1
|
Higgins M, Kristan M, Collins EL, Messenger LA, Dombrowski JG, Vanheer LN, Nolder D, Drakeley CJ, Stone W, Mahamar A, Bousema T, Delves M, Bandibabone J, N'Do S, Bantuzeko C, Zawadi B, Walker T, Sutherland CJ, Marinho CRF, Cameron MM, Clark TG, Campino S. A Pan Plasmodium lateral flow recombinase polymerase amplification assay for monitoring malaria parasites in vectors and human populations. Sci Rep 2024; 14:20165. [PMID: 39215071 PMCID: PMC11364753 DOI: 10.1038/s41598-024-71129-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Robust diagnostic tools and surveillance are crucial for malaria control and elimination efforts. Malaria caused by neglected Plasmodium parasites is often underestimated due to the lack of rapid diagnostic tools that can accurately detect these species. While nucleic-acid amplification technologies stand out as the most sensitive methods for detecting and confirming Plasmodium species, their implementation in resource-constrained settings poses significant challenges. Here, we present a Pan Plasmodium recombinase polymerase amplification lateral flow (RPA-LF) assay, capable of detecting all six human infecting Plasmodium species in low resource settings. The Pan Plasmodium RPA-LF assay successfully detected low density clinical infections with a preliminary limit of detection between 10-100 fg/µl for P. falciparum. When combined with crude nucleic acid extraction, the assay can serve as a point-of-need tool for molecular xenomonitoring. This utility was demonstrated by screening laboratory-reared Anopheles stephensi mosquitoes fed with Plasmodium-infected blood, as well as field samples of An. funestus s.l. and An. gambiae s.l. collected from central Africa. Overall, our proof-of-concept Pan Plasmodium diagnostic tool has the potential to be applied for clinical and xenomonitoring field surveillance, and after further evaluation, could become an essential tool to assist malaria control and elimination.
Collapse
Affiliation(s)
- Matthew Higgins
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT, UK
| | - Mojca Kristan
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT, UK
- Human Malaria Transmission Facility, LSHTM, Keppel Street, London, WC1E 7HT, UK
| | - Emma L Collins
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT, UK
| | - Louisa A Messenger
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT, UK
- Environmental & Occupational Health, School of Public Health, University of Nevada, Las Vegas, USA
| | - Jamille G Dombrowski
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT, UK
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Leen N Vanheer
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT, UK
| | - Debbie Nolder
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT, UK
- Malaria Reference Laboratory, UK Health Security Agency, LSHTM, London, WC1E 7HT, UK
| | - Christopher J Drakeley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT, UK
| | - William Stone
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT, UK
| | - Almahamoudou Mahamar
- Malaria Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Science, Techniques and Technologies (USTT), Bamako, Mali
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Michael Delves
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT, UK
| | - Janvier Bandibabone
- Laboratoire d'Entomologie Médicale Et Parasitologie, Centre de Recherche en Sciences Naturelles (CRSN/Lwiro), Sud‑Kivu, Democratic Republic of the Congo
| | - Sévérin N'Do
- Médecins Sans Frontières (MSF) OCBA, Barcelona, Spain
- Institut de Recherche en Sciences de La Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| | - Chimanuka Bantuzeko
- Centre de Recherche en Sciences Naturelles de Lwiro, Sud-Kivu, Democratic Republic of the Congo
- Université Officielle de Bukavu (UOB), Bukavu, Democratic Republic of the Congo
| | - Bertin Zawadi
- Centre de Recherche en Sciences Naturelles de Lwiro, Sud-Kivu, Democratic Republic of the Congo
| | - Thomas Walker
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Colin J Sutherland
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT, UK
- Human Malaria Transmission Facility, LSHTM, Keppel Street, London, WC1E 7HT, UK
- Malaria Reference Laboratory, UK Health Security Agency, LSHTM, London, WC1E 7HT, UK
| | - Claudio R F Marinho
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mary M Cameron
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT, UK
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT, UK
- Faculty of Epidemiology and Population Health, LSHTM, Keppel Street, London, WC1E 7HT, UK
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT, UK.
| |
Collapse
|
2
|
Jessing MP, Abuawad A, Bikulov T, Abresch JR, Offenhäusser A, Krause HJ. Isothermal Amplification Using Temperature-Controlled Frequency Mixing Magnetic Detection-Based Portable Field-Testing Platform. SENSORS (BASEL, SWITZERLAND) 2024; 24:4478. [PMID: 39065876 PMCID: PMC11281083 DOI: 10.3390/s24144478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
Sensitive magnetic nucleic acid (NA) detection via frequency mixing magnetic detection (FMMD) requires amplified NA samples for which a reliable temperature control is necessary. The feasibility of recombinase polymerase amplification (RPA) was studied within a newly integrated temperature-controlled sensor unit of a mobile FMMD based setup. It has been demonstrated that the inherently generated heat of the low frequency (LF) excitation signal of FMMD can be utilized and controlled by means of pulse width modulation (PWM). To test control performance in a point of care (PoC) setting with changing ambient conditions, a steady state and dynamic response model for the thermal behavior at the sample position of the sensor were developed. We confirmed that in the sensor unit of the FMMD device, RPA performs similar as in a temperature-controlled water bath. For narrow steady state temperature regions, a linear extrapolation suffices for estimation of the sample position temperature, based on the temperature feedback sensor for PWM control. For any other ambient conditions, we identified and validated a lumped parameter model (LPM) performing with high estimation accuracy. We expect that the method can be used for NA amplification and magnetic detection using FMMD in resource-limited settings.
Collapse
Affiliation(s)
- Max P. Jessing
- Institute of Biological Information Processing: Bioelectronics (IBI-3), Forschungszentrum Jülich, 52428 Jülich, Germany; (M.P.J.); (A.A.); (T.B.); (J.R.A.); (A.O.)
- Faculty of Mathematics, Computer Science and Natural Sciences, Rheinisch-Westfälische Technische Hochschule Aachen University, 52062 Aachen, Germany
| | - Abdalhalim Abuawad
- Institute of Biological Information Processing: Bioelectronics (IBI-3), Forschungszentrum Jülich, 52428 Jülich, Germany; (M.P.J.); (A.A.); (T.B.); (J.R.A.); (A.O.)
- Faculty of Mathematics, Computer Science and Natural Sciences, Rheinisch-Westfälische Technische Hochschule Aachen University, 52062 Aachen, Germany
| | - Timur Bikulov
- Institute of Biological Information Processing: Bioelectronics (IBI-3), Forschungszentrum Jülich, 52428 Jülich, Germany; (M.P.J.); (A.A.); (T.B.); (J.R.A.); (A.O.)
- Faculty of Mathematics, Computer Science and Natural Sciences, Rheinisch-Westfälische Technische Hochschule Aachen University, 52062 Aachen, Germany
| | - Jan R. Abresch
- Institute of Biological Information Processing: Bioelectronics (IBI-3), Forschungszentrum Jülich, 52428 Jülich, Germany; (M.P.J.); (A.A.); (T.B.); (J.R.A.); (A.O.)
| | - Andreas Offenhäusser
- Institute of Biological Information Processing: Bioelectronics (IBI-3), Forschungszentrum Jülich, 52428 Jülich, Germany; (M.P.J.); (A.A.); (T.B.); (J.R.A.); (A.O.)
- Faculty of Mathematics, Computer Science and Natural Sciences, Rheinisch-Westfälische Technische Hochschule Aachen University, 52062 Aachen, Germany
| | - Hans-Joachim Krause
- Institute of Biological Information Processing: Bioelectronics (IBI-3), Forschungszentrum Jülich, 52428 Jülich, Germany; (M.P.J.); (A.A.); (T.B.); (J.R.A.); (A.O.)
| |
Collapse
|
3
|
Lai MY, Abdul Hamid M, Jelip J, Mudin RN, Lau YL. Lateral Flow Recombinase Polymerase Amplification Assays for the Detection of Human Plasmodium Species. Am J Trop Med Hyg 2023; 108:882-886. [PMID: 36913921 PMCID: PMC10160889 DOI: 10.4269/ajtmh.22-0657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/02/2022] [Indexed: 03/15/2023] Open
Abstract
This study highlights the development of two lateral flow recombinase polymerase amplification assays for the diagnosis of human malaria. The lateral flow cassettes contained test lines that captured biotin-, 6-carboxyfluorescein, digoxigenin-, cyanine 5-, and dinitrophenyl-labeled amplicons. The overall process can be completed in 30 minutes. Recombinase polymerase amplification coupled with lateral flow had a detection limit of 1 copy/µL for Plasmodium knowlesi, Plasmodium vivax, and Plasmodium falciparum. No cross-reactivity was observed among nonhuman malaria parasites such as Plasmodium coatneyi, Plasmodium cynomolgi, Plasmodium brasilanium, Plasmodium inui, Plasmodium fragile, Toxoplasma gondii, Sarcocystis spp., Brugia spp., and 20 healthy donors. It is rapid, highly sensitive, robust, and easy to use. The result can be read without the need for special equipment and thus has the potential to serve as an effective alternative to polymerase chain reaction methods for the diagnosis of malaria.
Collapse
Affiliation(s)
- Meng Yee Lai
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Mohd Abdul Hamid
- Vector Borne Disease Sector, Ministry of Health, Putrajaya, Malaysia
| | - Jenarun Jelip
- Vector Borne Disease Sector, Ministry of Health, Putrajaya, Malaysia
| | - Rose Nani Mudin
- Vector Borne Disease Sector, Ministry of Health, Putrajaya, Malaysia
| | - Yee Ling Lau
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
DeLude A, Wells R, Boomla S, Chuang SC, Urena F, Shipman A, Rubas N, Kuehu DL, Bickerton B, Peterson T, Dobhal S, Arizala D, Klair D, Ochoa-Corona F, Ali ME, Odani J, Bingham JP, Jenkins DM, Fletcher J, Stack JP, Alvarez AM, Arif M. Loop-mediated isothermal amplification (LAMP) assay for specific and rapid detection of Dickeya fangzhongdai targeting a unique genomic region. Sci Rep 2022; 12:19193. [PMID: 36357509 PMCID: PMC9649655 DOI: 10.1038/s41598-022-22023-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/07/2022] [Indexed: 11/11/2022] Open
Abstract
Dickeya fangzhongdai, a bacterial pathogen of taro (Colocasia esculenta), onion (Allium sp.), and several species in the orchid family (Orchidaceae) causes soft rot and bleeding canker diseases. No field-deployable diagnostic tool is available for specific detection of this pathogen in different plant tissues. Therefore, we developed a field-deployable loop-mediated isothermal amplification (LAMP) assay using a unique genomic region, present exclusively in D. fangzhongdai. Multiple genomes of D. fangzhongdai, and other species of Dickeya, Pectobacterium and unrelated genera were used for comparative genomic analyses to identify an exclusive and conserved target sequence from the major facilitator superfamily (MFS) transporter gene region. This gene region had broad detection capability for D. fangzhongdai and thus was used to design primers for endpoint PCR and LAMP assays. In-silico validation showed high specificity with D. fangzhongdai genome sequences available in the NCBI GenBank genome database as well as the in-house sequenced genome. The specificity of the LAMP assay was determined with 96 strains that included all Dickeya species and Pectobacterium species as well as other closely related genera and 5 hosts; no false positives or false negatives were detected. The detection limit of the assay was determined by performing four sensitivity assays with tenfold serially diluted purified genomic DNA of D. fangzhongdai with and without the presence of crude host extract (taro, orchid, and onion). The detection limit for all sensitivity assays was 100 fg (18-20 genome copies) with no negative interference by host crude extracts. The assays were performed by five independent operators (blind test) and on three instruments (Rotor-Gene, thermocycler and dry bath); the assay results were concordant. The assay consistently detected the target pathogen from artificially inoculated and naturally infected host samples. The developed assay is highly specific for D. fangzhongdai and has applications in routine diagnostics, phytosanitary and seed certification programs, and epidemiological studies.
Collapse
Affiliation(s)
- Anuhea DeLude
- grid.410445.00000 0001 2188 0957Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI USA
| | - Riley Wells
- grid.410445.00000 0001 2188 0957Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI USA
| | - Sherine Boomla
- grid.410445.00000 0001 2188 0957Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI USA
| | - Shu-Cheng Chuang
- grid.410445.00000 0001 2188 0957Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI USA
| | - Frank Urena
- grid.410445.00000 0001 2188 0957Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI USA ,grid.410445.00000 0001 2188 0957Department of Cell and Molecular Biology, University of Hawaii at Manoa, Honolulu, HI USA
| | - Aaron Shipman
- grid.410445.00000 0001 2188 0957Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI USA
| | - Noelle Rubas
- grid.410445.00000 0001 2188 0957Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI USA
| | - Donna Lee Kuehu
- grid.410445.00000 0001 2188 0957Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI USA ,grid.410445.00000 0001 2188 0957Department of Cell and Molecular Biology, University of Hawaii at Manoa, Honolulu, HI USA
| | - Buster Bickerton
- grid.410445.00000 0001 2188 0957Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI USA
| | - Taylor Peterson
- grid.410445.00000 0001 2188 0957Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI USA
| | - Shefali Dobhal
- grid.410445.00000 0001 2188 0957Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI USA
| | - Dario Arizala
- grid.410445.00000 0001 2188 0957Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI USA
| | - Diksha Klair
- grid.410445.00000 0001 2188 0957Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI USA
| | - Francisco Ochoa-Corona
- grid.65519.3e0000 0001 0721 7331Institute for Biosecurity & Microbial Forensics, Oklahoma State University, Stillwater, OK USA
| | - Md Emran Ali
- grid.213876.90000 0004 1936 738XDepartment of Plant Pathology, University of Georgia, Tifton, GA USA
| | - Jenee Odani
- grid.410445.00000 0001 2188 0957Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI USA
| | - Jon-Paul Bingham
- grid.410445.00000 0001 2188 0957Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI USA
| | - Daniel M. Jenkins
- grid.410445.00000 0001 2188 0957Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI USA
| | - Jacqueline Fletcher
- grid.65519.3e0000 0001 0721 7331Institute for Biosecurity & Microbial Forensics, Oklahoma State University, Stillwater, OK USA
| | - James P. Stack
- grid.36567.310000 0001 0737 1259Department of Plant Pathology, Kansas State University, Manhattan, KS USA
| | - Anne M. Alvarez
- grid.410445.00000 0001 2188 0957Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI USA
| | - Mohammad Arif
- grid.410445.00000 0001 2188 0957Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI USA
| |
Collapse
|
5
|
Lai MY, Lau YL. Two-Stage Detection of Plasmodium spp. by Combination of Recombinase Polymerase Amplification and Loop-Mediated Isothermal Amplification Assay. Am J Trop Med Hyg 2022; 107:815-819. [PMID: 35970289 PMCID: PMC9651528 DOI: 10.4269/ajtmh.22-0136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/11/2022] [Indexed: 11/07/2022] Open
Abstract
We developed a combination of recombinase polymerase and loop-mediated isothermal amplification methods (RAMP) for rapid screening of five human Plasmodium spp. simultaneously. RAMP is a two-stage isothermal amplification method, which consists of a first-stage recombinase polymerase amplification and a second-stage loop-mediated isothermal amplification. Under these two isothermal conditions, five Plasmodium spp. were amplified in less than 40 minutes. We demonstrated RAMP assay with 10-fold better limit of detection than a single (loop-mediated isothermal amplification) LAMP. As compared with microscopy, RAMP assay showed 100% sensitivity (95% CI: 95.65-100.00%) and 100% specificity (95% CI: 69.15-100.00%). The end products were inspected by the color changes of neutral red. Positive reactions were indicated by pink while the negative reactions remained yellow. The combination assay established in this study can be used as a routine diagnostic method for malaria.
Collapse
Affiliation(s)
- Meng Yee Lai
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Yee Ling Lau
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Botella JR. Point-of-Care DNA Amplification for Disease Diagnosis and Management. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:1-20. [PMID: 36027938 DOI: 10.1146/annurev-phyto-021621-115027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Early detection of pests and pathogens is of paramount importance in reducing agricultural losses. One approach to early detection is point-of-care (POC) diagnostics, which can provide early warning and therefore allow fast deployment of preventive measures to slow down the establishment of crop diseases. Among the available diagnostic technologies, nucleic acid amplification-based diagnostics provide the highest sensitivity and specificity, and those technologies that forego the requirement for thermocycling show the most potential for use at POC. In this review, I discuss the progress, advantages, and disadvantages of the established and most promising POC amplification technologies. The success and usefulness of POC amplification are ultimately dependent on the availability of POC-friendly nucleic acid extraction methods and amplification readouts, which are also briefly discussed in the review.
Collapse
Affiliation(s)
- José R Botella
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, University of Queensland, Brisbane, Australia;
| |
Collapse
|
7
|
Clark KJ, Anchieta AG, da Silva MB, Kandel SL, Choi YJ, Martin FN, Correll JC, Van Denyze A, Brummer EC, Klosterman SJ. Early Detection of the Spinach Downy Mildew Pathogen in Leaves by Recombinase Polymerase Amplification. PLANT DISEASE 2022; 106:1793-1802. [PMID: 35253491 DOI: 10.1094/pdis-11-21-2398-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Downy mildew of spinach, caused by Peronospora effusa, is a major economic threat to both organic and conventional spinach production. Symptomatic spinach leaves are unmarketable and spinach with latent infections are problematic because symptoms can develop postharvest. Therefore, early detection methods for P. effusa could help producers identify infection before visible symptoms appear. Recombinase polymerase amplification (RPA) provides sensitive and specific detection of pathogen DNA and is a rapid, field-applicable method that does not require advanced technical knowledge or equipment-heavy DNA extraction. Here, we used comparative genomics to identify a unique region of the P. effusa mitochondrial genome to develop an RPA assay for the early detection of P. effusa in spinach leaves. In tandem, we established a TaqMan quantitative PCR (qPCR) assay and used this assay to validate the P. effusa specificity of the locus across Peronospora spp. and to compare assay performance. Neither the TaqMan qPCR nor the RPA showed cross reactivity with the closely related beet downy mildew pathogen, P. schachtii. TaqMan qPCR and RPA have detection thresholds of 100 and 900 fg of DNA, respectively. Both assays could detect P. effusa in presymptomatic leaves, with RPA-based detection occurring as early as 5 days before the appearance of symptoms and TaqMan qPCR-based detection occurring after 24 h of plant exposure to airborne spores. Implementation of the RPA detection method could provide real-time information for point-of-care management strategies at field sites.
Collapse
Affiliation(s)
- Kelley J Clark
- United States Department of Agriculture-Agricultural Research Service, Crop Improvement and Protection Research Unit, Salinas, CA 93905, U.S.A
| | - Amy G Anchieta
- United States Department of Agriculture-Agricultural Research Service, Crop Improvement and Protection Research Unit, Salinas, CA 93905, U.S.A
| | - Mychele B da Silva
- Department of Plant Sciences, University of California, Davis, CA 95616, U.S.A
| | - Shyam L Kandel
- United States Department of Agriculture-Agricultural Research Service, Crop Improvement and Protection Research Unit, Salinas, CA 93905, U.S.A
| | - Young-Joon Choi
- Department of Biology, Kunsan National University, Gunsan, 54150, Korea
| | - Frank N Martin
- United States Department of Agriculture-Agricultural Research Service, Crop Improvement and Protection Research Unit, Salinas, CA 93905, U.S.A
| | - James C Correll
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, U.S.A
| | - Allen Van Denyze
- Department of Plant Sciences, University of California, Davis, CA 95616, U.S.A
| | - E Charles Brummer
- Department of Plant Sciences, University of California, Davis, CA 95616, U.S.A
| | - Steven J Klosterman
- United States Department of Agriculture-Agricultural Research Service, Crop Improvement and Protection Research Unit, Salinas, CA 93905, U.S.A
| |
Collapse
|
8
|
Gomez-Gutierrez SV, Goodwin SB. Loop-Mediated Isothermal Amplification for Detection of Plant Pathogens in Wheat ( Triticum aestivum). FRONTIERS IN PLANT SCIENCE 2022; 13:857673. [PMID: 35371152 PMCID: PMC8965322 DOI: 10.3389/fpls.2022.857673] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/17/2022] [Indexed: 05/31/2023]
Abstract
Wheat plants can be infected by a variety of pathogen species, with some of them causing similar symptoms. For example, Zymoseptoria tritici and Parastagonospora nodorum often occur together and form the Septoria leaf blotch complex. Accurate detection of wheat pathogens is essential in applying the most appropriate disease management strategy. Loop-mediated isothermal amplification (LAMP) is a recent molecular technique that was rapidly adopted for detection of plant pathogens and can be implemented easily for detection in field conditions. The specificity, sensitivity, and facility to conduct the reaction at a constant temperature are the main advantages of LAMP over immunological and alternative nucleic acid-based methods. In plant pathogen detection studies, LAMP was able to differentiate related fungal species and non-target strains of virulent species with lower detection limits than those obtained with PCR. In this review, we explain the amplification process and elements of the LAMP reaction, and the variety of techniques for visualization of the amplified products, along with their advantages and disadvantages compared with alternative isothermal approaches. Then, a compilation of analyses that show the application of LAMP for detection of fungal pathogens and viruses in wheat is presented. We also describe the modifications included in real-time and multiplex LAMP that reduce common errors from post-amplification detection in traditional LAMP assays and allow discrimination of targets in multi-sample analyses. Finally, we discuss the utility of LAMP for detection of pathogens in wheat, its limitations, and current challenges of this technique. We provide prospects for application of real-time LAMP and multiplex LAMP in the field, using portable devices that measure fluorescence and turbidity, or facilitate colorimetric detection. New technologies for detection of plant pathogen are discussed that can be integrated with LAMP to obtain elevated analytical sensitivity of detection.
Collapse
|
9
|
Palmieri D, Javorina A, Siddiqui J, Gardner A, Fries A, Chapleau RR, Starr C, Fishel R, Miles WO. Mass COVID-19 patient screening using UvsX and UvsY mediated DNA recombination and high throughput parallel sequencing. Sci Rep 2022; 12:4082. [PMID: 35260723 PMCID: PMC8902726 DOI: 10.1038/s41598-022-08034-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 03/01/2022] [Indexed: 01/08/2023] Open
Abstract
The Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), also known as 2019 novel coronavirus (2019-nCoV), is a highly infectious RNA virus. A percentage of patients develop coronavirus disease 2019 (COVID-19) after infection, whose symptoms include fever, cough, shortness of breath and fatigue. Acute and life-threatening respiratory symptoms are experienced by 10-20% of symptomatic patients, particularly those with underlying medical conditions. One of the main challenges in the containment of COVID-19 is the identification and isolation of asymptomatic/pre-symptomatic individuals. A number of molecular assays are currently used to detect SARS-CoV-2. Many of them can accurately test hundreds or even thousands of patients every day. However, there are presently no testing platforms that enable more than 10,000 tests per day. Here, we describe the foundation for the REcombinase Mediated BaRcoding and AmplificatioN Diagnostic Tool (REMBRANDT), a high-throughput Next Generation Sequencing-based approach for the simultaneous screening of over 100,000 samples per day. The REMBRANDT protocol includes direct two-barcoded amplification of SARS-CoV-2 and control amplicons using an isothermal reaction, and the downstream library preparation for Illumina sequencing and bioinformatics analysis. This protocol represents a potentially powerful approach for community screening of COVID-19 that may be modified for application to any infectious or non-infectious genome.
Collapse
Affiliation(s)
- Dario Palmieri
- Department of Cancer Biology and Genetics, College of Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.
| | - Amanda Javorina
- Public Health and Preventive Medicine Department, US Air Force School of Aerospace Medicine, Wright-Patterson Air Force Base, OH, 45433, USA
| | - Jalal Siddiqui
- Department of Cancer Biology and Genetics, College of Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Anne Gardner
- Department of Cancer Biology and Genetics, College of Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Anthony Fries
- Public Health and Preventive Medicine Department, US Air Force School of Aerospace Medicine, Wright-Patterson Air Force Base, OH, 45433, USA
| | - Richard R Chapleau
- Public Health and Preventive Medicine Department, US Air Force School of Aerospace Medicine, Wright-Patterson Air Force Base, OH, 45433, USA
| | - Clarise Starr
- Public Health and Preventive Medicine Department, US Air Force School of Aerospace Medicine, Wright-Patterson Air Force Base, OH, 45433, USA
| | - Richard Fishel
- Department of Cancer Biology and Genetics, College of Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.
| | - Wayne O Miles
- Department of Cancer Biology and Genetics, College of Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
10
|
Huang Q, Shan X, Cao R, Jin X, Lin X, He Q, Zhu Y, Fu R, Du W, Lv W, Xia Y, Huang G. Microfluidic Chip with Two-Stage Isothermal Amplification Method for Highly Sensitive Parallel Detection of SARS-CoV-2 and Measles Virus. MICROMACHINES 2021; 12:mi12121582. [PMID: 34945432 PMCID: PMC8705924 DOI: 10.3390/mi12121582] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/11/2021] [Accepted: 12/16/2021] [Indexed: 02/03/2023]
Abstract
A two-stage isothermal amplification method, which consists of a first-stage basic recombinase polymerase amplification (RPA) and a second-stage fluorescence loop-mediated isothermal amplification (LAMP), as well as a microfluidic-chip-based portable system, were developed in this study; these enabled parallel detection of multiplex targets in real time in around one hour, with high sensitivity and specificity, without cross-contamination. The consumption of the sample and the reagent was 2.1 μL and 10.6 μL per reaction for RPA and LAMP, respectively. The lowest detection limit (LOD) was about 10 copies. The clinical amplification of about 40 nasopharyngeal swab samples, containing 17 SARS-CoV-2 (severe acute respiratory syndrome coronavirus) and 23 measles viruses (MV), were parallel tested by using the microfluidic chip. Both clinical specificity and sensitivity were 100% for MV, and the clinical specificity and sensitivity were 94.12% and 95.83% for SARS-CoV-2, respectively. This two-stage isothermal amplification method based on the microfluidic chip format offers a convenient, clinically parallel molecular diagnostic method, which can identify different nucleic acid samples simultaneously and in a timely manner, and with a low cost of the reaction reagent. It is especially suitable for resource-limited areas and point-of-care testing (POCT).
Collapse
Affiliation(s)
- Qin Huang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; (Q.H.); (X.S.); (X.J.); (X.L.); (R.F.); (W.D.); (W.L.)
| | - Xiaohui Shan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; (Q.H.); (X.S.); (X.J.); (X.L.); (R.F.); (W.D.); (W.L.)
| | - Ranran Cao
- Sichuan Center for Disease Control and Prevention, Chengdu 610041, China;
| | - Xiangyu Jin
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; (Q.H.); (X.S.); (X.J.); (X.L.); (R.F.); (W.D.); (W.L.)
| | - Xue Lin
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; (Q.H.); (X.S.); (X.J.); (X.L.); (R.F.); (W.D.); (W.L.)
| | - Qiurong He
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; (Q.H.); (Y.Z.)
| | - Yulei Zhu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; (Q.H.); (Y.Z.)
| | - Rongxin Fu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; (Q.H.); (X.S.); (X.J.); (X.L.); (R.F.); (W.D.); (W.L.)
| | - Wenli Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; (Q.H.); (X.S.); (X.J.); (X.L.); (R.F.); (W.D.); (W.L.)
| | - Wenqi Lv
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; (Q.H.); (X.S.); (X.J.); (X.L.); (R.F.); (W.D.); (W.L.)
| | - Ying Xia
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; (Q.H.); (Y.Z.)
- Correspondence: (Y.X.); (G.H.); Tel.: +86-(010)-62797213 (G.H.)
| | - Guoliang Huang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; (Q.H.); (X.S.); (X.J.); (X.L.); (R.F.); (W.D.); (W.L.)
- Correspondence: (Y.X.); (G.H.); Tel.: +86-(010)-62797213 (G.H.)
| |
Collapse
|
11
|
Ivanov AV, Safenkova IV, Zherdev AV, Dzantiev BB. The Potential Use of Isothermal Amplification Assays for In-Field Diagnostics of Plant Pathogens. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112424. [PMID: 34834787 PMCID: PMC8621059 DOI: 10.3390/plants10112424] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 05/27/2023]
Abstract
Rapid, sensitive, and timely diagnostics are essential for protecting plants from pathogens. Commonly, PCR techniques are used in laboratories for highly sensitive detection of DNA/RNA from viral, viroid, bacterial, and fungal pathogens of plants. However, using PCR-based methods for in-field diagnostics is a challenge and sometimes nearly impossible. With the advent of isothermal amplification methods, which provide amplification of nucleic acids at a certain temperature and do not require thermocyclic equipment, going beyond the laboratory has become a reality for molecular diagnostics. The amplification stage ceases to be limited by time and instruments. Challenges to solve involve finding suitable approaches for rapid and user-friendly plant preparation and detection of amplicons after amplification. Here, we summarize approaches for in-field diagnostics of phytopathogens based on different types of isothermal amplification and discuss their advantages and disadvantages. In this review, we consider a combination of isothermal amplification methods with extraction and detection methods compatible with in-field phytodiagnostics. Molecular diagnostics in out-of-lab conditions are of particular importance for protecting against viral, bacterial, and fungal phytopathogens in order to quickly prevent and control the spread of disease. We believe that the development of rapid, sensitive, and equipment-free nucleic acid detection methods is the future of phytodiagnostics, and its benefits are already visible.
Collapse
|
12
|
Field-Deployable Recombinase Polymerase Amplification Assay for Specific, Sensitive and Rapid Detection of the US Select Agent and Toxigenic Bacterium, Rathayibacter toxicus. BIOLOGY 2021; 10:biology10070620. [PMID: 34356474 PMCID: PMC8301136 DOI: 10.3390/biology10070620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/15/2021] [Accepted: 06/30/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary Early, accurate, and rapid detection of R. toxicus is extremely important to improve inspections of imported annual ryegrass hay and seed at ports of entry and enhance in-field detection. RPA is a comparatively new, easy to use, and robust technology that can be performed in the palm of the hand without losing specificity. The RPA assay was more sensitive than endpoint PCR and did not require lab equipment in the field. The developed assay has tremendous applications for in-field plant diagnostics and biosecurity surveillance. Abstract Rathayibacter toxicus is a toxigenic bacterial pathogen of several grass species and is responsible for massive livestock deaths in Australia and South Africa. Due to concern for animal health and livestock industries, it was designated a U.S. Select Agent. A rapid, accurate, and sensitive in-field detection method was designed to assist biosecurity surveillance surveys and to support export certification of annual ryegrass hay and seed. Complete genomes from all known R. toxicus populations were explored, unique diagnostic sequences identified, and target-specific primers and a probe for recombinase polymerase amplification (RPA) and endpoint PCR were designed. The RPA reaction ran at 37 °C and a lateral flow device (LFD) was used to visualize the amplified products. To enhance reliability and accuracy, primers and probes were also designed to detect portions of host ITS regions. RPA assay specificity and sensitivity were compared to endpoint PCR using appropriate inclusivity and exclusivity panels. The RPA assay sensitivity (10 fg) was 10 times more sensitive than endpoint PCR with and without a host DNA background. In comparative tests, the RPA assay was unaffected by plant-derived amplification inhibitors, unlike the LAMP and end-point PCR assays. In-field validation of the RPA assay at multiple sites in South Australia confirmed the efficiency, specificity, and applicability of the RPA assay. The RPA assay will support disease management and evidence-based in-field biosecurity decisions.
Collapse
|