1
|
Zhou Z, Chen X, Li Y, Chen S, Zhang S, Wu Y, Shi X, Ren M, Shan C. Effects of integrated action and sensory observation therapy based on mirror neuron and embodied cognition theory on upper limb sensorimotor function in chronic stroke: a study protocol for a randomised controlled trial. BMJ Open 2023; 13:e069126. [PMID: 36882253 PMCID: PMC10008471 DOI: 10.1136/bmjopen-2022-069126] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
INTRODUCTION This study protocol aims to explore the effectiveness and neural mechanism of the integration of action observation therapy (AOT) and sensory observation therapy (SOT) for post-stroke patients on upper limb sensorimotor function. METHODS AND ANALYSIS This is a single-centre, single-blind, randomised controlled trial. A total of 69 patients with upper extremity hemiparesis after stroke will be recruited and randomly divided into an AOT group, a combined action observation and somatosensory stimulation therapy (AOT+SST) group, and a combined AOT and SOT (AOT+SOT) group in a 1:1:1 ratio. Each group will receive 30 min of daily treatment, five times weekly for 4 weeks. The primary clinical outcome will be the Fugl-Meyer Assessment for Upper Extremity. Secondary clinical outcomes will include the Box and Blocks Test, modified Barthel Index and sensory assessment. All clinical assessments and resting-state functional MRI and diffusion tensor imaging data will be obtained at pre-intervention (T1), post-intervention (T2) and 8 weeks of follow-up (T3). ETHICS AND DISSEMINATION The trial was approved by the Ethics Committee of Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Chinese Traditional Medicine (Grant No. 2020-178). The results will be submitted to a peer-review journal or at a conference. TRIAL REGISTRATION NUMBER ChiCTR2000040568.
Collapse
Affiliation(s)
- Zhiqing Zhou
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xixi Chen
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanli Li
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Songmei Chen
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai No. 3 Rehabilitation Hospital, Shanghai, China
| | - Sicong Zhang
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuwei Wu
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaolong Shi
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng Ren
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunlei Shan
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
- Institute of Rehabilitation Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Kim GS, Harmon E, Gutierrez M, Stephenson J, Chauhan A, Banerjee A, Wise Z, Doan A, Wu T, Lee J, Jung JE, McCullough L, Wythe J, Marrelli S. Single-cell analysis identifies Ifi27l2a as a novel gene regulator of microglial inflammation in the context of aging and stroke. RESEARCH SQUARE 2023:rs.3.rs-2557290. [PMID: 36824976 PMCID: PMC9949241 DOI: 10.21203/rs.3.rs-2557290/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Microglia are key mediators of inflammatory responses within the brain, as they regulate pro-inflammatory responses while also limiting neuroinflammation via reparative phagocytosis. Thus, identifying genes that modulate microglial function may reveal novel therapeutic interventions for promoting better outcomes in diseases featuring extensive inflammation, such as stroke. To facilitate identification of potential mediators of inflammation, we performed single-cell RNA sequencing of aged mouse brains following stroke and found that Ifi27l2a was significantly up-regulated, particularly in microglia. The increased Ifi27l2a expression was further validated in microglial culture, stroke models with microglial depletion, and human autopsy samples. Ifi27l2a is known to be induced by interferons for viral host defense, however the role of Ifi27l2a in neurodegeneration is unknown. In vitro studies in cultured microglia demonstrated that Ifi27l2a overexpression causes neuroinflammation via reactive oxygen species. Interestingly, hemizygous deletion of Ifi27l2a significantly reduced gliosis in the thalamus following stroke, while also reducing neuroinflammation, indicating Ifi27l2a gene dosage is a critical mediator of neuroinflammation in ischemic stroke. Collectively, this study demonstrates that a novel gene, Ifi27l2a, regulates microglial function and neuroinflammation in the aged brain and following stroke. These findings suggest that Ifi27l2a may be a novel target for conferring cerebral protection post-stroke.
Collapse
Affiliation(s)
- Gab Seok Kim
- The University of Texas Health Science Center at Houston
| | | | | | | | | | | | - Zachary Wise
- The University of Texas Health Science Center at Houston
| | - Andrea Doan
- The University of Texas Health Science Center at Houston
| | - Ting Wu
- The University of Texas Health Science Center at Houston
| | - Juneyoung Lee
- The University of Texas Health Science Center at Houston
| | | | - Louise McCullough
- McGovern Medical School/University of Texas Health Science Center at Houston
| | | | - Sean Marrelli
- The University of Texas McGovern Medical School at Houston, 77030, TX
| |
Collapse
|
3
|
Pichardo-Rojas D, Pichardo-Rojas PS, Cornejo-Bravo JM, Serrano-Medina A. Memantine as a neuroprotective agent in ischemic stroke: Preclinical and clinical analysis. Front Neurosci 2023; 17:1096372. [PMID: 36743806 PMCID: PMC9893121 DOI: 10.3389/fnins.2023.1096372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023] Open
Abstract
The primary mechanism for neuron death after an ischemic stroke is excitotoxic injury. Excessive depolarization leads to NMDA-mediated calcium entry to the neuron and, subsequently, cellular death. Therefore, the inhibition of the NMDA channel has been proposed as a neuroprotective measure in ischemic stroke. The high morbimortality associated with stroke warrants new therapies that can improve the functional prognosis of patients. Memantine is a non-competitive NMDA receptor antagonist which has gained attention as a potential drug for ischemic stroke. Here we analyze the available preclinical and clinical evidence concerning the use of memantine following an ischemic stroke. Preclinical evidence shows inhibition of the excitotoxic cascade, as well as improved outcomes in terms of motor and sensory function with the use of memantine. The available clinical trials of high-dose memantine in patients poststroke have found that it can improve patients' NIHSS and Barthel index and help patients with poststroke aphasia and intracranial hemorrhage. These results suggest that memantine has a clinically relevant neuroprotective effect; however, small sample sizes and other study shortcomings limit the impact of these findings. Even so, current studies show promising results that should serve as a basis to promote future research to conclusively determine if memantine does improve the outcomes of patients' post-ischemic stroke. We anticipate that future trials will fill current gaps in knowledge, and these latter results will broaden the therapeutic arsenal for clinicians looking to improve the prognosis of patients poststroke.
Collapse
Affiliation(s)
- Diego Pichardo-Rojas
- Facultad de Medicina y Psicología, Universidad Autónoma de Baja California, Tijuana, Mexico
| | - Pavel Salvador Pichardo-Rojas
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - José Manuel Cornejo-Bravo
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana, Mexico
| | - Aracely Serrano-Medina
- Facultad de Medicina y Psicología, Universidad Autónoma de Baja California, Tijuana, Mexico,*Correspondence: Aracely Serrano-Medina,
| |
Collapse
|
4
|
Srakočić S, Josić P, Trifunović S, Gajović S, Grčević D, Glasnović A. Proposed practical protocol for flow cytometry analysis of microglia from the healthy adult mouse brain: Systematic review and isolation methods’ evaluation. Front Cell Neurosci 2022; 16:1017976. [PMID: 36339814 PMCID: PMC9626753 DOI: 10.3389/fncel.2022.1017976] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/05/2022] [Indexed: 11/25/2022] Open
Abstract
The aim of our study was to systematically analyze the literature for published flow cytometry protocols for microglia isolation and compare their effectiveness in terms of microglial yield, including our own protocol using sucrose for myelin removal and accutase for enzymatic digestion. For systematic review, the PubMed was searched for the terms “flow cytometry,” “microglia,” “brain,” and “mice.” Three different myelin removal methods (Percoll, sucrose, and no removal) and five protocols for enzymatic digestion (accutase, dispase II, papain, trypsin, and no enzymatic digestion) were tested for the effectiveness of microglia (CD11b+CD45int cell population) isolation from the adult mouse brain using flow cytometry. Qualitative analysis of the 32 selected studies identified three most commonly used myelin removal protocols: Percoll, the use of myelin removal kit, and no removal. Nine enzymatic digestion protocols were identified, from which we selected dispase II, papain, trypsin, and no enzymatic digestion. A comparison of these myelin removal methods and digestion protocols showed the Percoll method to be preferable in removal of non-immune cells, and superior to the use of sucrose which was less effective in removal of non-immune cells, but resulted in a comparable microglial yield to Percoll myelin removal. Digestion with accutase resulted in one of the highest microglial yields, all while having the lowest variance among tested protocols. The proposed protocol for microglia isolation uses Percoll for myelin removal and accutase for enzymatic digestion. All tested protocols had different features, and the choice between them can depend on the individual focus of the research.
Collapse
|
5
|
Yao M, Fang J, Li J, Ng ACK, Liu J, Leung GKK, Song F, Zhang J, Chang C. Modulation of the proteoglycan receptor PTPσ promotes white matter integrity and functional recovery after intracerebral hemorrhage stroke in mice. J Neuroinflammation 2022; 19:207. [PMID: 35982473 PMCID: PMC9387079 DOI: 10.1186/s12974-022-02561-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022] Open
Abstract
Background Intracerebral hemorrhage (ICH) is associated with high morbidity and mortality rates. However, extant investigations have mainly focused on gray matter injury within the primary injury site after ICH rather than on white matter (WM) injury in the brain and spinal cord. This focus partly accounts for the diminished therapeutic discovery. Recent evidence suggests that chondroitin sulphate proteoglycans (CSPG), which can bind to the neural transmembrane protein tyrosine phosphatase-sigma (PTPσ), may facilitate axonal regrowth and remyelination by ameliorating neuroinflammation. Methods A clinically relevant ICH model was established using adult C57BL/6 mice. The mice were then treated systemically with intracellular sigma peptide (ISP), which specifically targets PTPσ. Sensorimotor function was assessed by various behavioral tests and electrophysiological assessment. Western blot was used to verify the expression levels of Iba-1 and different inflammatory cytokines. The morphology of white matter tracts of brain and spinal cord was evaluated by immunofluorescence staining and transmission electron microscopy (TEM). Adeno-associated virus (AAV) 2/9 injection was used to assess the ipsilateral axonal compensation after injury. Parallel in vitro studies on the effects of CSPG interference on oligodendrocyte–DRG neuron co-culture explored the molecular mechanism through which ISP treatment promoted myelination capability. Results ISP, by targeting PTPσ, improved WM integrity and sensorimotor recovery via immunomodulation. In addition, ISP administration significantly decreased WM injury in the peri-hematomal region as well as cervical spinal cord, enhanced axonal myelination and facilitated neurological restoration, including electrophysiologically assessed sensorimotor functions. Parallel in vitro studies showed that inhibition of PTPσ by ISP fosters myelination by modulating the Erk/CREB signaling pathway. Conclusions Our findings revealed for the first time that manipulation of PTPσ signaling by ISP can promote prolonged neurological recovery by restoration of the integrity of neural circuits in the CNS through modulation of Erk/CREB signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02561-4.
Collapse
Affiliation(s)
- Min Yao
- School of Pharmaceutical Sciences, Health Science Centre, Shenzhen University, Shenzhen, 518060, China.,School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China.,Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jie Fang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Jiewei Li
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Anson Cho Kiu Ng
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jiaxin Liu
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Gilberto Ka Kit Leung
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Fanglai Song
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Jian Zhang
- School of Pharmaceutical Sciences, Health Science Centre, Shenzhen University, Shenzhen, 518060, China.
| | - Chunqi Chang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
6
|
Harmon E, Doan A, Bautista-Garrido J, Jung JE, Marrelli SP, Kim GS. Increased Expression of Interferon-Induced Transmembrane 3 (IFITM3) in Stroke and Other Inflammatory Conditions in the Brain. Int J Mol Sci 2022; 23:8885. [PMID: 36012150 PMCID: PMC9408431 DOI: 10.3390/ijms23168885] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Microglia, the resident innate immune cells of the brain, become more highly reactive with aging and diseased conditions. In collaboration with other cell types in brains, microglia can contribute both to worsened outcome following stroke or other neurodegenerative diseases and to the recovery process by changing their phenotype toward reparative microglia. Recently, IFITM3 (a member of the "interferon-inducible transmembrane" family) has been revealed as a molecular mediator between amyloid pathology and neuroinflammation. Expression of IFITM3 in glial cells, especially microglia following stroke, is not well described. Here, we present evidence that ischemic stroke causes an increase in IFITM3 expression along with increased microglial activation marker genes in aged brains. To further validate the induction of IFITM3 in post-stroke brains, primary microglia and microglial-like cells were exposed to a variety of inflammatory conditions, which significantly induced IFITM3 as well as other inflammatory markers. These findings suggest the critical role of IFITM3 in inducing inflammation. Our findings on the expression of IFITM3 in microglia and in aged brains following stroke could establish the basic foundations for the role of IFITM3 in a variety of neurodegenerative diseases, particularly those that are prevalent or enhanced in the aged brain.
Collapse
Affiliation(s)
| | | | | | | | | | - Gab Seok Kim
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
7
|
Stuckey SM, Ong LK, Collins-Praino LE, Turner RJ. Neuroinflammation as a Key Driver of Secondary Neurodegeneration Following Stroke? Int J Mol Sci 2021; 22:ijms222313101. [PMID: 34884906 PMCID: PMC8658328 DOI: 10.3390/ijms222313101] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 01/13/2023] Open
Abstract
Ischaemic stroke involves the rapid onset of focal neurological dysfunction, most commonly due to an arterial blockage in a specific region of the brain. Stroke is a leading cause of death and common cause of disability, with over 17 million people worldwide suffering from a stroke each year. It is now well-documented that neuroinflammation and immune mediators play a key role in acute and long-term neuronal tissue damage and healing, not only in the infarct core but also in distal regions. Importantly, in these distal regions, termed sites of secondary neurodegeneration (SND), spikes in neuroinflammation may be seen sometime after the initial stroke onset, but prior to the presence of the neuronal tissue damage within these regions. However, it is key to acknowledge that, despite the mounting information describing neuroinflammation following ischaemic stroke, the exact mechanisms whereby inflammatory cells and their mediators drive stroke-induced neuroinflammation are still not fully understood. As a result, current anti-inflammatory treatments have failed to show efficacy in clinical trials. In this review we discuss the complexities of post-stroke neuroinflammation, specifically how it affects neuronal tissue and post-stroke outcome acutely, chronically, and in sites of SND. We then discuss current and previously assessed anti-inflammatory therapies, with a particular focus on how failed anti-inflammatories may be repurposed to target SND-associated neuroinflammation.
Collapse
Affiliation(s)
- Shannon M. Stuckey
- Discipline of Anatomy and Pathology, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5005, Australia; (S.M.S.); (L.E.C.-P.)
| | - Lin Kooi Ong
- School of Pharmacy, Monash University Malaysia, Subang Jaya 47500, Malaysia;
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, The University of Newcastle, Callaghan 2308, Australia
| | - Lyndsey E. Collins-Praino
- Discipline of Anatomy and Pathology, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5005, Australia; (S.M.S.); (L.E.C.-P.)
| | - Renée J. Turner
- Discipline of Anatomy and Pathology, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5005, Australia; (S.M.S.); (L.E.C.-P.)
- Correspondence: ; Tel.: +61-8-8313-3114
| |
Collapse
|