1
|
Li Z, Zhang Y, Lei J, Wu Y. Autophagy in oral cancer: Promises and challenges (Review). Int J Mol Med 2024; 54:116. [PMID: 39422076 PMCID: PMC11518578 DOI: 10.3892/ijmm.2024.5440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
Autophagy captures damaged or dysfunctional proteins and organelles through the lysosomal pathway to achieve proper cellular homeostasis. Autophagy possesses distinct characteristics and is given recognized functions in numerous physiological and pathological conditions, such as cancer. Early stage cancer development can be stopped by autophagy. After tumor cells have successfully undergone transformation and progressed to a late stage, the autophagy-mediated system of dynamic degradation and recycling will support cancer cell growth and adaptation to various cellular stress responses while preserving energy homeostasis. In the present study, the dual function that autophagy plays in various oral cancer development contexts and stages, the existing arguments for and against autophagy, and the ways in which autophagy contributes to oral cancer modifications, such as carcinogenesis, drug resistance, invasion, metastasis and self-proliferation, are reviewed. Special attention is paid to the mechanisms and functions of autophagy in oral cancer processes, and the most recent findings on the application of certain conventional drugs or natural compounds as novel agents that modulate autophagy in oral cancer are discussed. Overall, further research is needed to determine the validity and reliability of autophagy promotion and inhibition while maximizing the difficult challenge of increasing cancer suppression to improve clinical outcomes.
Collapse
Affiliation(s)
- Zhou Li
- Department of Stomatology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030000, P.R. China
- Shanxi Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030000, P.R. China
| | - Yao Zhang
- Shanxi Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030000, P.R. China
| | - Jianhua Lei
- Department of Stomatology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030000, P.R. China
| | - Yunxia Wu
- Department of Stomatology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030000, P.R. China
| |
Collapse
|
2
|
Vijayarangam V, Gopalakrishnan Deviparasakthi MK, Balasubramanian P, Palaniyandi T, Ravindran R, Suliman M, Saeed M, Natarajan S, Sivaji A, Baskar G. Ferroptosis as a hero against oral cancer. Pathol Res Pract 2024; 263:155637. [PMID: 39393267 DOI: 10.1016/j.prp.2024.155637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024]
Abstract
Cancer is an abnormal condition altering the cells to proliferate out of control simultaneously being susceptible to evolution. The lining which is made up of tissues in the lips, upper throat and mouth can undergo mutations, is recognised as mouth cancer or oral cancer. Substantial number of mouth lesions are identified at a point where it is typically not possible to get effective remedial care. Ferroptosis is a cutting-edge instance of cellular destruction which stands out in distinction to other sorts of cell death. It appears to have distinctive cellular, molecular and gene-level attributes and scavenges on deposits of reactive oxygen species triggered via iron-induced lipid peroxidation. It is said to be involved dichotomously in cancer development. Because the ferroptotic tumour cells put out numerous chemicals that alternatively signal for cancer attenuation or growth. There is increasing proof that researchers are now keenly investigating to stimulate ferroptosis through various inducers and pathways in the intent for oral cancer therapeutics, specifically to kill malignant tumours that refuse to respond well to conventional treatments. Also, it has the ability to reverse chemotherapy and radiotherapy resistance in victims maximising the success rate of the treatments. This review centres on the stimulation of ferroptosis as a stand-alone therapy for oral cancer, or in combination with other medicines, agents and pathways.
Collapse
Affiliation(s)
- Varshini Vijayarangam
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai 600095, India
| | | | - Priyanka Balasubramanian
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai 600095, India
| | - Thirunavukkarasu Palaniyandi
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai 600095, India; ACS-Advanced Medical Research Institute, Dr. M.G.R Educational and Research Institute, Chennai 600077, India.
| | - Rekha Ravindran
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai 602105, India
| | - Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Sudhakar Natarajan
- Department of Tuberculosis, ICMR - National Institute for Research in Tuberculosis (NIRT), Chennai 600031, India
| | - Asha Sivaji
- Department of Biochemistry, DKM College for Women, Vellore 632001, India
| | - Gomathy Baskar
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai 600095, India
| |
Collapse
|
3
|
Yin W, Liao X, Sun J, Chen Q, Fan S. Astragaloside IV inhibits the proliferation, migration, invasion, and epithelial-mesenchymal transition of oral cancer cells by aggravating autophagy. Tissue Cell 2024; 90:102524. [PMID: 39167929 DOI: 10.1016/j.tice.2024.102524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
Oral cancer is one usual tumor that sorely affects the health of people and even result into death. Astragaloside IV (AS-IV) is one of the major components of Astragalus membranaceus extract, and has been identified to exhibit ameliorative functions in some cancers. Nevertheless, the regulatory impacts and correlative pathways of AS-IV in oral cancer remain vague. In this study, it was discovered that cell growth was gradually weakened with the increased dose of AS-IV (25, 50 and 100 μM). Additionally, it was uncovered that AS-IV restrained the EMT progress in oral cancer. The cell migration and invasion abilities were both gradually alleviated after AS-IV treatment in a dose-dependent manner. Moreover, AS-IV accelerated autophagy through intensifying LC3II/LC3I level and LC3B fluorescence intensity. At last, it was clarified that AS-IV triggered the AMPK pathway and retarded the AKT/mTOR pathway. In conclusion, AS-IV restrained cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) progress in oral cancer by aggravating autophagy through modulating the AMPK and AKT/mTOR pathways. This work may offer novel evidence on AS-IV in the treatment of oral cancer.
Collapse
Affiliation(s)
- Weijia Yin
- Department of Stomatology, Beijing Luhe Hospital.Capital Medical University, Beijing 101100, China
| | - Xiangling Liao
- Department of Stomatology, Beijing Luhe Hospital.Capital Medical University, Beijing 101100, China.
| | - Jieli Sun
- Department of Stomatology, Beijing Luhe Hospital.Capital Medical University, Beijing 101100, China
| | - Qu Chen
- Department of Stomatology, Beijing Luhe Hospital.Capital Medical University, Beijing 101100, China
| | - Shan Fan
- Department of Stomatology, Beijing Luhe Hospital.Capital Medical University, Beijing 101100, China
| |
Collapse
|
4
|
Raposo A, Raheem D, Zandonadi RP, Suri N, Olukosi A, de Lima BR, Carrascosa C, Sharifi-Rad J, Ryu HB, Han H, Calina D. Anethole in cancer therapy: Mechanisms, synergistic pHyungseo Bobbyotential, and clinical challenges. Biomed Pharmacother 2024; 180:117449. [PMID: 39326099 DOI: 10.1016/j.biopha.2024.117449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/03/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
Cancer remains a major global health challenge, prompting the search for effective and less toxic treatments. Anethole, a bioactive compound found in essential oils of anise and fennel, commonly used as a food preservative, has recently garnered attention for its potential anti-cancer properties. This comprehensive review aims to systematically assess the anti-cancer effects of anethole, elucidating its mechanisms of action, pharmacokinetics, bioavailability, and synergistic potential with conventional cancer therapies. A detailed literature search was conducted across databases including PubMed, Embase, Scopus, Science Direct, Web of Science, and Google Scholar. Criteria for inclusion were experimental studies in peer-reviewed journals focusing on the anti-cancer properties of anethole. Extracted data included study design, intervention specifics, measured outcomes, and mechanistic insights. Anethole demonstrates multiple anti-cancer mechanisms, such as inducing apoptosis, causing cell cycle arrest, exhibiting anti-proliferative and anti-angiogenic effects, and modulating critical signaling pathways including NF-κB, PI3K/Akt/mTOR, and caspases. It enhances the efficacy of chemotherapeutic agents like cisplatin and doxorubicin while reducing their toxicity. In vitro and in vivo studies have shown its effectiveness against various cancers, including breast, prostate, lung, and colorectal cancers. Anethole shows significant potential as an anti-cancer agent, with its multi-faceted mechanisms of action and ability to synergize with existing chemotherapy. Further clinical research is essential to fully understand its therapeutic potential and application in oncology.
Collapse
Affiliation(s)
- António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal.
| | - Dele Raheem
- Arctic Centre, University of Lapland, Rovaniemi 96101, Finland
| | - Renata Puppin Zandonadi
- University of Brasília, Faculty of Health Sciences, Nutrition Department, Campus Universitário Darcy Ribeiro, Brasília 70910-900, Brazil
| | - Narinder Suri
- Department of Chemistry, Moi University, P.O. Box 4606, Eldoret 30100, Kenya.
| | - Adeola Olukosi
- Department of Medical Biochemistry, Eko University of Medical Sciences, Lagos 102004, Nigeria
| | - Bernardo Romão de Lima
- University of Brasília, Faculty of Health Sciences, Nutrition Department, Campus Universitário Darcy Ribeiro, Brasília 70910-900, Brazil
| | - Conrado Carrascosa
- Department of Animal Pathology and Production, Bromatology and Food Technology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Trasmontaña s/n, Arucas 35413, Spain
| | - Javad Sharifi-Rad
- Centro de Estudios Tecnológicos y Universitarios del Golfo, Veracruz, Mexico; Department of Medicine, College of Medicine, Korea University, Seoul 02841, Republic of Korea.
| | - Hyungseo Bobby Ryu
- Foodservice & Culinary Art, Department of the College of Health Sciences, Kyungnam University, 7 Kyungnamdaehak-ro, Masanhappo-gu, Changwon-si, Gyeongsangnam-do 51767, Republic of Korea.
| | - Heesup Han
- College of Hospitality and Tourism Management, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania
| |
Collapse
|
5
|
Antonelli A, Battaglia AM, Sacco A, Petriaggi L, Giorgio E, Barone S, Biamonte F, Giudice A. Ferroptosis and oral squamous cell carcinoma: connecting the dots to move forward. FRONTIERS IN ORAL HEALTH 2024; 5:1461022. [PMID: 39296524 PMCID: PMC11408306 DOI: 10.3389/froh.2024.1461022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 08/12/2024] [Indexed: 09/21/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is an aggressive disease whose incomplete biological comprehension contributes to the inappropriate clinical management and poor prognosis. Thus, the identification of new promising molecular targets to treat OSCC is of paramount importance. Ferroptosis is a regulated cell death caused by the iron-dependent accumulation of reactive oxygen species and the consequent oxidative damage of lipid membranes. Over the last five years, a growing number of studies has reported that OSCC is sensitive to ferroptosis induction and that ferroptosis inducers exert a remarkable antitumor effect in OSCC, even in those displaying low response to common approaches, such as chemotherapy and radiotherapy. In addition, as ferroptosis is considered an immunogenic cell death, it may modulate the immune response against OSCC. In this review, we summarize the so far identified ferroptosis regulatory mechanisms and prognostic models based on ferroptosis-related genes in OSCC. In addition, we discuss the perspective of inducing ferroptosis as a novel strategy to directly treat OSCC or, alternatively, to improve sensitivity to other approaches. Finally, we integrate data emerging from the research studies, reviewed here, through in silico analysis and we provide a novel personal perspective on the potential interconnection between ferroptosis and autophagy in OSCC.
Collapse
Affiliation(s)
- Alessandro Antonelli
- Department of Health Science, School of Dentistry, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Anna Martina Battaglia
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Alessandro Sacco
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Lavinia Petriaggi
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Emanuele Giorgio
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Selene Barone
- Department of Health Science, School of Dentistry, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Flavia Biamonte
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Amerigo Giudice
- Department of Health Science, School of Dentistry, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
6
|
Sharma V, Chaudhary AA, Bawari S, Gupta S, Mishra R, Khan SUD, Ali MAM, Shahid M, Srivastava S, Verma D, Gupta A, Kumar S, Kumar S. Unraveling cancer progression pathways and phytochemical therapeutic strategies for its management. Front Pharmacol 2024; 15:1414790. [PMID: 39246660 PMCID: PMC11377287 DOI: 10.3389/fphar.2024.1414790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/09/2024] [Indexed: 09/10/2024] Open
Abstract
Cancer prevention is currently envisioned as a molecular-based approach to prevent carcinogenesis in pre-cancerous stages, i.e., dysplasia and carcinoma in situ. Cancer is the second-leading cause of mortality worldwide, and a more than 61% increase is expected by 2040. A detailed exploration of cancer progression pathways, including the NF-kβ signaling pathway, Wnt-B catenin signaling pathway, JAK-STAT pathway, TNF-α-mediated pathway, MAPK/mTOR pathway, and apoptotic and angiogenic pathways and effector molecules involved in cancer development, has been discussed in the manuscript. Critical evaluation of these effector molecules through molecular approaches using phytomolecules can intersect cancer formation and its metastasis. Manipulation of effector molecules like NF-kβ, SOCS, β-catenin, BAX, BAK, VEGF, STAT, Bcl2, p53, caspases, and CDKs has played an important role in inhibiting tumor growth and its spread. Plant-derived secondary metabolites obtained from natural sources have been extensively studied for their cancer-preventing potential in the last few decades. Eugenol, anethole, capsaicin, sanguinarine, EGCG, 6-gingerol, and resveratrol are some examples of such interesting lead molecules and are mentioned in the manuscript. This work is an attempt to put forward a comprehensive approach to understanding cancer progression pathways and their management using effector herbal molecules. The role of different plant metabolites and their chronic toxicity profiling in modulating cancer development pathways has also been highlighted.
Collapse
Affiliation(s)
- Vikas Sharma
- Metro College of Health Sciences and Research, Greater Noida, India
- School of Pharmacy, Sharda University, Greater Noida, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Sweta Bawari
- Amity Institute of Pharmacy, Amity University, Noida, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, India
| | - Richa Mishra
- Department of Computer Engineering, Parul University, Vadodara, India
| | - Salah-Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Mohamed A M Ali
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | | | - Devvrat Verma
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
| | - Arti Gupta
- Lloyd School of Pharmacy, Greater Noida, India
| | - Sanjay Kumar
- Biological and Bio-computational Laboratory, Department of Life Science, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Sandeep Kumar
- School of Pharmacy, Sharda University, Greater Noida, India
- DST-FIST Laboratory, Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| |
Collapse
|
7
|
Gassib N, Issa H, Loubaki L, Behaz S, Almutairi MH, Rouabhia M, Semlali A. Cellular mechanisms mediating the anti-cancer effects of carnosol on gingiva carcinoma. Sci Rep 2024; 14:12266. [PMID: 38806527 PMCID: PMC11133392 DOI: 10.1038/s41598-024-60797-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/26/2024] [Indexed: 05/30/2024] Open
Abstract
Carnosol, a rosemary polyphenol, displays anticancer properties and is suggested as a safer alternative to conventional surgery, radiotherapy, and chemotherapy. Given that its effects on gingiva carcinoma have not yet been investigated, the aim of this study was to explore its anti-tumor selectivity and to unravel its underlying mechanisms of action. Hence, oral tongue and gingiva carcinoma cell lines exposed to carnosol were analyzed to estimate cytotoxicity, cell viability, cell proliferation, and colony formation potential as compared with those of normal cells. Key cell cycle and apoptotic markers were also measured. Finally, cell migration, oxidative stress, and crucial cell signaling pathways were assessed. Selective anti-gingiva carcinoma activity was disclosed. Overall, carnosol mediated colony formation and proliferation suppression in addition to cytotoxicity induction. Cell cycle arrest was highlighted by the disruption of the c-myc oncogene/p53 tumor suppressor balance. Carnosol also increased apoptosis, oxidative stress, and antioxidant activity. On a larger scale, the alteration of cell cycle and apoptotic profiles was also demonstrated by QPCR array. This was most likely achieved by controlling the STAT5, ERK1/2, p38, and NF-ĸB signaling pathways. Lastly, carnosol reduced inflammation and invasion ability by modulating IL-6 and MMP9/TIMP-1 axes. This study establishes a robust foundation, urging extensive inquiry both in vivo and in clinical settings, to substantiate the efficacy of carnosol in managing gingiva carcinoma.
Collapse
Affiliation(s)
- Nassima Gassib
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Hawraa Issa
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Lionel Loubaki
- Héma-Québec, 1070, Avenue des Sciences-de-la-Vie, Québec, QC, G1V 5C3, Canada
| | - Sarah Behaz
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Mikhlid H Almutairi
- Zoology Department, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Mahmoud Rouabhia
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Abdelhabib Semlali
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
8
|
Issa H, Loubaki L, Al Amri A, Zibara K, Almutairi MH, Rouabhia M, Semlali A. Eugenol as a potential adjuvant therapy for gingival squamous cell carcinoma. Sci Rep 2024; 14:10958. [PMID: 38740853 DOI: 10.1038/s41598-024-60754-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
Adoption of plant-derived compounds for the management of oral cancer is encouraged by the scientific community due to emerging chemoresistance and conventional treatments adverse effects. Considering that very few studies investigated eugenol clinical relevance for gingival carcinoma, we ought to explore its selectivity and performance according to aggressiveness level. For this purpose, non-oncogenic human oral epithelial cells (GMSM-K) were used together with the Tongue (SCC-9) and Gingival (Ca9-22) squamous cell carcinoma lines to assess key tumorigenesis processes. Overall, eugenol inhibited cell proliferation and colony formation while inducing cytotoxicity in cancer cells as compared to normal counterparts. The recorded effect was greater in gingival carcinoma and appears to be mediated through apoptosis induction and promotion of p21/p27/cyclin D1 modulation and subsequent Ca9-22 cell cycle arrest at the G0/G1 phase, in a p53-independent manner. At these levels, distinct genetic profiles were uncovered for both cell lines by QPCR array. Moreover, it seems that our active component limited Ca9-22 and SCC-9 cell migration respectively through MMP1/3 downregulation and stimulation of inactive MMPs complex formation. Finally, Ca9-22 behaviour appears to be mainly modulated by the P38/STAT5/NFkB pathways. In summary, we can disclose that eugenol is cancer selective and that its mediated anti-cancer mechanisms vary according to the cell line with gingival squamous cell carcinoma being more sensitive to this phytotherapy agent.
Collapse
Affiliation(s)
- Hawraa Issa
- GREB Research Group, Faculty of Dentistry, Laval University, Québec, Canada
| | - Lionel Loubaki
- Héma-Québec, Medical Affairs and Innovation, Québec, Canada
| | - Abdullah Al Amri
- Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Kazem Zibara
- PRASE and Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Mikhlid H Almutairi
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mahmoud Rouabhia
- GREB Research Group, Faculty of Dentistry, Laval University, Québec, Canada
| | - Abdelhabib Semlali
- GREB Research Group, Faculty of Dentistry, Laval University, Québec, Canada.
| |
Collapse
|
9
|
Huang TL, Chang YC, Tsai BCK, Chen TS, Kao SW, Tsai YY, Lin SZ, Yao CH, Lin KH, Kuo WW, Huang CY. Anethole mitigates H 2 O 2 -induced inflammation in HIG-82 synoviocytes by suppressing the aquaporin 1 expression and activating the protein kinase A pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:965-978. [PMID: 37987213 DOI: 10.1002/tox.24023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/05/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune inflammatory disease affecting approximately 1% of the global population, with a higher prevalence in women than in men. Chronic inflammation and oxidative stress play pivotal roles in the pathogenesis of RA. Anethole, a prominent compound derived from fennel (Foeniculum vulgare), possesses a spectrum of therapeutic properties, including anti-arthritic, anti-inflammatory, antioxidant, and tumor-suppressive effects. However, its specific impact on RA remains underexplored. This study sought to uncover the potential therapeutic value of anethole in treating RA by employing an H2 O2 -induced inflammation model with HIG-82 synovial cells. Our results demonstrated that exposure to H2 O2 induced the inflammation and apoptosis in these cells. Remarkably, anethole treatment effectively countered these inflammatory and apoptotic processes triggered by H2 O2 . Moreover, we identified the aquaporin 1 (AQP1) and protein kinase A (PKA) pathway as critical regulators of inflammation and apoptosis. H2 O2 stimulation led to an increase in the AQP1 expression and a decrease in p-PKA-C, contributing to cartilage degradation. Conversely, anethole not only downregulated the AQP1 expression but also activated the PKA pathway, effectively suppressing cell inflammation and apoptosis. Furthermore, anethole also inhibited the enzymes responsible for cartilage degradation. In summary, our findings highlight the potential of anethole as a therapeutic agent for mitigating H2 O2 -induced inflammation and apoptosis in synovial cells, offering promising prospects for future RA treatments.
Collapse
Affiliation(s)
- Tai-Lung Huang
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
- Department of Orthopedics, Chung-Kang Branch, Cheng Ching General Hospital, Taichung, Taiwan
| | - Yu-Chun Chang
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Bruce Chi-Kang Tsai
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Tung-Sheng Chen
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Shih-Wen Kao
- Department of Orthopaedic Surgery, Chung-Shan Medical University Hospital, Taichung, Taiwan
| | - Yung-Yun Tsai
- Department of Physical Therapy, Asia University, Taichung, Taiwan
| | - Shinn-Zong Lin
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chun-Hsu Yao
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Biomaterials Translational Research Center, China Medical University Hospital, Taichung, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Kuan-Ho Lin
- Division of Cardiovascular Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- Department of Emergency Medicine, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| |
Collapse
|
10
|
Conceição-Santos AL, Ferreira ACA, Sá NAR, Palomino GJQ, Silva AFB, Oliveira AC, Velarde JMDS, Celestino JJH, Rodrigues APR, Figueiredo JR. Anethole supplementation during in vitro maturation increases in vitro goat embryo production in a concentration-dependent manner. Theriogenology 2024; 215:78-85. [PMID: 38016304 DOI: 10.1016/j.theriogenology.2023.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 11/30/2023]
Abstract
During in vitro maturation (IVM) cumulus-oocyte complexes (COCs) are exposed to conditions that can trigger oxidative stress, thus, reducing oocyte maturation and viability. Aiming to mitigate these detrimental conditions, the effects of IVM medium supplementation with anethole have been tested. Anethole, also known as trans-anethole (1-methoxy-4 [1-propenyl]-benzene), is a naturally occurring phenylpropanoid with various pharmacological properties, including antioxidant effects. However, no study has examined anethole effect on goat COCs during IVM. Thus, the aim of this study was to evaluate the effects of different anethole concentrations on oocyte maturation, oxidative stress, and in vitro development of caprine embryos after parthenogenetic activation. Goat COCs were selected and randomly distributed into the following treatments: TCM-199+ medium (control), or TCM-199+ medium supplemented with 30 μg/mL (AN30); 300 μg/mL (AN300) or 2000 μg/mL (AN2000) of anethole. After IVM, part of the COCs was chosen for oocyte viability and chromatin configuration, intracellular reactive oxygen species levels, and mitochondrial membrane potential assessment. Another part of COCs was parthenogenetically activated, and presumptive zygotes were cultured for 7 days. Results demonstrated that anethole at 30 μg/mL increased oocyte maturation and cleavage rates when compared to the other treatments (P < 0.05), as well as oocyte viability and in vitro embryo production when compared to the control treatment (P < 0.05). Additionally, treatment with anethole at 2000 μg/mL decreased oocyte nuclear maturation and cleavage rates when compared to other treatments (P < 0.05) and embryo production if compared to control and AN30 treatments (P < 0.05). Moreover, anethole at 2000 μg/mL increased mitochondrial membrane potential when compared to the other treatments (P < 0.05). In conclusion, anethole exerts a concentration-dependent effect during goat COCs IVM. For a more desirable outcome of oocyte viability and maturation, and in vitro embryo production, the use of anethole at 30 μg/mL is recommended.
Collapse
Affiliation(s)
- A L Conceição-Santos
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - A C A Ferreira
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - N A R Sá
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - G J Q Palomino
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - A F B Silva
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - A C Oliveira
- Superior Institute of Biomedical Science, State University of Ceará, Fortaleza, CE, Brazil
| | - J M D S Velarde
- Department of Animal Science, Center of Agrarian Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - J J H Celestino
- Institute of Health Sciences, University of International Integration of Afro-Brazilian Lusophony, Redenção, CE, Brazil
| | - A P R Rodrigues
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - J R Figueiredo
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
11
|
Papadakos S, Issa H, Alamri A, Alamri A, Semlali A. Rapamycin as a Potential Alternative Drug for Squamous Cell Gingiva Carcinoma (Ca9-22): A Focus on Cell Cycle, Apoptosis and Autophagy Genetic Profile. Pharmaceuticals (Basel) 2024; 17:131. [PMID: 38276004 PMCID: PMC10818555 DOI: 10.3390/ph17010131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/01/2024] [Accepted: 01/08/2024] [Indexed: 01/27/2024] Open
Abstract
Oral cancer is considered as one of the most common malignancies worldwide. Its conventional treatment primarily involves surgery with or without postoperative adjuvant therapy. The targeting of signaling pathways implicated in tumorigenesis is becoming increasingly prevalent in the development of new anticancer drug candidates. Based on our recently published data, Rapamycin, an inhibitor of the mTOR pathway, exhibits selective antitumor activity in oral cancer by inhibiting cell proliferation and inducing cancer cell apoptosis, autophagy, and cellular stress. In the present study, our focus is on elucidating the genetic determinants of Rapamycin's action and the interaction networks accountable for tumorigenesis suppression. To achieve this, gingival carcinoma cell lines (Ca9-22) were exposed to Rapamycin at IC50 (10 µM) for 24 h. Subsequently, we investigated the genetic profiles related to the cell cycle, apoptosis, and autophagy, as well as gene-gene interactions, using QPCR arrays and the Gene MANIA website. Overall, our results showed that Rapamycin at 10 µM significantly inhibits the growth of Ca9-22 cells after 24 h of treatment by around 50% by suppression of key modulators in the G2/M transition, namely, Survivin and CDK5RAP1. The combination of Rapamycin with Cisplatin potentializes the inhibition of Ca9-22 cell proliferation. A P1/Annexin-V assay was performed to evaluate the effect of Rapamycin on cell apoptosis. The results obtained confirm our previous findings in which Rapamycin at 10 μM induces a strong apoptosis of Ca9-22 cells. The live cells decreased, and the late apoptotic cells increased when the cells were treated by Rapamycin. To identify the genes responsible for cell apoptosis induced by Rapamycin, we performed the RT2 Profiler PCR Arrays for 84 apoptotic genes. The blocked cells were believed to be directed towards cell death, confirmed by the downregulation of apoptosis inhibitors involved in both the extrinsic and intrinsic pathways, including BIRC5, BNIP3, CD40LG, DAPK1, LTA, TNFRSF21 and TP73. The observed effects of Rapamycin on tumor suppression are likely to involve the autophagy process, evidenced by the inhibition of autophagy modulators (TGFβ1, RGS19 and AKT1), autophagosome biogenesis components (AMBRA1, ATG9B and TMEM74) and autophagy byproducts (APP). Identifying gene-gene interaction (GGI) networks provided a comprehensive view of the drug's mechanism and connected the studied tumorigenesis processes to potential functional interactions of various kinds (physical interaction, co-expression, genetic interactions etc.). In conclusion, Rapamycin shows promise as a clinical agent for managing Ca9-22 gingiva carcinoma cells.
Collapse
Affiliation(s)
- Sofia Papadakos
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, QC G1V 0A6, Canada; (S.P.); (H.I.)
| | - Hawraa Issa
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, QC G1V 0A6, Canada; (S.P.); (H.I.)
| | - Abdulaziz Alamri
- Biochemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.); (A.A.)
| | - Abdullah Alamri
- Biochemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.); (A.A.)
| | - Abdelhabib Semlali
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, QC G1V 0A6, Canada; (S.P.); (H.I.)
| |
Collapse
|
12
|
Albuthyab NOM, Hosseini H, Homayouni Tabrizi M, Kharaghani M, Saghravanian SS. The urolithin B nanomicellar delivery system as an efficient selective anticancer compound. Mol Biol Rep 2024; 51:85. [PMID: 38183506 DOI: 10.1007/s11033-023-09112-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/05/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND Urolithin B (UB), the antioxidant polyphenol has a protective impact on several organs against oxidative stress. However, its bioactivity is limited by its hydrophobic structure. In the current study, UB was encapsulated into a liposomal structure to improve its bioactivities anticancer, and antimicrobial potential. METHOD The UB nano-emulsions (UB-NE) were synthesized and characterized utilizing FESEM, DLS, FTIR, and Zeta-potential analysis. The UB-NMs' selective toxicity was studied by conducting an MTT assay on MCF-7, PANC, AGS, and ASPC1 cells. The AO/PI analysis verified the UB-NMs' cytotoxicity on ASPC1 cell lines and approved the MTT results. Finally, the antibacterial activity of the UB-NMs was studied on both gram-positive (B. subtilis, S. aureus) and gram-negative (E. Coli, P. aeruginosa) bacteria by conducting MIC and MBC analysis. RESULT The 68.15 nm UB-NMs did not reduce the normal HDF cells' survival. However, they reduced the cancer cells' (PANC and AGS cell lines) survival at high treatment concentrations (> 250 µg/mL) compared with normal HDF and cancer MCF-7 cells. Moreover, the IC50 doses of UB-NMs for the ASPC1 and PANC cancer cells were measured at 44.87, and 221.02 µg/mL, respectively. The UB-NMs selectively exhibited apoptotic-mediated cytotoxicity on the human pancreatic tumor cell line (ASPC1) by down-regulating BCL2 and NFKB gene expression. Also, the BAX gene expression was up-regulated in the ASPC1-treated cells. Moreover, they exhibited significant anti-bactericidal activity against the E. coli (MIC = 50 µg/mL, MBC = 150 µg/mL), P. aeruginosa (MIC = 75 µg/mL, MBC = 275 µg/mL), B. subtilis (MIC = 125 µg/mL, MBC = 450 µg/mL), and S. aureus (MIC = 50 µg/mL, MBC = 200 µg/mL) strains. CONCLUSION The significant selective cytotoxic impact of the UB-NMs on the human pancreatic tumor cell line makes it an applicable anti-pancreatic cancer compound. Moreover, the antibacterial activity of UB-NMs has the potential to decrease bacterial-mediated pancreatic cancer. However, several bacterial strains and further cancer cell lines are required to verify the UB-NMs' anticancer potential.
Collapse
Affiliation(s)
| | - Hossein Hosseini
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | | - Matin Kharaghani
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | |
Collapse
|
13
|
Lu J, Hou W, Yang S, Chen D, Wang F, Liu L, Shen Z. Trans-anethole pretreatment ameliorates hepatic ischemia-reperfusion injury via regulation of soluble epoxide hydrolase. Int Immunopharmacol 2023; 124:110809. [PMID: 37690240 DOI: 10.1016/j.intimp.2023.110809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/23/2023] [Accepted: 08/13/2023] [Indexed: 09/12/2023]
Abstract
Hepatic ischemia reperfusion injury (IRI) is a risk factor for early graft nonfunction and graft rejection after liver transplantation (LT). The process of liver IRI involves inflammatory response, oxidative stress, apoptosis and other pathophysiological processes. So far, there is still a lack of effective drugs to ameliorate liver IRI. Trans-anethole (TA) is an aromatic compound. Many medications as well as natural foods contain TA. TA has multiple effects such as anti-inflammation, anti-oxidative stress and anti-apoptosis. However, the mechanism of TA pretreatment in liver IRI is unclear. The mice hepatic IRI model was constructed after gavage pretreatment with TA (10 mg/kg, 20 mg/kg, 40 mg/kg) for 7 consecutive days. Our study confirmed that TA pretreatment significantly improve liver function and reduce serum AST, ALT in hepatic IRI. HE staining showed that TA pretreatment alleviated liver injury. Meanwhile, TA (20 mg/kg) pretreatment attenuated hepatocyte apoptosis in hepatic IRI. In addition, TA (20 mg/kg) pretreatment reduced the inflammatory factors TNF-α, IL-6 and infiltration of CD11b positive cells in liver tissues during hepatic IRI in mice. TA pretreatment also alleviated oxidative stress in mice hepatic IRI. Our study further indicated that TA pretreatment attenuated mice hepatic IRI through inhibiting NLRP3 inflammasome activation via regulation of soluble epoxide hydrolase (sEH). This study provides a novel and effective potential drug with few side effects for easing liver IRI.
Collapse
Affiliation(s)
- Jiansen Lu
- First Central Clinical Institute, Tianjin Medical University, Tianjin, China
| | - Wen Hou
- Research Institute of Transplant Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Shuang Yang
- National Health Commission's Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin, China
| | - Decheng Chen
- First Central Clinical Institute, Tianjin Medical University, Tianjin, China
| | - Fei Wang
- School of Medicine, Nankai University, Tianjin, China
| | - Lei Liu
- Research Institute of Transplant Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China; Tianjin Key Laboratory for Organ Transplantation, Tianjin First Central Hospital, Tianjin, China; Organ Transplantation Centre, Tianjin First Central Hospital, Tianjin, China; Key Laboratory of Transplantation, Chinese Academy of Medical Sciences, Tianjin First Central Hospital, Tianjin, China.
| | - Zhongyang Shen
- Research Institute of Transplant Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China; Tianjin Key Laboratory for Organ Transplantation, Tianjin First Central Hospital, Tianjin, China; Organ Transplantation Centre, Tianjin First Central Hospital, Tianjin, China; Key Laboratory of Transplantation, Chinese Academy of Medical Sciences, Tianjin First Central Hospital, Tianjin, China.
| |
Collapse
|
14
|
Harakeh S, Al-Raddadi R, Alamri T, Al-Jaouni S, Qari M, Qari Y, Kumar A, Tashkandi HM, Moulay M, Aldahlawi AM, Slama P, Haque S. Apoptosis induction in human hepatoma cell line HepG2 cells by trans- Anethole via activation of mitochondria-mediated apoptotic pathways. Biomed Pharmacother 2023; 165:115236. [PMID: 37531780 DOI: 10.1016/j.biopha.2023.115236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023] Open
Abstract
trans-Anethole a valuable compound derived from star anise widely used by ethnic tribals to manage numerous human diseases. In this study antiproliferative activities of trans-Anethole towards human liver cancer (HepG2), cervical cancer (HeLa) and breast cancer (MCF-7) cells were explored. trans-Anethole showed free radical scavenging potential as assessed by DNA nicking assay. trans-Anethole exhibited strong antiproliferative potential towards HepG2 cells compared to other cell lines. trans-Anethole strongly induced apoptosis in HepG2 cells by significantly upregulating the protein expressions of p53, Caspase-3 and Caspase-9 were assessed by western blotting analysis which highlighted apoptosis-inducing capacity of trans-Anethole against HepG2 cells. Rt-qPCR analysis revealed that trans- Anethole upregulated p53, caspase - 3 and - 9 in comparison to untreated HepG2 cancer cells. Moreover, trans-Anethole provoked the generation of ROS and disruption of MMP. Our research suggests that trans-Anethole may have a significant anticancer therapeutic potential for treating liver cancer.
Collapse
Affiliation(s)
- Steve Harakeh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Yousef Abdul Latif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rajaa Al-Raddadi
- Department of Community Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Turki Alamri
- Family and Community Medicine Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Soad Al-Jaouni
- Yousef Abdul Latif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Hematology/ Pediatric Oncology, King Abdulaziz University Hospital, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed Qari
- Yousef Abdul Latif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Hematology/ Pediatric Oncology, King Abdulaziz University Hospital, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Yousef Qari
- Department of Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ajay Kumar
- University Centre for Research and Development, Biotechnology Engineering & Food Technology, Chandigarh University, Mohali 140413, Punjab, India
| | - Hanaa M Tashkandi
- Department of General Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed Moulay
- Embryonic Stem Cell Research Unit, King Fahd Medical Research Center, and Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Alia M Aldahlawi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut 11022801, Lebanon; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 13306, United Arab Emirates.
| |
Collapse
|
15
|
Moradi Vastegani S, Khoshnam SE, Mansouri E, Ghafouri S, Bakhtiari N, Farbood Y, Sarkaki A. Anti-inflammatory, anti-apoptotic, and neuroprotective potentials of anethole in Parkinson's disease-like motor and non-motor symptoms induced by rotenone in rats. Metab Brain Dis 2023; 38:2159-2174. [PMID: 37204660 DOI: 10.1007/s11011-023-01230-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/07/2023] [Indexed: 05/20/2023]
Abstract
Parkinson's disease (PD) is a complex neurological disorder characterized by a combination of motor and non-motor symptoms (NMS). Antioxidant and anti-inflammatory compounds are considered a potential therapeutic strategy against PD. The present study examined the neuroprotective effects of anethole as a potent antioxidant and anti-inflammatory agent against motor and non-motor deficits induced by rotenone toxicity. Rats were treated with anethole (62.5, 125, and 250 mg/kg, i.g) concomitantly with rotenone (2 mg/kg, s.c) for 5 weeks. After the treatment, behavioral tests were performed to evaluate motor function and depression-/anxiety-like behaviors. After the behavioral tests, rats were decapitated and brains were removed for histological analysis. Striatum samples were also isolated for neurochemical, and molecular analysis. Our data showed that rotenone-induced motor deficit, anxiety-and depression-like behaviors were significantly improved in rats treated with anethole. Furthermore, anethole treatment reduced inflammatory cytokines tumor necrosis factor α (TNFα) and Interleukin 6 (IL-6), and increased anti-inflammatory cytokine IL-4 in the striatum of rotenone-induced PD rats. Western blot analysis showed that treatment with anethole markedly suppressed caspase-3 activation induced by rotenone. Moreover, histological examination of striatum showed an increase in the number of surviving neurons after treatment with anethole. Anethole also significantly enhanced the striatal levels of dopamine in rotenone-induced PD rats. In addition, treatment with L-Dopa as a positive control group had effects similar to those of anethole on histological, neurochemical, and molecular parameters in rotenone-induced parkinsonian rats. Our results suggested the neuroprotective effects of anethole through anti-inflammatory, anti-apoptotic, and antioxidant mechanisms against rotenone-induced toxicity in rats.
Collapse
Affiliation(s)
- Sadegh Moradi Vastegani
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Esrafil Mansouri
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Samireh Ghafouri
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nima Bakhtiari
- Pain Research Center, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Yaghoob Farbood
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Alireza Sarkaki
- Medicinal Plant Research Center, Department of Physiology, Faculty of Medicine, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
16
|
Mohamed Abdoul-Latif F, Ainane A, Houmed Aboubaker I, Mohamed J, Ainane T. Exploring the Potent Anticancer Activity of Essential Oils and Their Bioactive Compounds: Mechanisms and Prospects for Future Cancer Therapy. Pharmaceuticals (Basel) 2023; 16:1086. [PMID: 37631000 PMCID: PMC10458506 DOI: 10.3390/ph16081086] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide, affecting millions of people each year. Fortunately, the last decades have been marked by considerable advances in the field of cancer therapy. Researchers have discovered many natural substances, some of which are isolated from plants that have promising anti-tumor activity. Among these, essential oils (EOs) and their constituents have been widely studied and shown potent anticancer activities, both in vitro and in vivo. However, despite the promising results, the precise mechanisms of action of EOs and their bioactive compounds are still poorly understood. Further research is needed to better understand these mechanisms, as well as their effectiveness and safety in use. Furthermore, the use of EOs as anticancer drugs is complex, as it requires absolute pharmacodynamic specificity and selectivity, as well as an appropriate formulation for effective administration. In this study, we present a synthesis of recent work on the mechanisms of anticancer action of EOs and their bioactive compounds, examining the results of various in vitro and in vivo studies. We also review future research prospects in this exciting field, as well as potential implications for the development of new cancer drugs.
Collapse
Affiliation(s)
- Fatouma Mohamed Abdoul-Latif
- Medicinal Research Institute, Center for Studies and Research of Djibouti, IRM-CERD, Route de l’Aéroport, Haramous, Djibouti City P.O. Box 486, Djibouti;
| | - Ayoub Ainane
- Superior School of Technology of Khenifra, University of Sultan Moulay Slimane, P.O. Box 170, Khenifra 54000, Morocco; (A.A.); (T.A.)
| | | | - Jalludin Mohamed
- Medicinal Research Institute, Center for Studies and Research of Djibouti, IRM-CERD, Route de l’Aéroport, Haramous, Djibouti City P.O. Box 486, Djibouti;
| | - Tarik Ainane
- Superior School of Technology of Khenifra, University of Sultan Moulay Slimane, P.O. Box 170, Khenifra 54000, Morocco; (A.A.); (T.A.)
| |
Collapse
|
17
|
Vandoni G, D'Amico F, Fabbrini M, Mariani L, Sieri S, Casirati A, Di Guardo L, Del Vecchio M, Anichini A, Mortarini R, Sgambelluri F, Celano G, Serale N, De Angelis M, Brigidi P, Gavazzi C, Turroni S. Gut Microbiota, Metabolome, and Body Composition Signatures of Response to Therapy in Patients with Advanced Melanoma. Int J Mol Sci 2023; 24:11611. [PMID: 37511376 PMCID: PMC10380337 DOI: 10.3390/ijms241411611] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Despite the recent breakthroughs in targeted and immunotherapy for melanoma, the overall survival rate remains low. In recent years, considerable attention has been paid to the gut microbiota and other modifiable patient factors (e.g., diet and body composition), though their role in influencing therapeutic responses has yet to be defined. Here, we characterized a cohort of 31 patients with unresectable IIIC-IV-stage cutaneous melanoma prior to initiation of targeted or first-line immunotherapy via the following methods: (i) fecal microbiome and metabolome via 16S rRNA amplicon sequencing and gas chromatography/mass spectrometry, respectively, and (ii) anthropometry, body composition, nutritional status, physical activity, biochemical parameters, and immunoprofiling. According to our data, patients subsequently classified as responders were obese (i.e., with high body mass index and high levels of total, visceral, subcutaneous, and intramuscular adipose tissue), non-sarcopenic, and enriched in certain fecal taxa (e.g., Phascolarctobacterium) and metabolites (e.g., anethole), which were potentially endowed with immunostimulatory and oncoprotective activities. On the other hand, non-response was associated with increased proportions of Streptococcus, Actinomyces, Veillonella, Dorea, Fusobacterium, higher neutrophil levels (and a higher neutrophil-to-lymphocyte ratio), and higher fecal levels of butyric acid and its esters, which also correlated with decreased survival. This exploratory study provides an integrated list of potential early prognostic biomarkers that could improve the clinical management of patients with advanced melanoma, in particular by guiding the design of adjuvant therapeutic strategies to improve treatment response and support long-term health improvement.
Collapse
Affiliation(s)
- Giulia Vandoni
- Clinical Nutrition Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Federica D'Amico
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Marco Fabbrini
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Luigi Mariani
- Data Science Unit, Fondazione IRCCS Istituito Nazionale dei Tumori, 20133 Milan, Italy
| | - Sabina Sieri
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Amanda Casirati
- Clinical Nutrition and Dietetics Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Lorenza Di Guardo
- Melanoma Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Michele Del Vecchio
- Melanoma Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Andrea Anichini
- Human Tumors Immunobiology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Roberta Mortarini
- Human Tumors Immunobiology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Francesco Sgambelluri
- Human Tumors Immunobiology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Giuseppe Celano
- Department of Soil, Plant and Food Science (DiSSPA), University of Bari Aldo Moro, 70126 Bari, Italy
| | - Nadia Serale
- Department of Soil, Plant and Food Science (DiSSPA), University of Bari Aldo Moro, 70126 Bari, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Science (DiSSPA), University of Bari Aldo Moro, 70126 Bari, Italy
| | - Patrizia Brigidi
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Cecilia Gavazzi
- Clinical Nutrition Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
18
|
Semlali A, Beji S, Ajala I, Al-Zharani M, Rouabhia M. Synergistic Effects of New Curcumin Analog (PAC) and Cisplatin on Oral Cancer Therapy. Curr Issues Mol Biol 2023; 45:5018-5035. [PMID: 37367068 DOI: 10.3390/cimb45060319] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023] Open
Abstract
Oral cancer has traditionally been treated with surgery, radiotherapy, chemotherapy, or a combination of these therapies. Although cisplatin, a chemotherapy drug, can effectively kill oral cancer cells by forming DNA adducts, its clinical use is limited due to adverse effects and chemo-resistance. Therefore, there is a need to develop new, targeted anticancer drugs to complement chemotherapy, allowing for reduced cisplatin doses and minimizing adverse effects. Recent studies have shown that 3,5-Bis (4-hydroxy-3-methoxybenzylidene)-N-methyl-4-piperidine (PAC), a new curcumin analog, possesses anticancer properties and could be considered a complementary or alternative therapy. In this study, we aimed to assess the potential complementary effects of PAC in combination with cisplatin for treating oral cancer. We conducted experiments using oral cancer cell lines (Ca9-22) treated with different concentrations of cisplatin (ranging from 0.1 μM to 1 μM), either alone or in conjunction with PAC (2.5 and 5 μM). Cell growth was measured using the MTT assay, while cell cytotoxicity was evaluated using an LDH assay. Propidium iodide and annexin V staining were employed to examine the impact on cell apoptosis. Flow cytometry was used to investigate the effects of the PAC/cisplatin combination on cancer cell autophagy, oxidative stress, and DNA damage. Additionally, a Western Blot analysis was performed to assess the influence of this combination on pro-carcinogenic proteins involved in various signaling pathways. The results demonstrated that PAC enhanced the efficacy of cisplatin in a dose-dependent manner, leading to a significant inhibition of oral cancer cell proliferation. Importantly, treatment with PAC (5 μM) alongside different concentrations of cisplatin reduced the IC50 of cisplatin tenfold. Combining these two agents increased apoptosis by further inducing caspase activity. In addition, the concomitant use of PAC and cisplatin enhances oral cancer cell autophagy, ROS, and MitoSOX production. However, combined PAC with cisplatin inhibits the mitochondrial membrane potential (ΔΨm), which is a marker for cell viability. Finally, this combination further enhances the inhibition of oral cancer cell migration via the inhibition of epithelial-to-mesenchymal transition genes, such as E-cadherin. We demonstrated that the combination of PAC and cisplatin markedly enhanced oral cancer cell death by inducing apoptosis, autophagy, and oxidative stress. The data presented indicate that PAC has the potential to serve as a powerful complementary agent to cisplatin in the treatment of gingival squamous cell carcinomas.
Collapse
Affiliation(s)
- Abdelhabib Semlali
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, QC G1V0A6, Canada
| | - Sarra Beji
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, QC G1V0A6, Canada
| | - Ikram Ajala
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, QC G1V0A6, Canada
| | - Mohammed Al-Zharani
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Mahmoud Rouabhia
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, QC G1V0A6, Canada
| |
Collapse
|
19
|
Almalki E, Al-Amri A, Alrashed R, Al-Zharani M, Semlali A. The Curcumin Analog PAC Is a Potential Solution for the Treatment of Triple-Negative Breast Cancer by Modulating the Gene Expression of DNA Repair Pathways. Int J Mol Sci 2023; 24:ijms24119649. [PMID: 37298600 DOI: 10.3390/ijms24119649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Breast Cancer (BC) is one of the most common and challenging cancers among females worldwide. Conventional treatments for oral cancer rely on the use of radiology and surgery accompanied by chemotherapy. Chemotherapy presents many side effects, and the cells often develop resistance to this chemotherapy. It will be urgent to adopt alternative or complementary treatment strategies that are new and more effective without these negative effects to improve the well-being of patients. A substantial number of epidemiological and experimental studies reported that many compounds are derived from natural products such as curcumin and their analogs, which have a great deal of beneficial anti-BC activity by inducing apoptosis, inhibiting cell proliferation, migration, and metastasis, modulating cancer-related pathways, and sensitizing cells to radiotherapy and chemotherapy. In the present study, we investigated the effect of the curcumin-analog PAC on DNA repair pathways in MCF-7 and MDA-MB-231 human breast-cancer cell lines. These pathways are crucial for genome maintenance and cancer prevention. MCF-7 and MDA-MB-231 cells were exposed to PAC at 10 µM. MTT and LDH assays were conducted to evaluate the effects of PAC on cell proliferation and cytotoxicity. Apoptosis was assessed in breast cancer cell lines using flow cytometry with annexin/Pi assay. The expression of proapoptotic and antiapoptotic genes was determined by RT-PCR to see if PAC is active in programming cell death. Additionally, DNA repair signaling pathways were analyzed by PCR arrays focusing on genes being related and confirmed by quantitative PCR. PAC significantly inhibited breast-cancer cell proliferation in a time-dependent manner, more on MDA-MB-231 triple-negative breast cancer cells. The flow cytometry results showed an increase in apoptotic activity. These data have been established by the gene expression and indicate that PAC-induced apoptosis by an increased Bax and decreased Bcl-2 expression. Moreover, PAC affected multiple genes involved in the DNA repair pathways occurring in both cell lines (MCF-7 and MDA-MB231). In addition, our results suggest that PAC upregulated more than twice 16 genes (ERCC1, ERCC2, PNKP, POLL, MPG, NEIL2, NTHL1, SMUG1, RAD51D, RAD54L, RFC1, TOP3A, XRCC3, XRCC6BP1, FEN1, and TREX1) in MDA-MB-231, 6 genes (ERCC1, LIG1, PNKP, UNG, MPG, and RAD54L) in MCF-7, and 4 genes (ERCC1, PNKP, MPG, and RAD54L) in the two cell lines. In silico analysis of gene-gene interaction shows that there are common genes between MCF-7 and MDA-MB-321 having direct and indirect effects, among them via coexpression, genetic interactions, pathways, predicted and physical interactions, and shared protein domains with predicted associated genes indicating they are more likely to be functionally related. Our data show that PAC increases involvement of multiple genes in a DNA repair pathway, this certainly can open a new perspective in breast-cancer treatment.
Collapse
Affiliation(s)
- Esraa Almalki
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah Al-Amri
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Reem Alrashed
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed Al-Zharani
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Abdelhabib Semlali
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
20
|
Semlali A, Ajala I, Beji S, Al-Zharani MM, Rouabhia M. Synergistic Effect of Anethole and Platinum Drug Cisplatin against Oral Cancer Cell Growth and Migration by Inhibiting MAPKase, Beta-Catenin, and NF-κB Pathways. Pharmaceuticals (Basel) 2023; 16:ph16050700. [PMID: 37242484 DOI: 10.3390/ph16050700] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
Cisplatin is a common drug used to treat patients with oral squamous cell carcinoma. However, cisplatin-induced chemoresistance poses a major challenge to its clinical application. Our recent study has shown that anethole possesses an anti-oral cancer effect. In this study, we examined the combined effect of anethole and cisplatin on oral cancer therapy. Gingival cancer cells Ca9-22 were cultured in the presence of various concentrations of cisplatin with or without anethole. The cell viability/proliferation and cytotoxicity were evaluated, respectively, by MTT, Hoechst staining, and LDH assay, while colony formation was measured by crystal violet. Oral cancer cell migration was evaluated by the scratch method. Apoptosis, caspase activity, oxidative stress, MitoSOX, and mitochondrial membrane potential (ΔΨm) levels were evaluated by flow cytometry, and the inhibition of signaling pathways was investigated by Western blot. Our results show that anethole (3 µM) potentiates cisplatin-induced inhibition of cell proliferation and decreases the ΔΨm on Ca9-22 cells. Furthermore, drug combination was found to inhibit cell migration and enhanced cisplatin cytotoxicity. The combination of anethole and cisplatin potentiates cisplatin-induced oral cancer cell apoptosis through the activation of caspase, while we also found anethole and cisplatin to enhance the cisplatin-induced generation of reactive oxygen species (ROS) and mitochondrial stress. In addition, major cancer signaling pathways were inhibited by the combination of anethole and cisplatin such as MAPKase, beta-catenin, and NF-κB pathways. This study reports that the combination of anethole and cisplatin might provide a beneficial effect in enhancing the cisplatin cancer cell-killing effect, thus lowering the associated side effects.
Collapse
Affiliation(s)
- Abdelhabib Semlali
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Quebec, QC G1V0A6, Canada
| | - Ikram Ajala
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Quebec, QC G1V0A6, Canada
| | - Sarra Beji
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Quebec, QC G1V0A6, Canada
| | - Mohammed Mousa Al-Zharani
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Mahmoud Rouabhia
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Quebec, QC G1V0A6, Canada
| |
Collapse
|
21
|
Astrain-Redin N, Sanmartin C, Sharma AK, Plano D. From Natural Sources to Synthetic Derivatives: The Allyl Motif as a Powerful Tool for Fragment-Based Design in Cancer Treatment. J Med Chem 2023; 66:3703-3731. [PMID: 36858050 PMCID: PMC10041541 DOI: 10.1021/acs.jmedchem.2c01406] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Since the beginning of history, natural products have been an abundant source of bioactive molecules for the treatment of different diseases, including cancer. Many allyl derivatives, which have shown anticancer activity both in vitro and in vivo in a large number of cancers, are bioactive molecules found in garlic, cinnamon, nutmeg, or mustard. In addition, synthetic products containing allyl fragments have been developed showing potent anticancer properties. Of particular note is the allyl derivative 17-AAG, which has been evaluated in Phase I and Phase II/III clinical trials for the treatment of multiple myeloma, metastatic melanoma, renal cancer, and breast cancer. In this Perspective, we compile extensive literature evidence with descriptions and discussions of the most recent advances in different natural and synthetic allyl derivatives that could generate cancer drug candidates in the near future.
Collapse
Affiliation(s)
- Nora Astrain-Redin
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, E-31008 Pamplona, Spain
| | - Carmen Sanmartin
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, E-31008 Pamplona, Spain
| | - Arun K Sharma
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, 500 University Drive, Hershey, Pennsylvania 17033, United States
| | - Daniel Plano
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, E-31008 Pamplona, Spain
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, 500 University Drive, Hershey, Pennsylvania 17033, United States
| |
Collapse
|
22
|
Joo YE, Jeong PS, Lee S, Jeon SB, Gwon MA, Kim MJ, Kang HG, Song BS, Kim SU, Cho SK, Sim BW. Anethole improves the developmental competence of porcine embryos by reducing oxidative stress via the sonic hedgehog signaling pathway. J Anim Sci Biotechnol 2023; 14:32. [PMID: 36814325 PMCID: PMC9945695 DOI: 10.1186/s40104-022-00824-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/11/2022] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Anethole (AN) is an organic antioxidant compound with a benzene ring and is expected to have a positive impact on early embryogenesis in mammals. However, no study has examined the effect of AN on porcine embryonic development. Therefore, we investigated the effect of AN on the development of porcine embryos and the underlying mechanism. RESULTS We cultured porcine in vitro-fertilized embryos in medium with AN (0, 0.3, 0.5, and 1 mg/mL) for 6 d. AN at 0.5 mg/mL significantly increased the blastocyst formation rate, trophectoderm cell number, and cellular survival rate compared to the control. AN-supplemented embryos exhibited significantly lower reactive oxygen species levels and higher glutathione levels than the control. Moreover, AN significantly improved the quantity of mitochondria and mitochondrial membrane potential, and increased the lipid droplet, fatty acid, and ATP levels. Interestingly, the levels of proteins and genes related to the sonic hedgehog (SHH) signaling pathway were significantly increased by AN. CONCLUSIONS These results revealed that AN improved the developmental competence of porcine preimplantation embryos by activating SHH signaling against oxidative stress and could be used for large-scale production of high-quality porcine embryos.
Collapse
Affiliation(s)
- Ye Eun Joo
- grid.249967.70000 0004 0636 3099Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea ,grid.262229.f0000 0001 0719 8572Department of Animal Science, College of Natural Resources and Life Science, Pusan National University, Miryang, South Korea
| | - Pil-Soo Jeong
- grid.249967.70000 0004 0636 3099Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea
| | - Sanghoon Lee
- grid.249967.70000 0004 0636 3099Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea ,grid.254230.20000 0001 0722 6377Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| | - Se-Been Jeon
- grid.249967.70000 0004 0636 3099Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea ,grid.262229.f0000 0001 0719 8572Department of Animal Science, College of Natural Resources and Life Science, Pusan National University, Miryang, South Korea
| | - Min-Ah Gwon
- grid.249967.70000 0004 0636 3099Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea ,grid.412077.70000 0001 0744 1296Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan, South Korea
| | - Min Ju Kim
- grid.249967.70000 0004 0636 3099Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea ,grid.262229.f0000 0001 0719 8572Department of Animal Science, College of Natural Resources and Life Science, Pusan National University, Miryang, South Korea
| | - Hyo-Gu Kang
- grid.249967.70000 0004 0636 3099Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea ,grid.254230.20000 0001 0722 6377Department of Animal Science and Biotechnology, College of Agriculture and Life Science, Chungnam National University, Daejeon, South Korea
| | - Bong-Seok Song
- grid.249967.70000 0004 0636 3099Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea
| | - Sun-Uk Kim
- grid.249967.70000 0004 0636 3099Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea ,grid.412786.e0000 0004 1791 8264Department of Functional Genomics, University of Science and Technology, Daejeon, South Korea
| | - Seong-Keun Cho
- Department of Animal Science, College of Natural Resources and Life Science, Life and Industry Convergence Research Institute, Pusan National University, Miryang, South Korea.
| | - Bo-Woong Sim
- Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea.
| |
Collapse
|
23
|
He S, Wu H, Huang J, Li Q, Huang Z, Wen H, Li Z. 3-D tissue-engineered epidermis against human primary keratinocytes apoptosis via relieving mitochondrial oxidative stress in wound healing. J Tissue Eng 2023; 14:20417314231163168. [PMID: 37025157 PMCID: PMC10071207 DOI: 10.1177/20417314231163168] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/24/2023] [Indexed: 04/03/2023] Open
Abstract
The tissue-engineered epidermal (TEE), composed of biocompatible vectors and autogenous functional cells, is a novel strategy to solve the problem of shortage of donor skin sources. The human primary keratinocyte (HPK), the major skin components, are self-evident vital in wound healing and was considered as one of the preferred seed cells for TEEs. Since the process of separating HPKs from the skin triggers a stress state of the cells, achieving its rapid adhesion and proliferation on biomaterials remains challenging. The key to the clinical application is to ensure the normal function of cells while improving the proliferation ability in vitro, and to complete the complex mesenchymal epithelialization to achieve tissue remodeling after vivo implantation. Herein, in order to aid HPKs adhesion and proliferation in vitro and promoting wound healing, we developed a three dimensional collagen scaffold with Y-27632 sustainedly released from the nanoplatform, hollow mesoporous organosilica nanoparticles (HMON). The results showed that the porous structure within the TEE supports the implanted HPKs expanding in a three-dimensional mode to jointly construct the tissue-engineered epidermis in vitro and inhibited the mitochondria-mediated cell apoptosis. It was confirmed that the TEEs with suitable degradation rate could maintain drug release after implantation and could accelerate vascularization of wound base and further revealed the involvement of mesenchymal transformation of transplanted HPKs during skin regeneration in a nude mouse model with full-thickness skin resection. In conclusion, our study highlights the great potential of constructing TEE using a nanoparticle platform for the treatment of large-area skin defects.
Collapse
Affiliation(s)
- Shan He
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Han Wu
- Medical Research Center of Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junqun Huang
- Department of Anaesthesia, The Seventh Affiliated Hospital, Southern Medical University, Foshan, China
| | - Qingyan Li
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zijie Huang
- Department of Emergency, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huangding Wen
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiqing Li
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
24
|
Cao Y, Zhong Q, Tang F, Yao X, Liu Z, Zhang X. Anethole ameliorates inflammation induced by monosodium urate in an acute gouty arthritis model via inhibiting TLRs/MyD88 pathway. Allergol Immunopathol (Madr) 2022; 50:107-114. [PMID: 36335453 DOI: 10.15586/aei.v50i6.682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/09/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE To assess the effects of anethole on monosodium urate (MSU)-induced inflammatory response, investigate its role in acute gouty arthritis (AGA), and verify its molecular mechanism. METHODS Hematoxylin and eosin staining assay and time-dependent detection of degree of ankle swelling were performed to assess the effects of anethole on joint injury in MSU-induced AGA mice. Enzyme-linked-immunosorbent serologic assay was performed to demonstrate the production levels of inflammatory factors (interleukin 1β [IL-1β], interleukin 6 [IL-6], interleukin 8 [IL-8], tumor necrosis factor α [TNF-α], and monocyte chemo-attractant protein-1 [MCP-1]) in MSU-induced AGA mice. Western blot assays were used to confirm the effects of anethole on oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome activity and the activation of toll-like receptors (TLRs)-myeloid differentiation factor 88 (MyD88) pathway in MSU-induced AGA mice. RESULTS We observed that a significant joint injury occurred in MSU-induced AGA mice. Anethole could alleviate the pathological injury of the synovium in MSU-induced AGA mice and suppressed ankle swelling. In addition, we observed that anethole could inhibit MSU-induced inflammatory response and inflammasome activation in MSU-induced AGA mice. Moreover, we discovered that anethole enabled to inhibit the activation of TLRs/MyD88 pathway in MSU-induced AGA mice. Our findings further confirmed that anethole contributed to the inhibitory effects on progression in MSU-induced AGA mice. CONCLUSION It confirmed that anethole ameliorated the MSU-induced inflammatory response in AGA mice in vivo via inhibiting TLRs-MyD88 pathway.
Collapse
Affiliation(s)
- Yuepeng Cao
- Department of Rheumatology and Immunology, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| | - Qin Zhong
- Department of Rheumatology and Immunology, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| | - Fang Tang
- Department of Rheumatology and Immunology, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| | - Xueming Yao
- Department of Rheumatology and Immunology, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| | - Zhengqi Liu
- Department of Rheumatology and Immunology, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China;
| | - Xiaodong Zhang
- Second Clinical School of Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| |
Collapse
|
25
|
Semlali A, Papadakos S, Contant C, Zouaoui I, Rouabhia M. Rapamycin inhibits oral cancer cell growth by promoting oxidative stress and suppressing ERK1/2, NF-κB and beta-catenin pathways. Front Oncol 2022; 12:873447. [PMID: 36185289 PMCID: PMC9520465 DOI: 10.3389/fonc.2022.873447] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Treatment of oral cancer is based exclusively on surgery combined with or without chemotherapy. However, it has several side effects. Targeting a new, more effective therapy has become an urgent matter. The purpose of this study was to evaluate the anti-tumor activity of rapamycin in oral cancer and its mechanism of action. Human gingival carcinoma cells were stimulated with different concentrations of rapamycin to assess proliferation, colony formation, cell migration, as well as apoptosis, and autophagy. The expression of proteins involved in the cell cycle (cyclin D1, p15, p21, p27) and autophagy, as well as that of oncogenes and tumor suppressor genes, were determined by quantitative PCR. The signaling pathways were evaluated by Western blotting. Our results show that rapamycin has a selective effect at a low dose on cancer cell growth/survival. This was confirmed by low colony formation and the inhibition of cell migration, while increasing cell apoptosis by activating caspase-9 and -3. Rapamycin promoted cell autophagy and increased mitochondrial oxidative stress by being involved in DNA damage in the exposed cells. Finally, rapamycin exhibits potent anti-oral cancer properties through inhibition of several cancer-promoting pathways (MAPK, NF-κB, and Wnt/beta-catenin). These results indicate that rapamycin could be a potential agent for the treatment of oral cancer and for a prevention strategy.
Collapse
|
26
|
Kaur B, Rolta R, Salaria D, Kumar B, Fadare OA, da Costa RA, Ahmad A, Al-Rawi MBA, Raish M, Rather IA. An In Silico Investigation to Explore Anti-Cancer Potential of Foeniculum vulgare Mill. Phytoconstituents for the Management of Human Breast Cancer. Molecules 2022; 27:4077. [PMID: 35807321 PMCID: PMC9268524 DOI: 10.3390/molecules27134077] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 12/18/2022] Open
Abstract
Breast cancer is one of the most prevalent cancers in the world. Traditionally, medicinal plants have been used to cure various types of diseases and disorders. Based on a literature survey, the current study was undertaken to explore the anticancer potential of Foeniculum vulgare Mill. phytoconstituents against breast cancer target protein (PDB ID: 6CHZ) by the molecular docking technique. Molecular docking was done using Autodock/vina software. Toxicity was predicted by the Protox II server and drug likeness was predicted by Molinspiration. 100 ns MD simulation of the best protein-ligand complexes were done using the Amber 18 tool. The present molecular docking investigation has revealed that among the 40 selected phytoconstituents of F. vulgare, α-pinene and D-limonene showed best binding energy (-6 and -5.9 kcal/mol respectively) with the breast cancer target. α-Pinene and D-limonene followed all the parameters of toxicity, and 100 ns MD simulations of α-pinene and D-limonene complexes with 6CHZ were found to be stable. α-Pinene and D-limonene can be used as new therapeutic agents to cure breast cancer.
Collapse
Affiliation(s)
- Baljinder Kaur
- Systems Biology Laboratory, Department of Biotechnology, Punjabi University Patiala, Patiala 147002, Punjab, India
| | - Rajan Rolta
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173212, Himachal Pradesh, India; (R.R.); (D.S.)
| | - Deeksha Salaria
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173212, Himachal Pradesh, India; (R.R.); (D.S.)
| | - Balvir Kumar
- University Institute of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India;
| | - Olatomide A. Fadare
- Organic Chemistry Research Lab, Department of Chemistry, Obafemi Awolowo University, Ile-Ife 220282, Nigeria;
| | - Renato Araujo da Costa
- Federal Institute of Education, Science, and Technology of Para, Belém 66000-000, Para, Brazil;
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy and King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Mahmood Basil A. Al-Rawi
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy and King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Irfan A. Rather
- Department of Applied Microbiology and Biotechnology, Yeungnam University, Gyeongsan 38541, Korea;
| |
Collapse
|
27
|
Zayed A, Sobeh M, Farag MA. Dissecting dietary and semisynthetic volatile phenylpropenes: A compile of their distribution, food properties, health effects, metabolism and toxicities. Crit Rev Food Sci Nutr 2022; 63:11105-11124. [PMID: 35708064 DOI: 10.1080/10408398.2022.2087175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phenylpropenes represent a major subclass of plant volatiles, including eugenol, and (E)-anethole. They contribute to the flavor and aroma of many chief herbs and spices, to exert distinct notes in food, i.e., spicy anise- and clove-like to fruit. Asides from their culinary use, they appear to exert general health effects, whereas some effects are specific, e.g., eugenol being a natural local anesthetic. This review represents the most comprehensive overview of phenylpropenes with respect to their chemical structures, different health effects, and their food applications as flavor and food preservatives. Side effects and toxicities of these compounds represent the second main part of this review, as some were reported for certain metabolites generated inside the body. Several metabolic reactions mediating for phenylpropenes metabolism in rodents via cytochrome P450 (CYP450) and sulfotransferase (SULT) enzymes are presented being involved in their toxicities. Such effects can be lessened by influencing their pharmacokinetics through a matrix-derived combination effect via administration of herbal extracts containing SULT inhibitors, i.e., nevadensin in sweet basil. Moreover, structural modification of phenylpropanes appears to improve their effects and broaden their applications. Hence, such review capitalizing on phenylpropenes can help optimize their applications in nutraceuticals, cosmeceuticals, and food applications.
Collapse
Affiliation(s)
- Ahmed Zayed
- Pharmacognosy Department, College of Pharmacy, Tanta University, Tanta, Egypt
- Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Mansour Sobeh
- AgroBioSciences, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
28
|
Masyita A, Mustika Sari R, Dwi Astuti A, Yasir B, Rahma Rumata N, Emran TB, Nainu F, Simal-Gandara J. Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. Food Chem X 2022; 13:100217. [PMID: 35498985 PMCID: PMC9039924 DOI: 10.1016/j.fochx.2022.100217] [Citation(s) in RCA: 153] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/08/2022] [Accepted: 01/14/2022] [Indexed: 02/06/2023] Open
Abstract
Terpenes and terpenoids are the main bioactive compounds of essential oils (EOs). EOs and their major constituents confer several biological activities. EOs are potential as natural food preservatives.
Essential oils (EOs) are volatile and concentrated liquids extracted from different parts of plants. Bioactive compounds found in EOs, especially terpenes and terpenoids possess a wide range of biological activities including anticancer, antimicrobial, anti-inflammatory, antioxidant, and antiallergic. Available literature confirms that EOs exhibit antimicrobial and food preservative properties that are considered as a real potential application in food industry. Hence, the purpose of this review is to present an overview of current knowledge of EOs for application in pharmaceutical and medical industries as well as their potential as food preservatives in food industry.
Collapse
Affiliation(s)
- Ayu Masyita
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia
| | - Reka Mustika Sari
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan 20222, Sumatera Utara, Indonesia.,Cellulosic and Functional Materials Research Centre, Universitas Sumatera Utara, Jl. Bioteknologi No.1, Medan 20155, Indonesia
| | - Ayun Dwi Astuti
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia
| | - Budiman Yasir
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia.,Sekolah Tinggi Ilmu Farmasi Makassar, Makassar 90242, Sulawesi Selatan, Indonesia
| | - Nur Rahma Rumata
- Sekolah Tinggi Ilmu Farmasi Makassar, Makassar 90242, Sulawesi Selatan, Indonesia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain
| |
Collapse
|
29
|
Huang C, Zhan L. Network Pharmacology Identifies Therapeutic Targets and the Mechanisms of Glutathione Action in Ferroptosis Occurring in Oral Cancer. Front Pharmacol 2022; 13:851540. [PMID: 35359830 PMCID: PMC8963897 DOI: 10.3389/fphar.2022.851540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/23/2022] [Indexed: 01/06/2023] Open
Abstract
Oral cancer (OC) is one of the most pernicious cancers with increasing incidence and mortality worldwide. Surgery is the primary approach for the treatment of early-stage OC, which reduces the quality of life of the patients. Therefore, there is an urgent need to discover novel treatments for OC. Targeting ferroptosis to induce cell death through the modulation of lipid oxidation has been used as a new approach to treat many cancers. Glutathione (GSH) is a coenzyme factor of GSH peroxidase 4, and it carries potential applicability in treating OC. By using network pharmacology and molecular docking followed by systematic bioinformatic analysis, we aimed to study GSH-targeting ferroptosis to treat OC. We identified 14 core molecular targets, namely, EGFR, PTGS2, HIF1A, VEGFA, TFRC, SLC2A1, CAV1, CDKN2A, SLC3A2, IFNG, NOX4, DDIT4, CA9, and DUSP1, involved in ferroptosis that were targeted by GSH for OC treatment. Functional characterization of these molecular targets showed their importance in the control of cell apoptosis, cell proliferation, and immune responses through various kinase activities such as the mitogen-activated protein kinase activity (e.g., ERK1 and ERK2 cascades) and modulation of TOR signaling (e.g., the HIF-1 signaling pathway). Molecular docking further revealed the direct binding of GSH with EGFR, PTGS2, and HIF1A proteins. These findings provide a novel insight into the targets of GSH in ferroptosis as well as possible molecular mechanisms involved, suggesting the possible use of GSH as a combined therapy for treating OC.
Collapse
Affiliation(s)
- Chen Huang
- The Center for Data Science in Health and Medicine, Business School, Qingdao University, Qingdao, China
| | - Lei Zhan
- Department of Ophthalmology, The Second People’s Hospital of Guilin, Guilin, China
| |
Collapse
|
30
|
Naproxen-Loaded Poly(2-hydroxyalkyl methacrylates): Preparation and Drug Release Dynamics. Polymers (Basel) 2022; 14:polym14030450. [PMID: 35160440 PMCID: PMC8840337 DOI: 10.3390/polym14030450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 11/16/2022] Open
Abstract
Poly(2-hydroxyethylmethacrylate)/Naproxen (NPX/pHEMA) and poly (2-hydroxypropyl methacrylate)/Naproxen (NPX/pHPMA) composites with different NPX content were prepared in situ by free radical photopolymerization route. The resulted hybrid materials were characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning Electron microscopy (SEM), and X-ray diffraction (XRD). These composites have been studied as drug carrier systems, in which a comparison of the in vitro release dynamic of NPX between the two drug carrier systems has been conducted. Different factors affecting the performance of the release dynamic of this drug, such as the amount of Naproxen incorporated in the drug carrier system, the pH of the medium and the degree of swelling, have been investigated. The results of the swelling study of pHEMA and pHPMA in different media pHs revealed that the diffusion of water molecules through both polymer samples obeys the Fickian model. The “in vitro” study of the release dynamic of Naproxen from NPX/pHEMA and NPX/pHPMA drug carrier systems revealed that the higher percentage of NPX released was obtained from each polymer carrier in neutral pH medium, and the diffusion of NPX trough these polymer matrices also obeys the Fickian model. It was also found that the less the mass percent of NPX in the composites, the better its release will be. The comparison between the two drug carrier systems revealed that the pHEMA leads to the best performance in the release dynamic of NPX. Regarding Naproxen solubility in water, the results deducted from the “in vitro” study of NPX/pHEMA10 and NPX/pHPMA10 drug carrier systems revealed a very significant improvement in the solubility of NPX in media pH1 (2.33 times, 1.43 times) and 7 (3.32 times, 2.60 times), respectively, compared to those obtained by direct dissolution of Naproxen powder.
Collapse
|
31
|
Abdul Majeed RH, Hussein HA, Abdullah MA. Preparation and Characterization of Novel Schiff Base Derived From 4-Nitro Benzaldehyde and Its Cytotoxic Activities. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2022; 11:285-296. [PMID: 37727641 PMCID: PMC10506673 DOI: 10.22088/ijmcm.bums.11.4.285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/28/2023] [Accepted: 08/05/2023] [Indexed: 09/21/2023]
Abstract
Normal drugs exhibit activities against both normal and cancer cells. Furthermore, cancer cells may develop resistance to these drugs that alternative treatment must be explored. The main objective of this study was to examine the anticancer activity of Schiff base against Tongue Squamous Cell Carcinoma Fibroblasts (TSCCF) and normal human gingival fibroblasts (NHGF) and to propose its mechanism. A Novel Schiff base ligand was synthesized from the reaction of 5-C-2-4-NABA (5-chloro-2-((4-nitrobenzylidene) amino) benzoic acid). These Schiff bases possessed azomethine group (-HC=N-) and aromatic group (CH) as analyzed by Fourier transforms infrared (FTIR) spectroscopy and UV-Vis spectra. The in vitro cytotoxicity screening assay suggested promising activity against TSCCF with IC50 of 446.68 µg/mL, but insignificant activity against NHGF cells (IC50 of 977.24 µg/mL) after 72 h. The evidence of apoptotic induction was supported by DAPI staining of apoptotic nuclei with reduced cell numbers, suggesting that Schiff base could induce apoptotic bodies in cancer cells being observed. Based on the Schiff base structure, the anti-cancer mechanism may be attributed to the -HC=N- azomethine group. For the first time, our findings highlighted the anticancer activities of the new Schiff base against oral cancer cell lines.
Collapse
Affiliation(s)
| | | | - Mohd Azmuddin Abdullah
- SIBCo Medical and Pharmaceuticals Sdn. Bhd., No. 2, Level 5, Jalan Tengku Ampuan Zabedah, D9/D, Seksyen 9, 40000 Shah Alam, Selangor, Malaysia.
| |
Collapse
|