reduced-risk products, like electronic vapor products (EVP) or heated tobacco products (HTP), may help improve the conditions associated with CS. To date, there have been few systematic studies on the effects of CS on halitosis and none have assessed the effects of EVP and HTP use. Self-assessment studies have shown large limitations owing to the lack of reliability in the participants' judgment. This has compelled the scientific community to develop a strategy for meaningful assessment of these new products in comparison with cigarettes. Here, we compiled a review of the existing literature on CS and halitosis and propose a 3-layer approach that combines the use of the most advanced breath analysis techniques and multi-omics analysis to define the interactions between oral bacterial species and their role in halitosis both in vitro and in vivo. Such an approach will allow us to compare the effects of different nicotine-delivery products on oral bacteria and quantify their impact on halitosis. Defining the impact of alternative nicotine-delivery products on intraoral halitosis and its associated bacteria will help the scientific community advance a step further toward understanding the safety of these products and their potentiall risks for consumers.
Collapse
Affiliation(s)
- Filippo Zanetti
- PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | | | | | | | | | | | | |
Collapse
|