1
|
Azzi M, Medila I, Toumi I, Laouini SE, Bouafia A, Hasan GG, Mohammed HA, Mokni S, Alsalme A, Barhoum A. Plant extract-mediated synthesis of Ag/Ag2O nanoparticles using Olea europaea leaf extract: assessing antioxidant, antibacterial, and toxicological properties. BIOMASS CONVERSION AND BIOREFINERY 2024; 14:31309-31322. [DOI: 10.1007/s13399-023-05093-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 01/06/2025]
|
2
|
Gollapudi KK, Dutta SD, Adnan M, Taylor ML, Reddy KVNS, Alle M, Huang X. Dialdehyde cellulose nanofibrils/polyquaternium stabilized ultra-fine silver nanoparticles for synergistic antibacterial therapy. Int J Biol Macromol 2024; 280:135971. [PMID: 39322171 DOI: 10.1016/j.ijbiomac.2024.135971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/21/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
Dialdehyde cellulose nanofibrils (DACNF) and Polyquaternium-10 (PQ: chloro-2-hydroxy-3-(trimethylamino) propyl polyethylene glycol cellulose) have become increasingly favored as antibacterial substances due to their advantageous characteristics. DACNF exhibits exceptional mechanical properties and biocompatibility, whereas PQ demonstrates a positive charge that enhances its antibacterial activity. Combined in a DACNF/PQ mixture, they provide an excellent template material for preparing and stabilizing ultra-fine (~ 10.3 nm) silver nanoparticles (AgNPs) at room temperature. Here, the dialdehyde group of DACNF functions as a reducing agent, while the quaternary ammonium of PQ and carboxylate groups of DACNF synergistically helped in-situ generation of AgNPs uniformly. The synthesized nanocomposites, namely PQ@AgNPs, AgNPs@DACNF, and AgNPs@DACNF/PQ, were subjected to comprehensive characterization using various advanced analytical techniques. The films containing AgNPs@DACNF and AgNPs@DACNF/PQ, fabricated via vacuum filtration, exhibited excellent mechanical properties of 9.78 ± 0.21 MPa, and demonstrated superior antibacterial activity against both Escherichia coli and Staphylococcus aureus. Additionally, the silver ion leaching from the prepared composite films was well controlled. The fabricated nanocomposites also effectively inhibited bacterial biofilm formation. It was also found to be highly biocompatible and non-toxic to human skin fibroblast cells. Furthermore, the nanocomposites exhibited enhanced migration of human dermal fibroblasts, suggesting their potential in facilitating wound healing processes.
Collapse
Affiliation(s)
- Kranthi Kumar Gollapudi
- Department of Chemistry, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, India
| | - Sayan Deb Dutta
- Center for Surgical Bioengineering, Department of Surgery, University of California Davis, Sacramento 95817, United States
| | - Md Adnan
- Department of Molecular Pharmaceutics, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, United States
| | - Mitchell Lee Taylor
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, United States
| | - K V N Suresh Reddy
- Department of Chemistry, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, India.
| | - Madhusudhan Alle
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, United States.
| | - Xiaohua Huang
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, United States.
| |
Collapse
|
3
|
Nijil S, Bhat SG, Kedla A, Thomas MR, Kini S. A silver lining in MRSA treatment: The synergistic action of poloxamer-stabilized silver nanoparticles and methicillin against antimicrobial resistance. Microb Pathog 2024; 197:107087. [PMID: 39481693 DOI: 10.1016/j.micpath.2024.107087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/15/2024] [Accepted: 10/26/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND Increasing antibiotic resistance in bacterial infections, including drug-resistant strains like methicillin-resistant Staphylococcus aureus (MRSA), necessitates innovative therapeutic solutions. Silver nanoparticles are promising for combating infections, but toxicity concerns emphasize the importance of factors like dosage, size, shape, and surface chemistry. Hence, exploring poloxamer as a stabilizing agent to reduce its toxicity and enhance the antibacterial effect on MRSA is investigated. METHODS Silver nanoparticles stabilized with poloxamer (AgNPs@Pol) were synthesized through the chemical reduction method and characterized using UV-visible spectrophotometer, HR-TEM, DLS, and Zeta potential measurements. Subsequently, the antibacterial activity of AgNPs@Pol alone and in combination with methicillin against MRSA and methicillin-susceptible S. aureus (MSSA) was evaluated using the broth microdilution method. RESULTS AgNPs@Pol showed significant efficacy against MRSA and MSSA, achieving a 100 % reduction in colony-forming units (CFU) at 9.7 μg/ml. The minimum inhibitory concentration (MIC) against MRSA and MSSA was 8.6 μg/ml and 4.3 μg/ml, respectively. A synergistic effect was observed when AgNPs@Pol was combined with methicillin. Treatment with AgNPs@Pol increased reactive oxygen species (ROS) production in both strains, contributing to its antibacterial activity. Real-time qPCR analysis indicated the downregulation of genes involved in antimicrobial resistance and cell adhesion in both strains. Further, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay demonstrated low cytotoxicity for AgNPs@Pol against MCF-7, MG-63, and NIH-3T3 cell lines. CONCLUSION The developed AgNPs@Pol demonstrated extensive colloidal stability, potent antibacterial activity and synergistic effect with methicillin against MRSA and MSSA. Further studies in primary cells and in vivo models may validate its potential for clinical applications.
Collapse
Affiliation(s)
- S Nijil
- Nitte (Deemed to be University), Department of Bio and Nano Technology, Nitte University Centre for Science Education and Research, Deralakatte, Mangalore, 575018, India
| | - Sinchana G Bhat
- Nitte (Deemed to be University), Department of Bio and Nano Technology, Nitte University Centre for Science Education and Research, Deralakatte, Mangalore, 575018, India
| | - Anushree Kedla
- Nitte (Deemed to be University), Department of Bio and Nano Technology, Nitte University Centre for Science Education and Research, Deralakatte, Mangalore, 575018, India
| | - Mahima Rachel Thomas
- Nitte (Deemed to be University), Department of Bio and Nano Technology, Nitte University Centre for Science Education and Research, Deralakatte, Mangalore, 575018, India
| | - Sudarshan Kini
- Nitte (Deemed to be University), Department of Bio and Nano Technology, Nitte University Centre for Science Education and Research, Deralakatte, Mangalore, 575018, India.
| |
Collapse
|
4
|
Cambronel M, Wongkamhaeng K, Blavignac C, Forestier C, Nedelec JM, Denry I. Novel Honeycomb Nanoclay Frameworks With Hemostatic and Antibacterial Properties. J Biomed Mater Res B Appl Biomater 2024; 112:e35477. [PMID: 39213159 DOI: 10.1002/jbm.b.35477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/06/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Our laboratory recently developed a new class of high surface area, honeycomb Nanoclay Microsphere Framework absorbents (NMFs) that prompt rapid hemostasis. In the present work, we propose a novel approach to develop antibacterial Topical Hemostatic Agents (THAs) by anchoring silver nanoparticles (AgNPs) onto NMFs. This combination was obtained by a chemical co-reduction approach, followed by freeze-processing, and was shown to ensure stability and on-site delivery of AgNPs, without altering the hemostatic properties of NMFs. Silver-loaded NMFs showed no change in their unique architecture and led to a 55% increase in clot strength, compared to standard control plasma or commercially available THA, and a significant decrease in mean fibrin fiber diameter. Silver nanoparticles were successfully released when solubilized and prevented the growth of both Pseudomonas aeruginosa and Staphylococcus aureus at concentrations of 22 and 30 ppm of silver released, respectively. Overall, cell mortality was between 9.1 ± 5.1% and 6.3 ± 3.2%, depending on AgNP concentration, confirming a low cytotoxicity. Silver-loaded nanoclay microsphere frameworks appear to constitute promising candidates as topical hemostatic agents for secondary management of hemostasis when infection control is needed.
Collapse
Affiliation(s)
- Mélyssa Cambronel
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Clermont-Ferrand, France
| | - Kan Wongkamhaeng
- Division of Prosthodontics, Faculty of Dentistry, Thammasat University, Khlong Luang, Thailand
| | - Christelle Blavignac
- Centre Imagerie Cellulaire Santé, UCA PARTNER, UFR de Médecine, Clermont-Ferrand, France
| | | | - Jean-Marie Nedelec
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Clermont-Ferrand, France
| | - Isabelle Denry
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Clermont-Ferrand, France
- Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, Iowa City, Iowa, USA
| |
Collapse
|
5
|
Raj A, Thomas RK, Vidya L, Neelima S, Aparna VM, Sudarsanakumar C. A Minor Groove Binder with Significant Cytotoxicity on Human Lung Cancer Cells: The Potential of Hesperetin Functionalised Silver Nanoparticles. J Fluoresc 2024; 34:2179-2196. [PMID: 37721707 DOI: 10.1007/s10895-023-03409-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023]
Abstract
Natural drug functionalised silver (Ag) nanoparticles (NPs) have gained significant interest in pharmacology related applications due to their therapeutic efficiency. We have synthesised silver nanoparticle using hesperetin as a reducing and capping agent. This work aims to discuss the relevance of the hesperetin functionalised silver nanoparticles (H-AgNPs) in the field of nano-medicine. The article primarily investigates the anticancer activity of H-AgNPs and then their interactions with calf thymus DNA (ctDNA) through spectroscopic and thermodynamic techniques. The green synthesised H-AgNPs are stable, spherical in shape and size of 10 ± 3 nm average diameter. The complex formation of H-AgNPs with ctDNA was established by UV-Visible absorption, fluorescent dye displacement assay, isothermal calorimetry and viscosity measurements. The binding constants obtained from these experiments were consistently in the order of 104 Mol-1. The melting temperature analysis and FTIR measurements confirmed that the structural alterations of ctDNA by the presence of H-AgNPs are minimal. All the thermodynamic variables and the endothermic binding nature were acquired from ITC experiments. All these experimental outcomes reveal the formation of H-AgNPs-ctDNA complex, and the results consistently verify the minor groove binding mode of H-AgNPs. The binding constant and limit of detection of 1.8 μM found from the interaction studies imply the DNA detection efficiency of H-AgNPs. The cytotoxicity of H-AgNPs against A549 and L929 cell lines were determined by in vitro MTT cell viability assay and lactate dehydrogenase (LDH) assay. The cell viability and LDH enzyme release are confirmed that the H-AgNPs has high anticancer activity. Moreover, the calculated LD50 value for H-AgNPs against lung cancer cells is 118.49 µl/ml, which is a low value comparing with the value for fibroblast cells (269.35 µl/ml). In short, the results of in vitro cytotoxicity assays revealed that the synthesised nanoparticles can be considered in applications related to cancer treatments. Also, we have found that, H-AgNPs is a minor groove binder, and having high DNA detection efficiency.
Collapse
Affiliation(s)
- Aparna Raj
- School of Pure & Applied Physics, Mahatma Gandhi University, P.D Hills (P.O), Kottayam, Kerala, 686 560, India
| | - Riju K Thomas
- School of Pure & Applied Physics, Mahatma Gandhi University, P.D Hills (P.O), Kottayam, Kerala, 686 560, India
- Bharata Mata College, Thrikkakara, Ernakulam, Kerala, 682032, India
| | - L Vidya
- School of Pure & Applied Physics, Mahatma Gandhi University, P.D Hills (P.O), Kottayam, Kerala, 686 560, India
| | - S Neelima
- School of Pure & Applied Physics, Mahatma Gandhi University, P.D Hills (P.O), Kottayam, Kerala, 686 560, India
| | - V M Aparna
- School of Pure & Applied Physics, Mahatma Gandhi University, P.D Hills (P.O), Kottayam, Kerala, 686 560, India
| | - C Sudarsanakumar
- School of Pure & Applied Physics, Mahatma Gandhi University, P.D Hills (P.O), Kottayam, Kerala, 686 560, India.
| |
Collapse
|
6
|
El Fadly EB, Salah AS, Abdella B, Al Ali A, AlShmrany H, ElBaz AM, Abdelatty NS, Khamis EF, Maagouz OF, Salamah MA, Saleh MN, Sakr HK, El-Kemary MA. Mapping a sustainable approach: biosynthesis of lactobacilli-silver nanocomposites using whey-based medium for antimicrobial and bioactivity applications. Microb Cell Fact 2024; 23:195. [PMID: 38971787 PMCID: PMC11227706 DOI: 10.1186/s12934-024-02428-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/17/2024] [Indexed: 07/08/2024] Open
Abstract
This study explores a sustainable approach for synthesizing silver nanocomposites (AgNCs) with enhanced antimicrobial and bioactivity using safe Lactobacillus strains and a whey-based medium (WBM). WBM effectively supported the growth of Lactobacillus delbrueckii and Lactobacillus acidophilus, triggering a stress response that led to AgNCs formation. The synthesized AgNCs were characterized using advanced spectroscopic and imaging techniques such as UV‒visible, Fourier transform infrared (FT-IR) spectroscopy, transmission electron (TEM), and scanning electron microscopy with energy dispersive X-ray analysis (SEM-Edx). Lb acidophilus-synthesized AgNCs in WBM (had DLS size average 817.2-974.3 ± PDI = 0.441 nm with an average of metal core size 13.32 ± 3.55 nm) exhibited significant antimicrobial activity against a broad spectrum of pathogens, including bacteria such as Escherichia coli (16.47 ± 2.19 nm), Bacillus cereus (15.31 ± 0.43 nm), Clostridium perfringens (25.95 ± 0.03 mm), Enterococcus faecalis (32.34 ± 0.07 mm), Listeria monocytogenes (23.33 ± 0.05 mm), methicillin-resistant Staphylococcus aureus (MRSA) (13.20 ± 1.76 mm), and filamentous fungi such as Aspergillus brasiliensis (33.46 ± 0.01 mm). In addition, Lb acidophilus-synthesized AgNCs in WBM exhibit remarkable free radical scavenging abilities, suggesting their potential as bioavailable antioxidants. These findings highlight the dual functionality of these biogenic AgNCs, making them promising candidates for applications in both medicine and nutrition.
Collapse
Affiliation(s)
- E B El Fadly
- Department of Dairy Sciences, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, Egypt.
- Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh, Egypt.
| | - A S Salah
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - B Abdella
- Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - A Al Ali
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Bisha, 255, Al Nakhil, 57714, Bisha, Saudi Arabia
| | - H AlShmrany
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince, Sattam Bin Abdulaziz University, 11942, Alkharj, Saudi Arabia
| | - A M ElBaz
- Dairy Microbiology Research Department, Agriculture Research Center, Animal Production Research Institute, Giza, 12611, Egypt
| | - N S Abdelatty
- Department of Dairy Sciences, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, Egypt
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - E F Khamis
- Dairy Chemistry Research Department, Agriculture Research Center, Animal Production Research Institute, Giza, 12611, Egypt
| | - O F Maagouz
- Dairy Chemistry Research Department, Agriculture Research Center, Animal Production Research Institute, Giza, 12611, Egypt
| | - M A Salamah
- Agricultural Research Center, Food Technology Research Institute, Giza, 12611, Egypt
| | - M N Saleh
- Agricultural Research Center, Food Technology Research Institute, Giza, 12611, Egypt
| | - H K Sakr
- Agricultural Research Center, Food Technology Research Institute, Giza, 12611, Egypt
| | - M A El-Kemary
- Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh, Egypt.
- Nile Valley University, Fayum, Egypt.
| |
Collapse
|
7
|
Bîrcă AC, Gherasim O, Niculescu AG, Grumezescu AM, Vasile BȘ, Mihaiescu DE, Neacșu IA, Andronescu E, Trușcă R, Holban AM, Hudiță A, Croitoru GA. Infection-Free and Enhanced Wound Healing Potential of Alginate Gels Incorporating Silver and Tannylated Calcium Peroxide Nanoparticles. Int J Mol Sci 2024; 25:5196. [PMID: 38791232 PMCID: PMC11120750 DOI: 10.3390/ijms25105196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
The treatment of chronic wounds involves precise requirements and complex challenges, as the healing process cannot go beyond the inflammatory phase, therefore increasing the healing time and implying a higher risk of opportunistic infection. Following a better understanding of the healing process, oxygen supply has been validated as a therapeutic approach to improve and speed up wound healing. Moreover, the local implications of antimicrobial agents (such as silver-based nano-compounds) significantly support the normal healing process, by combating bacterial contamination and colonization. In this study, silver (S) and tannylated calcium peroxide (CaO2@TA) nanoparticles were obtained by adapted microfluidic and precipitation synthesis methods, respectively. After complementary physicochemical evaluation, both types of nanoparticles were loaded in (Alg) alginate-based gels that were further evaluated as possible dressings for wound healing. The obtained composites showed a porous structure and uniform distribution of nanoparticles through the polymeric matrix (evidenced by spectrophotometric analysis and electron microscopy studies), together with a good swelling capacity. The as-proposed gel dressings exhibited a constant and suitable concentration of released oxygen, as shown for up to eight hours (UV-Vis investigation). The biofilm modulation data indicated a synergistic antimicrobial effect between silver and tannylated calcium peroxide nanoparticles, with a prominent inhibitory action against the Gram-positive bacterial biofilm after 48 h. Beneficial effects in the human keratinocytes cultured in contact with the obtained materials were demonstrated by the performed tests, such as MTT, LDH, and NO.
Collapse
Affiliation(s)
- Alexandra Catalina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (B.Ș.V.); (I.A.N.); (E.A.); (R.T.)
- Center for Advanced Research on New Materials, Products and Innovative Processes—CAMPUS Research Institute, National University of Science and Technology POLITEHNICA Bucharest, 060042 Bucharest, Romania
| | - Oana Gherasim
- Lasers Department, National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele, Romania;
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (B.Ș.V.); (I.A.N.); (E.A.); (R.T.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania; (A.M.H.); (A.H.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (B.Ș.V.); (I.A.N.); (E.A.); (R.T.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania; (A.M.H.); (A.H.)
| | - Bogdan Ștefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (B.Ș.V.); (I.A.N.); (E.A.); (R.T.)
| | - Dan Eduard Mihaiescu
- Department of Organic Chemistry, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania;
| | - Ionela Andreea Neacșu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (B.Ș.V.); (I.A.N.); (E.A.); (R.T.)
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (B.Ș.V.); (I.A.N.); (E.A.); (R.T.)
| | - Roxana Trușcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (B.Ș.V.); (I.A.N.); (E.A.); (R.T.)
| | - Alina Maria Holban
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania; (A.M.H.); (A.H.)
- Department of Microbiology and Immunology, University of Bucharest, 077206 Bucharest, Romania
| | - Ariana Hudiță
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania; (A.M.H.); (A.H.)
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
| | - George-Alexandru Croitoru
- Department II, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Street, 050474 Bucharest, Romania;
| |
Collapse
|
8
|
Martínez-Álvarez JA, Vicente-Gómez M, García-Contreras R, Wood TK, Ramírez Montiel FB, Vargas-Maya NI, España-Sánchez BL, Rangel-Serrano Á, Padilla-Vaca F, Franco B. High-Throughput Screening Method Using Escherichia coli Keio Mutants for Assessing Primary Damage Mechanism of Antimicrobials. Microorganisms 2024; 12:793. [PMID: 38674737 PMCID: PMC11051750 DOI: 10.3390/microorganisms12040793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The Escherichia coli Keio mutant collection has been a tool for assessing the role of specific genes and determining their role in E. coli physiology and uncovering novel functions. In this work, specific mutants in the DNA repair pathways and oxidative stress response were evaluated to identify the primary targets of silver nanoparticles (NPs) and their mechanism of action. The results presented in this work suggest that NPs mainly target DNA via double-strand breaks and base modifications since the recA, uvrC, mutL, and nfo mutants rendered the most susceptible phenotype, rather than involving the oxidative stress response. Concomitantly, during the establishment of the control conditions for each mutant, the katG and sodA mutants showed a hypersensitive phenotype to mitomycin C, an alkylating agent. Thus, we propose that KatG catalase plays a key role as a cellular chaperone, as reported previously for the filamentous fungus Neurospora crassa, a large subunit catalase. The Keio collection mutants may also be a key tool for assessing the resistance mechanism to metallic NPs by using their potential to identify novel pathways involved in the resistance to NPs.
Collapse
Affiliation(s)
- José A. Martínez-Álvarez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/N, Guanajuato 36050, Mexico
| | - Marcos Vicente-Gómez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/N, Guanajuato 36050, Mexico
| | - Rodolfo García-Contreras
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Thomas K. Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802-4400, USA
| | - Fátima Berenice Ramírez Montiel
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/N, Guanajuato 36050, Mexico
| | - Naurú Idalia Vargas-Maya
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/N, Guanajuato 36050, Mexico
| | - Beatriz Liliana España-Sánchez
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica CIDETEQ S.C., Parque Tecnológico Querétaro s/n, Sanfandila, Pedro Escobedo, Querétaro 76703, Mexico
| | - Ángeles Rangel-Serrano
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/N, Guanajuato 36050, Mexico
| | - Felipe Padilla-Vaca
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/N, Guanajuato 36050, Mexico
| | - Bernardo Franco
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/N, Guanajuato 36050, Mexico
| |
Collapse
|
9
|
Castro-Valenzuela BE, Franco-Molina MA, Zárate-Triviño DG, Villarreal-Treviño L, Kawas JR, García-Coronado PL, Sobrevilla-Hernández G, Rodríguez-Padilla C. Antibacterial efficacy of novel bismuth-silver nanoparticles synthesis on Staphylococcus aureus and Escherichia coli infection models. Front Microbiol 2024; 15:1376669. [PMID: 38650875 PMCID: PMC11033500 DOI: 10.3389/fmicb.2024.1376669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/29/2024] [Indexed: 04/25/2024] Open
Abstract
Introduction The emergence of multi-drug-resistant bacteria is one of the main concerns in the health sector worldwide. The conventional strategies for treatment and prophylaxis against microbial infections include the use of antibiotics. However, these drugs are failing due to the increasing antimicrobial resistance. The unavailability of effective antibiotics highlights the need to discover effective alternatives to combat bacterial infections. One option is the use of metallic nanoparticles, which are toxic to some microorganisms due to their nanometric size. Methods In this study we (1) synthesize and characterize bismuth and silver nanoparticles, (2) evaluate the antibacterial activity of NPs against Staphylococcus aureus and Escherichia coli in several infection models (in vivo models: infected wound and sepsis and in vitro model: mastitis), and we (3) determine the cytotoxic effect on several cell lines representative of the skin tissue. Results and discussion We obtained bimetallic nanoparticles of bismuth and silver in a stable aqueous solution from a single reaction by chemical synthesis. These nanoparticles show antibacterial activity on S. aureus and E. coli in vitro without cytotoxic effects on fibroblast, endothelial vascular, and mammary epithelium cell lines. In an infected-wound mice model, antibacterial effect was observed, without effect on in vitro mastitis and sepsis models.
Collapse
Affiliation(s)
- Beatriz Elena Castro-Valenzuela
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - Moisés Armides Franco-Molina
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - Diana Ginette Zárate-Triviño
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - Licet Villarreal-Treviño
- Posgrado en Microbiología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - Jorge R. Kawas
- Posgrado Conjunto Agronomía-Veterinaria, Universidad Autónoma de Nuevo León, General Escobedo, Nuevo León, Mexico
| | - Paola Leonor García-Coronado
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - Gustavo Sobrevilla-Hernández
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - Cristina Rodríguez-Padilla
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| |
Collapse
|
10
|
Barabadi H, Vahidi H, Arjmand M, Abdorashidi M, Jahani R, Amidi S, Hosseini O, Sadeghian-Abadi S, Jounaki K, Ashouri F. Exploring the biological properties of Saccharomyces cerevisiae-derived silver nanoparticles: In vitro structural characteristics, antibacterial, biofilm inhibition and biofilm degradation, antioxidant, anticoagulant, thrombolytic, and antidiabetic performance. INORG CHEM COMMUN 2024; 162:112291. [DOI: 10.1016/j.inoche.2024.112291] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
11
|
Ren QW, Wang Y, Qian J, Zhang XX, Cheng YY, Yu D, Lu L, Wang Y, He X, Mei H, Wu C. Biosynthesis of Ag 2Se nanoparticles as a broad-spectrum antimicrobial agent with excellent biocompatibility. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133201. [PMID: 38113733 DOI: 10.1016/j.jhazmat.2023.133201] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
Silver (Ag)-containing nanomaterials have emerged as promising alternatives or adjuvants to antibiotics. Ongoing research is dedicated to enhance their antimicrobial efficacy, stability, biocompatibility, and environmental sustainability. Microorganism-synthesized Ag-containing nanomaterials offer distinct advantages, especially for various surface modification, which potentially fulfill these objectives. In this study, we present the synthesis of silver-selenium (Bio-Ag2Se) nanoparticles using a yeast strain, Rhodotorula mucilaginosa PA-1. These Bio-Ag2Se nanoparticles have small size with a narrow size distribution (12.3 ± 2.9 nm) and long-term stability. They demonstrate a broad antimicrobial spectrum and high antimicrobial efficacy at very low concentrations, effectively targeting microorganisms including Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Staphylococcus aureus, as well as pathogenic fungus Candida albicans. Furthermore, Bio-Ag2Se nanoparticles exhibit excellent efficacy to inhibit and eliminate biofilms formed by notorious pathogen S. aureus. In contrast, Bio-Ag2Se nanoparticles at effective antibacterial concentrations demonstrate favorable biocompatibility and do not show obvious cytotoxic effects on human and plant cells. To elucidate the antibacterial mechanisms of Bio-Ag2Se nanoparticles against S. aureus and E. coli, transcriptomic analysis and phenotypic examination were employed. The results reveal significant and broad up-regulation in carbon metabolism pathways in both S. aureus and E. coli, suggesting it as one of the major antibacterial mechanisms of Bio-Ag2Se. This study presents a green synthesis strategy for Ag-containing nanoparticles with promising applications.
Collapse
Affiliation(s)
- Qian-Wen Ren
- School of Resources and Environmental Engineering, Anhui University, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei 230601, Anhui, China; Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei 230024, Anhui, China
| | - Yan Wang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Jun Qian
- Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei 230024, Anhui, China
| | - Xiao-Xue Zhang
- School of Resources and Environmental Engineering, Anhui University, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei 230601, Anhui, China
| | - Yuan-Yuan Cheng
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Dan Yu
- Laboratory of Dermatology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Center for Children's Health, Beijing 100045, China
| | - Lu Lu
- Laboratory of Dermatology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Center for Children's Health, Beijing 100045, China
| | - Yan Wang
- Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei 230024, Anhui, China
| | - Xue He
- Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei 230024, Anhui, China
| | - Hong Mei
- Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei 230024, Anhui, China
| | - Chao Wu
- School of Resources and Environmental Engineering, Anhui University, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei 230601, Anhui, China.
| |
Collapse
|
12
|
Vijayakumar S, Chen J, González-Sánchez ZI, Tungare K, Bhori M, Shakila H, Sruthi KS, Divya M, Durán-Lara EF, Thandapani G, Anbu P. Biomedical and ecosafety assessment of marine fish collagen capped silver nanoparticles. Int J Biol Macromol 2024; 260:129324. [PMID: 38228210 DOI: 10.1016/j.ijbiomac.2024.129324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/18/2024]
Abstract
In the rapidly evolving landscape of silver nanoparticles (Ag NPs) synthesis, the focus has predominantly been on plant-derived sources, leaving the realm of biological or animal origins relatively uncharted. Breaking new ground, our study introduces a pioneering approach: the creation of Ag NPs using marine fish collagen, termed ClAg NPs, and offers a comprehensive exploration of their diverse attributes. To begin, we meticulously characterized ClAg NPs, revealing their spherical morphology, strong crystalline structure, and average diameter of 5 to 100 nm. These NPs showed potent antibacterial activity, notably against S. aureus (gram-positive), surpassing their efficacy against S. typhi (gram-negative). Additionally, ClAg NPs effectively hindered the growth of MRSA biofilms at 500 μg/mL. Impressively, they demonstrated substantial antioxidant capabilities, out performing standard gallic acid. Although higher concentrations of ClAg NPs induced hemolysis (41.804 %), lower concentrations remained non hemolytic. Further evaluations delved into the safety and potential applications of ClAg NPs. In vitro cytotoxicity studies on HEK 293 and HeLa cells revealed dose-dependent toxicity, with IC50 of 75.28 μg/mL and 79.13 μg/mL, respectively. Furthermore, ClAg NPs affected seed germination, root, and shoot lengths in Mung plants, underscoring their relevance in agriculture. Lastly, zebrafish embryo toxicity assays revealed notable effects, particularly at 500 μg/mL, on embryo morphology and survival rates at 96 hpf. In conclusion, our study pioneers the synthesis and multifaceted evaluation of ClAg NPs, offering promise for their use as versatile nano therapeutics in the medical field and as high-value collagen-based nanobiomaterial with minimal environmental impact.
Collapse
Affiliation(s)
| | - Jingdi Chen
- Marine College, Shandong University, Weihai 264209, PR China.
| | - Zaira I González-Sánchez
- Nanobiology Laboratory, Department of Natural and Exact Sciences, Pontificia Universidad Católica Madre y Maestra, PUCMM, Autopista Duarte Km 1 ½, Santiago de los Caballeros, Dominican Republic; Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Kanchanlata Tungare
- School of Biotechnology and Bioinformatics, D. Y. Patil Deemed to be University, CBD Belapur, Plot No-50, Sector-15, Navi Mumbai 400614, India; Anatek Services PVT Ltd, 10, Sai Chamber, Near Santacruz Railway Bridge, Sen Nagar, Santacruz East, Mumbai, Maharashtra 400055, India.
| | - Mustansir Bhori
- School of Biotechnology and Bioinformatics, D. Y. Patil Deemed to be University, CBD Belapur, Plot No-50, Sector-15, Navi Mumbai 400614, India; Invenio life Technology PVT Ltd, Office No.118, Grow More Tower, Plot No.5, Sector 2, Kharghar, Navi Mumbai, Maharashtra 410210, India
| | - Harshavardhan Shakila
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - K S Sruthi
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Mani Divya
- BioMe-Live Analytical Centre, Karaikudi, Tamil Nadu, India
| | - Esteban F Durán-Lara
- Bio&NanoMaterialsLab, Drug Delivery and Controlled Release, Universidad de Talca, Talca 3460000, Maule, Chile; Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Maule, Chile
| | - Gomathi Thandapani
- PG and Research Department of Chemistry, D.K.M. College for Women (Autonomous), Affiliated to Thiruvalluvar University, Vellore, Tamil Nadu, India
| | - Periasamy Anbu
- Department of Biological Engineering, Inha University, Incheon 402-751, Republic of Korea.
| |
Collapse
|
13
|
Akar Z, Akay S, Ejder N, Özad Düzgün A. Determination of the Cytotoxicity and Antibiofilm Potential Effect of Equisetum arvense Silver Nanoparticles. Appl Biochem Biotechnol 2024; 196:909-922. [PMID: 37273097 DOI: 10.1007/s12010-023-04587-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 06/06/2023]
Abstract
This study aimed to synthesize and characterize silver nanoparticles (AgNPs) by green synthesis from Equisetum arvense (Ea) extracts and to investigate their cytotoxicity, antibiofilm activity, and α-glucosidase enzyme inhibition. Diverse characterization techniques were applied to verify the production of nanoparticles. SEM examination confirmed that the size of nanoparticles is in the range of 40-60 nm. Also, interactions between silver and natural compounds of plant extract were confirmed through FT-IR and EDX analyses. It was determined that Equisetum arvense silver nanoparticles had antibiofilm activity against three different clinical strains with high biofilm-forming ability. AgNPs reduced the biofilm-forming capacity of clinical A. baumannii isolate with strong biofilm-forming capacity by approximately twofold, while the capacity of clinical K.pneumonaie and E.coli isolates decreased by 1.5 and 1.2 fold, respectively. The α-glucosidase enzyme inhibition potential of the AgNPs, which is determined as 93.50%, was higher than the plant extract with, and the α- 30.37%. MTT was performed to assess whether incubation of nanoparticles with A549 and ARPE-19 cell lines affected their viability, and a dramatic reduction in cell growth inhibition of both A549 and ARPE-19 cells was observed. It has been shown that A549 cells treated with 200 and 150 µg/mL nanoparticles had less cell proliferation compared to control cells at 24-h and 48-h incubation time. According to these results, Ea-derived AgNPs appear to have potential anticancer activity against A549 cancer cells. Investigating the effects of green synthesis nanoparticles on microbial biofilm and various tumors may be important for developing new therapies. The outcomes of this study have showed that Ea-AgNPsmay have a high potential both in the treatment of pathogenic strains that form biofilms, as well as in anticancer therapy use.
Collapse
Affiliation(s)
- Zeynep Akar
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Gumushane University, 29100, Gümüşhane, Turkey
| | - Seref Akay
- Department of Genetics and Bioengineering, Faculty of Engineering, Alanya Alaaddin Keykubat University, Alanya/Antalya, Turkey
| | - Nebahat Ejder
- Department of Medical Microbiology, Faculty of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Azer Özad Düzgün
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Gumushane University, 29100, Gümüşhane, Turkey.
| |
Collapse
|
14
|
Akay S, Yüksel G, Özad Düzgün A. Investigation of Antibiofilm and Antibacterial Properties of Green Synthesized Silver Nanoparticles from Aqueous Extract of Rumex sp. Appl Biochem Biotechnol 2024; 196:1089-1103. [PMID: 37329410 DOI: 10.1007/s12010-023-04592-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 06/19/2023]
Abstract
The decrease in the effectiveness of conventional drugs as a result of the growth of resistance to antibiotics has increased the need for innovative tools to control the infections. At this point, metallic nanoparticles, in particular silver nanoparticles, have appeared as a promising method. In the current study, the extract of Rumex sp. (Labada, dock) leaves was used as a reducing agent for the formation of silver nanoparticles. Unlike similar studies, in this study the synthesis conditions were optimized by changing the extract ratio and silver nitrate concentration. Morphological investigations of synthesized silver nanoparticles showed that spherical homogeneous particles at size under 100 nm had been produced. SEM/EDS and FTIR analyses showed that plant components are involved in the synthesis of nanoparticles. It was also determined that higher extract ratio reduced nanoparticle size. The antimicrobial effects of the synthesized nanoparticles against Gram-positive and Gram-negative bacteria were tested, and it was determined that all nanoparticles exhibited activity against both groups. Rumex sp. silver nanoparticles (NPs) were revealed to exhibit antibiofilm activity against three different isolates with moderate and strong biofilm-forming ability. The NPs reduced the biofilm-forming capacity of Acinetobacter baumannii and Klebsiella pneumonaie by 2.66-fold and 3.25-fold, whereas they decreased the Escherichia coli biofilm-forming capacity by 1.25-fold. The investigation of microbial biofilm could play an important role in developing new strategies for treatment options. Our results suggest that Rumex sp. silver NPs may have a high potential for use in the treatment of pathogenic strains.
Collapse
Affiliation(s)
- Seref Akay
- Department of Genetics and Bioengineering, Faculty of Engineering, Alanya Alaaddin Keykubat University, Alanya, Antalya, Turkey
| | - Gamze Yüksel
- Department of Biotechnology, Institute of Graduate Education, Gumushane University, Gümüşhane, Turkey
| | - Azer Özad Düzgün
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Gumushane University, 29100, Gümüşhane, Turkey.
| |
Collapse
|
15
|
Ravindran DR, Kannan S, Marudhamuthu M. Fabrication and characterisation of human gut microbiome derived exopolysaccharide mediated silver nanoparticles - An in-vitro and in-vivo approach of Bio-Pm-AgNPs targeting Vibrio cholerae. Int J Biol Macromol 2024; 256:128406. [PMID: 38007009 DOI: 10.1016/j.ijbiomac.2023.128406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/28/2023] [Accepted: 11/22/2023] [Indexed: 11/27/2023]
Abstract
Utilising bacteria to produce silver nanoparticles was highly favoured due to its ability to minimise costs and mitigate any potential negative environmental impact. Exopolysaccharides (EPS) extracted from the human gut microbe have demonstrated remarkable efficacy in combating various bacterial infections. Exopolysaccharide (EPS), a naturally occurring biomolecule found in the human gut isolate Proteus mirabilis DMTMMR-11, was characterised using analytical techniques such as Fourier transform infrared spectroscopy (FTIR), 1H-nuclear magnetic resonance, 13C-nuclear magnetic resonance (NMR), and chemical composition analysis, which confirms the presence of carbohydrates (81.03 ± 0.23), proteins (4.22 ± 1.2), uronic acid (12.1 ± 0.12), and nucleic acid content (2.44 ± 0.15) in exopolysaccharide. The one factor at a time (OFAT) and response surface methodology (RSM) - central composite design (CCD) approaches were used to optimise the production of Bio-Pm-AgNPs, leading to an increase in yield of up to 1.86 g/l. The Bio-Pm-AgNPs were then subjected to Fourier transform infrared spectroscopy (FTIR) which determines the functional groups, X-ray diffractometer confers that Bio-Pm-AgNPs are crystalline in nature, field emission-scanning electron microscopy (FE-SEM) reveals the morphology of Bio-Pm-AgNPs, energy dispersive X-ray spectroscopy (EDX) confirms the presence of elements like Ag, C and O, high-resolution transmission electron microscopy (HR-TEM) determines that the Bio-Pm-AgNPs are sphere-shaped at 75 nm. Dynamic light scattering (DLS) and zeta potential analysis were also carried out to reveal the physiological nature of Bio-Pm-AgNPs. Bio-Pm-AgNPs have a promising effect on the inhibitory mechanism of Vibrio cholerae cells at a MIC concentration of 20 μg/ml which significantly affects cellular respiration and energy metabolism through glycolysis and TCA cycles by deteriorating the enzyme responsible for ATP and NADH utilisation. The action of Bio-Pm-AgNPs reduces the purity and concentration of nucleic acids, which leads to higher DNA damage. In-vivo analysis reveals that the treatment of Bio-Pm-AgNPs decreased the colonisation of V. cholerae and improved the survival rates in C. elegans.
Collapse
Affiliation(s)
- Deepthi Ramya Ravindran
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai, TamilNadu 625021, India
| | - Suganya Kannan
- Central Research Laboratory for Biomedical Research, Vinayaka Mission's Medical College and Hospital, Vinayaka Mission's Research Foundation (Deemed to be University), Karaikal, Puducherry 609609, India
| | - Murugan Marudhamuthu
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai, TamilNadu 625021, India.
| |
Collapse
|
16
|
Rawat N, Ahmad N, Raturi P, Singhvi N, Sahai N, Kothiyal P. Nanobiomaterials: exploring mechanistic roles in combating microbial infections and cancer. DISCOVER NANO 2023; 18:158. [PMID: 38123864 PMCID: PMC10733259 DOI: 10.1186/s11671-023-03946-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023]
Abstract
The initiation of the "nanotechnology era" within the past decade has been prominently marked by advancements in biomaterials. This intersection has opened up numerous possibilities for enhancing the detection, diagnosis, and treatment of various illnesses by leveraging the synergy between biomaterials and nanotechnology. The term "nano biomaterials" referring to biomaterials featuring constituent or surface feature sizes below 100 nm, presents a realm of extraordinary materials endowed with unique structures and properties. Beyond addressing common biomedical challenges, these nano biomaterials contribute unprecedented insights and principles that enrich our understanding of biology, medicine, and materials science. A critical evaluation of recent technological progress in employing biomaterials in medicine is essential, along with an exploration of potential future trends. Nanotechnology breakthroughs have yielded novel surfaces, materials, and configurations with notable applications in the biomedical domain. The integration of nanotechnology has already begun to enhance traditional biomedical practices across diverse fields such as tissue engineering, intelligent systems, the utilization of nanocomposites in implant design, controlled release systems, biosensors, and more. This mini review encapsulates insights into biomaterials, encompassing their types, synthesis methods, and the roles of organic and inorganic nanoparticles, elucidating their mechanisms of action. Furthermore, the focus is squarely placed on nano biomaterials and their versatile applications, with a particular emphasis on their roles in anticancer and antimicrobial interventions. This review underscores the dynamic landscape of nanotechnology, envisioning a future where nano biomaterials play a pivotal role in advancing medical applications, particularly in combating cancer and microbial infections.
Collapse
Affiliation(s)
- Neha Rawat
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, 248007, India
| | - Nabeel Ahmad
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, 248007, India.
| | - Pratishtha Raturi
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, 248007, India
| | - Nirjara Singhvi
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, 248007, India
| | - Nitin Sahai
- 3D Printing and Visualization Center, University of Pecs, Boszorkany str. 2, Pecs, Hungary
- Departmnet of Biomedical Engineering, North Eastern Hill University (Central University), Shillong, India
| | - Preeti Kothiyal
- School of Pharmacy and Research, Dev Bhoomi Uttarakhand University, Dehradun, 248007, India
| |
Collapse
|
17
|
Pernas-Pleite C, Conejo-Martínez AM, Fernández Freire P, Hazen MJ, Marín I, Abad JP. Microalga Broths Synthesize Antibacterial and Non-Cytotoxic Silver Nanoparticles Showing Synergy with Antibiotics and Bacterial ROS Induction and Can Be Reused for Successive AgNP Batches. Int J Mol Sci 2023; 24:16183. [PMID: 38003373 PMCID: PMC10670984 DOI: 10.3390/ijms242216183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The era of increasing bacterial antibiotic resistance requires new approaches to fight infections. With this purpose, silver-based nanomaterials are a reality in some fields and promise new developments. We report the green synthesis of silver nanoparticles (AgNPs) using culture broths from a microalga. Broths from two media, with different compositions and pHs and sampled at two growth phases, produced eight AgNP types. Nanoparticles harvested after several synthesis periods showed differences in antibacterial activity and stability. Moreover, an evaluation of the broths for several consecutive syntheses did not find relevant kinetics or activity differences until the third round. Physicochemical characteristics of the AgNPs (core and hydrodynamic sizes, Z-potential, crystallinity, and corona composition) were determined, observing differences depending on the broths used. AgNPs showed good antibacterial activity at concentrations producing no or low cytotoxicity on cultured eukaryotic cells. All the AgNPs had high levels of synergy against Escherichia coli and Staphylococcus aureus with the classic antibiotics streptomycin and kanamycin, but with ampicillin only against S. aureus and tetracycline against E. coli. Differences in the synergy levels were also dependent on the types of AgNPs. We also found that, for some AgNPs, the killing of bacteria started before the massive accumulation of ROS.
Collapse
Affiliation(s)
- Carlos Pernas-Pleite
- Department of Molecular Biology, Faculty of Sciences, Biology Building, Autonomous University of Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Amparo M. Conejo-Martínez
- Department of Molecular Biology, Faculty of Sciences, Biology Building, Autonomous University of Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Paloma Fernández Freire
- Department of Biology, Faculty of Sciences, Biology Building, Autonomous University of Madrid, Cantoblanco, 29049 Madrid, Spain
| | - María José Hazen
- Department of Biology, Faculty of Sciences, Biology Building, Autonomous University of Madrid, Cantoblanco, 29049 Madrid, Spain
| | - Irma Marín
- Department of Molecular Biology, Faculty of Sciences, Biology Building, Autonomous University of Madrid, Cantoblanco, 28049 Madrid, Spain
| | - José P. Abad
- Department of Molecular Biology, Faculty of Sciences, Biology Building, Autonomous University of Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
18
|
Gaweł J, Milan J, Żebrowski J, Płoch D, Stefaniuk I, Kus-Liśkiewicz M. Biomaterial composed of chitosan, riboflavin, and hydroxyapatite for bone tissue regeneration. Sci Rep 2023; 13:17004. [PMID: 37813934 PMCID: PMC10562422 DOI: 10.1038/s41598-023-44225-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023] Open
Abstract
Biomaterial engineering approaches involve using a combination of miscellaneous bioactive molecules which may promote cell proliferation and, thus, form a scaffold with the environment that favors the regeneration process. Chitosan, a naturally occurring biodegradable polymer, possess some essential features, i.e., biodegradability, biocompatibility, and in the solid phase good porosity, which may contribute to promote cell adhesion. Moreover, doping of the materials with other biocompounds will create a unique and multifunctional scaffold that will be useful in regenerative medicine. This study is focused on the manufacturing and characterization of composite materials based on chitosan, hydroxyapatite, and riboflavin. The resulting films were fabricated by the casting/solvent evaporation method. Morphological and spectroscopy analyses of the films revealed a porous structure and an interconnection between chitosan and apatite. The composite material showed an inhibitory effect on Staphylococcus aureus and exhibited higher antioxidant activity compared to pure chitosan. In vitro studies on riboflavin showed increased cell proliferation and migration of fibroblasts and osteosarcoma cells, thus demonstrating their potential for bone tissue engineering applications.
Collapse
Affiliation(s)
- Justyna Gaweł
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1 St, 35‑310, Rzeszow, Poland
| | - Justyna Milan
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1 St, 35‑310, Rzeszow, Poland
- Laboratory of Innovative Toxicological Research and Analyses, Institute of Medical Studies, Medical College, Rzeszów University, Aleja Majora W. Kopisto 2a, 35-959, Rzeszow, Poland
| | - Jacek Żebrowski
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1 St, 35‑310, Rzeszow, Poland
| | - Dariusz Płoch
- Institute of Materials Engineering, College of Natural Sciences, University of Rzeszow, Pigonia 1 St, 35‑310, Rzeszow, Poland
| | - Ireneusz Stefaniuk
- Institute of Materials Engineering, College of Natural Sciences, University of Rzeszow, Pigonia 1 St, 35‑310, Rzeszow, Poland
| | - Małgorzata Kus-Liśkiewicz
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1 St, 35‑310, Rzeszow, Poland.
| |
Collapse
|
19
|
Rana A, Parmar AS. Re-exploring silver nanoparticles and its potential applications. NANOTECHNOLOGY FOR ENVIRONMENTAL ENGINEERING 2023; 8:789-804. [DOI: 10.1007/s41204-022-00301-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/21/2022] [Indexed: 01/03/2025]
|
20
|
Yildiz T, Durdu S, Ozcan K, Usta M. Characterization and investigation of biological properties of silver nanoparticle-doped hydroxyapatite-based surfaces on zirconium. Sci Rep 2023; 13:6773. [PMID: 37101002 PMCID: PMC10130180 DOI: 10.1038/s41598-023-33992-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/21/2023] [Indexed: 04/28/2023] Open
Abstract
The infections leading to failed implants can be controlled mainly by metal and metal oxide-based nanoparticles. In this work, the randomly distributed AgNPs-doped onto hydroxyapatite-based surfaces were produced on zirconium by micro arc oxidation (MAO) and electrochemical deposition processes. The surfaces were characterized by XRD, SEM, EDX mapping and EDX area and contact angle goniometer. AgNPs-doped MAO surfaces, which is beneficial for bone tissue growth exhibited hydrophilic behaviors. The bioactivity of the AgNPs-doped MAO surfaces is improved compared to bare Zr substrate under SBF conditions. Importantly, the AgNPs-doped MAO surfaces exhibited antimicrobial activity for E. coli and S. aureus compared to control samples.
Collapse
Affiliation(s)
- Tuba Yildiz
- Materials Science and Engineering, Gebze Technical University, 41400, Gebze, Turkey
| | - Salih Durdu
- Industrial Engineering, Giresun University, 28200, Giresun, Turkey.
- Genetics and Bioengineering, Giresun University, 28200, Giresun, Turkey.
- Faculty of Engineering, Giresun University, 28200, Giresun, Turkey.
| | - Kadriye Ozcan
- Genetics and Bioengineering, Giresun University, 28200, Giresun, Turkey
| | - Metin Usta
- Materials Science and Engineering, Gebze Technical University, 41400, Gebze, Turkey.
- Aluminum Research Center (GTU-AAUM), Gebze Technical University, 41400, Gebze, Turkey.
| |
Collapse
|
21
|
Durdu S, Yalçin E, Altinkök A, Çavuşoğlu K. Characterization and investigation of electrochemical and biological properties of antibacterial silver nanoparticle-deposited TiO 2 nanotube array surfaces. Sci Rep 2023; 13:4699. [PMID: 36949171 PMCID: PMC10033515 DOI: 10.1038/s41598-023-31937-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/20/2023] [Indexed: 03/24/2023] Open
Abstract
The one of main reasons of the premature failure of Ti-based implants is infections. The metal- and metal oxide-based nanoparticles have very high potential on controlling of infections. In this work, the randomly distributed AgNPs-deposited onto well-ordered TiO2 nanotube surfaces were fabricated on titanium by anodic oxidation (AO) and electrochemical deposition (ED) processes. AgNPs-deposited nanotube surfaces, which is beneficial for bone tissue growth exhibited hydrophilic behaviors. Moreover, the AgNPs-deposited nanotube surfaces, which prevent the leaching of metallic Ti ions from the implant surface, indicated great corrosion resistance under SBF conditions. The electrochemical corrosion resistance of AgNPs-deposited nanotube surfaces was improved up to about 145% compared to bare Gr2 surface. The cell viability of AgNPs-deposited nanotube surfaces was improved. Importantly, the AgNPs-deposited nanotube surfaces exhibited antibacterial activity for Gram-positive and Gram-negative bacteria. Eventually, it can be concluded that the AgNPs-deposited nanotube surfaces possess high stability for long-term usage of implant applications.
Collapse
Affiliation(s)
- Salih Durdu
- Industrial Engineering, Giresun University, Faculty of Engineering, 28200, Giresun, Turkey.
| | - Emine Yalçin
- Department of Biology, Giresun University, Faculty of Science, 28200, Giresun, Turkey
| | - Atilgan Altinkök
- Turkish Naval Academy, National Defence University, 34940, Istanbul, Turkey
| | - Kültiğin Çavuşoğlu
- Department of Biology, Giresun University, Faculty of Science, 28200, Giresun, Turkey.
| |
Collapse
|
22
|
Alqaraleh M, Khleifat KM, Abu Hajleh MN, Farah HS, Ahmed KAA. Fungal-Mediated Silver Nanoparticle and Biochar Synergy against Colorectal Cancer Cells and Pathogenic Bacteria. Antibiotics (Basel) 2023; 12:antibiotics12030597. [PMID: 36978464 PMCID: PMC10044691 DOI: 10.3390/antibiotics12030597] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Background: Silver nanoparticles (AgNPs) are attractive substrates for new medicinal treatments. Biochar is pyrolyzed biomass. Its porous architecture allows it to hold and gather minuscule particles, through which nanoparticles can accumulate in its porous structure. This study examined AgNPs’ antibacterial and anticancer properties alone and combined with biochar. Methods: The fungus Emericella dentata was responsible for biosynthesis of AgNPs. The characterization of AgNPs using STEM images and a Zetasizer was carried out. Accordingly, the antibacterial and antiproliferation activity of AgNPs and biochar was studied using MIC and MTT assays, respectively. To evaluate the antiangiogenic and anti-inflammatory effects of AgNPs with biochar, VEGF and cytokines including TNF alpha, IL-6 and IL-beta were tested using an ELISA assay. Results: The size of the AgNPs ranged from 10 to 80 nm, with more than 70% of them being smaller than 40 nm. The combination of AgNPs and biochar enhanced the antibacterial activity against all tested bacteria. Furthermore, this combination showed antiproliferative properties against HT29 cancer cells with high selectivity to fibroblasts at low concentrations. AgNPs with biochar significantly reduced VEGF and proinflammatory cytokine expression levels. Conclusions: Biochar and AgNPs may be novel treatments for bacteria and colorectal cancer cells, according to the current findings.
Collapse
Affiliation(s)
- Moath Alqaraleh
- Pharmacological and Diagnostic Research Center (PDRC), Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
- Correspondence: (M.A.); (M.N.A.H.)
| | - Khaled M. Khleifat
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
- Department of Medical Laboratory Sciences, Faculty of Science, Mutah University, Al-Karak 61710, Jordan
| | - Maha N. Abu Hajleh
- Department of Cosmetic Science, Pharmacological and Diagnostic Research Centre, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
- Correspondence: (M.A.); (M.N.A.H.)
| | - Husni S. Farah
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Khaled Abdul-Aziz Ahmed
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| |
Collapse
|
23
|
Arnett LP, Rana R, Chung WWY, Li X, Abtahi M, Majonis D, Bassan J, Nitz M, Winnik MA. Reagents for Mass Cytometry. Chem Rev 2023; 123:1166-1205. [PMID: 36696538 DOI: 10.1021/acs.chemrev.2c00350] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mass cytometry (cytometry by time-of-flight detection [CyTOF]) is a bioanalytical technique that enables the identification and quantification of diverse features of cellular systems with single-cell resolution. In suspension mass cytometry, cells are stained with stable heavy-atom isotope-tagged reagents, and then the cells are nebulized into an inductively coupled plasma time-of-flight mass spectrometry (ICP-TOF-MS) instrument. In imaging mass cytometry, a pulsed laser is used to ablate ca. 1 μm2 spots of a tissue section. The plume is then transferred to the CyTOF, generating an image of biomarker expression. Similar measurements are possible with multiplexed ion bean imaging (MIBI). The unit mass resolution of the ICP-TOF-MS detector allows for multiparametric analysis of (in principle) up to 130 different parameters. Currently available reagents, however, allow simultaneous measurement of up to 50 biomarkers. As new reagents are developed, the scope of information that can be obtained by mass cytometry continues to increase, particularly due to the development of new small molecule reagents which enable monitoring of active biochemistry at the cellular level. This review summarizes the history and current state of mass cytometry reagent development and elaborates on areas where there is a need for new reagents. Additionally, this review provides guidelines on how new reagents should be tested and how the data should be presented to make them most meaningful to the mass cytometry user community.
Collapse
Affiliation(s)
- Loryn P Arnett
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada
| | - Rahul Rana
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada
| | - Wilson Wai-Yip Chung
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada
| | - Xiaochong Li
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada
| | - Mahtab Abtahi
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada
| | - Daniel Majonis
- Standard BioTools Canada Inc. (formerly Fluidigm Canada Inc.), 1380 Rodick Road, Suite 400, Markham, OntarioL3R 4G5, Canada
| | - Jay Bassan
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada
| | - Mark Nitz
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada
| | - Mitchell A Winnik
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada.,Department of Chemical Engineering and Applied Chemistry, 200 College Street, Toronto, OntarioM5S 3E5, Canada
| |
Collapse
|
24
|
One-Step Phytofabrication Method of Silver and Gold Nanoparticles Using Haloxylon salicornicum for Anticancer, Antimicrobial, and Antioxidant Activities. Pharmaceutics 2023; 15:pharmaceutics15020529. [PMID: 36839850 PMCID: PMC9958700 DOI: 10.3390/pharmaceutics15020529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Among various routes of metallic nanoparticle (NPs) fabrication, phytosynthesis has significant advantages over other conventional approaches. Plant-mediated synthesis of NPs is a fast, one-step, ecobenign, and inexpensive method with high scalability. Herein, silver (Ag) and gold (Au)-NPs were extracellularly synthesized using aqueous Haloxylon salicornicum (H@Ag-, H@Au-NPs) leaf extracts. GC-MS was performed to analyze the chemical compositions of H. salicornicum extract. H@Ag- and H@Au-NPs were characterized via UV-Vis spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, transmission and scanning electron microscopy, and Zetasizer. H@Ag- and H@Au-NPs have surface plasmon resonance at 435.5 and 530.3 nm, respectively. FTIR and GC-MS data suggest that secondary plant metabolites and hydrocarbons might be responsible for the reduction and stabilization of NPs. XRD demonstrated that both NPs have a crystalline nature. H@Ag-NPs have a uniform spherical shape, whereas H@Au-NPs are spherical with few oval and triangular shapes, and their average nanosizes were 19.1 ± 0.8 and 8.1 ± 0.3 nm, respectively. Hydrodynamic diameters of H@Ag-NPs and H@Au-NPs were 184.7 nm, 56.4, and 295.4 nm, and their potential charges were -24.0 and -24.4 mV, respectively. The inhibitory activity of 500 µg/mL H@Ag- and H@Au-NPs was tested against Sw480, Sw620, HCT-116, and Caco-2 colon cancer cell lines and two normal cell lines, including HFs and Vero. H@Ag-NPs revealed potent anticancer activity against all cancer cells at low concentrations. Sw480 was the most sensitive cell to H@Ag-NPs, whereas Sw620 was the least permeable one. These findings suggested that the antiproliferative activity of H@Ag-NPs is cell-response-dependent and may be influenced by a variety of factors, including the cellular metabolic state, which influences cellular charge and interactions with charged NPs. Although H@Au-NPs were smaller, their reactivity against cancer cells was weak, suggesting that the chemical properties, metal structure, quantity and chemistry of the functional groups on the NP surface may influence their reactivity. The biocidal activity of 1 mg/mL H@Ag- and H@Au-NPs against Staphylococcus aureus, Bacillus cereus, Escherichia coli and Klebsiella pneumoniae was assessed. H@Ag-NPs showed biocidal activity against Gram-positive bacteria compared to Gram-negative bacteria, whereas H@Au-NPs showed no inhibitory activity. FRAP and DPPH assays were used to determine the scavenging activity of the plant extracts and both NPs. H@Ag-NPs (1 mg/mL) had the greatest scavenging activity compared to tested drugs. These findings suggest that H@Ag-NPs are potent anticancer, antibacterial, and antioxidant agents, while H@Au-NPs may be used as a drug vehicle for pharmaceutical applications.
Collapse
|
25
|
Effects of Amino Acid-Functionalized Silver Nanoparticles on Lysozyme Amyloid Fibrillogenesis. Colloids Surf B Biointerfaces 2023. [DOI: 10.1016/j.colsurfb.2023.113144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
26
|
Srichaiyapol O, Maddocks SE, Thammawithan S, Daduang S, Klaynongsruang S, Patramanon R. TA-AgNPs/Alginate Hydrogel and Its Potential Application as a Promising Antibiofilm Material against Polymicrobial Wound Biofilms Using a Unique Biofilm Flow Model. Microorganisms 2022; 10:2279. [PMID: 36422349 PMCID: PMC9692730 DOI: 10.3390/microorganisms10112279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/09/2022] [Accepted: 11/12/2022] [Indexed: 07/30/2023] Open
Abstract
The presence of biofilm within a chronic wound may delay the healing process. Thus, control of biofilm formation and providing bactericidal effect are crucial factors for wound healing management. Alginate-based nanocomposite hydrogels have been suggested as dressing materials for wound treatment, which are employed as a biocompatible matrix. Therefore, in this study, we aimed to develop a biocompatible antimicrobial wound dressing containing AgNPs and demonstrate its efficacy against polymicrobial wound biofilms by using a biofilm flow device to simulate a chronic infected, exuding wound and specific wound environment. The results from agar well diffusion, the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) assays showed that TA-AgNPs exhibited antibacterial activity against wound pathogens. Additionally, the Minimum Biofilm Eradication Concentration assay (MBEC) demonstrated it could impair biofilm formation. Importantly, our TA-AgNPs/Alginate hydrogel clearly showed antibacterial activities against Streptococcus pyogenes, Staphylococcus aureus and Pseudomonas aeruginosa. Furthermore, we used the biofilm flow device to test the topical antimicrobial hydrogel against a three-species biofilm. We found that TA-AgNPs/Alginate hydrogel significantly showed a 3-4 log reduction in bacterial numbers when applied with multiple doses at 24 h intervals, and was especially effective against the chronic wound pathogen P. aeruginosa. This work highlighted that the TA-AgNPs/Alginate hydrogel is a promising material for treating complex wound biofilms.
Collapse
Affiliation(s)
- Oranee Srichaiyapol
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sarah E. Maddocks
- Microbiology and Infection Research Group, Cardiff School of Health Sciences, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
| | - Saengrawee Thammawithan
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sakda Daduang
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sompong Klaynongsruang
- Program Management Unit for Human Resources and Institutional Development, Research and Innovation (PMU-B), Bangkok 10330, Thailand
| | - Rina Patramanon
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
27
|
Pernas-Pleite C, Conejo-Martínez AM, Marín I, Abad JP. Green Extracellular Synthesis of Silver Nanoparticles by Pseudomonas alloputida, Their Growth and Biofilm-Formation Inhibitory Activities and Synergic Behavior with Three Classical Antibiotics. Molecules 2022; 27:7589. [PMID: 36364415 PMCID: PMC9656067 DOI: 10.3390/molecules27217589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/26/2023] Open
Abstract
Bacterial resistance to antibiotics is on the rise and hinders the fight against bacterial infections, which are expected to cause millions of deaths by 2050. New antibiotics are difficult to find, so alternatives are needed. One could be metal-based drugs, such as silver nanoparticles (AgNPs). In general, chemical methods for AgNPs' production are potentially toxic, and the physical ones expensive, while green approaches are not. In this paper, we present the green synthesis of AgNPs using two Pseudomonas alloputida B003 UAM culture broths, sampled from their exponential and stationary growth phases. AgNPs were physicochemically characterized by transmission electron microscopy (TEM), total reflection X-ray fluorescence (TXRF), infrared spectroscopy (FTIR), dynamic light scattering (DLS), and X-ray diffraction (XRD), showing differential characteristics depending on the synthesis method used. Antibacterial activity was tested in three assays, and we compared the growth and biofilm-formation inhibition of six test bacteria: Bacillus subtilis, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis. We also monitored nanoparticles' synergic behavior through the growth inhibition of E. coli and S. aureus by three classical antibiotics: ampicillin, nalidixic acid, and streptomycin. The results indicate that very good AgNP activity was obtained with particularly low MICs for the three tested strains of P. aeruginosa. A good synergistic effect on streptomycin activity was observed for all the nanoparticles. For ampicillin, a synergic effect was detected only against S. aureus. ROS production was found to be related to the AgNPs' antibacterial activity.
Collapse
Affiliation(s)
| | | | - Irma Marín
- Department of Molecular Biology, Faculty of Sciences, Biology Building, Autonomous University of Madrid, Cantoblanco, 28049 Madrid, Spain
| | - José P. Abad
- Department of Molecular Biology, Faculty of Sciences, Biology Building, Autonomous University of Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
28
|
Selem E, Mekky AF, Hassanein WA, Reda FM, Selim YA. Antibacterial and antibiofilm effects of silver nanoparticles against the uropathogen Escherichia coli U12. Saudi J Biol Sci 2022; 29:103457. [PMID: 36267912 PMCID: PMC9576564 DOI: 10.1016/j.sjbs.2022.103457] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/21/2022] [Accepted: 09/19/2022] [Indexed: 11/26/2022] Open
Abstract
The drug-resistant bacterial strains' emergence increases day by day. This may be a result of biofilm presence, which protects bacteria from antimicrobial agents. Thus, new approaches must be used to control biofilm-related infections in healthcare settings. In such a study, biological silver nanoparticles were introduced in such a study as an anti-biofilm agent against multidrug-resistant E. coli U12 on urinary catheters. Seven different silver nanoparticles concentrations were tested for their antimicrobial activities. Also, anti-biofilm activities against E. coli U12 were tested. Using the dilution method, the silver nanoparticles concentration of 85 μg/ml was the MIC (Minimum Inhibitory Concentration) that had excellent biocompatibility and showed significant antibacterial activity against E. coli U12. Scanning electron microscopy (SEM) confirmed that the highest efficient dose of silver nanoparticles was 340 μg/ml at 144 h that reduced adhesion of E. coli U12 to the urinary catheter. E. coli U12 cells ruptured cell walls and cell membranes after being examined using transmission electron microscopy (TEM). Thus, biologically prepared silver nanoparticles could be used to coat medical devices since it is effective and promising to inhibit biofilm formation by impregnating urinary catheters with silver nanoparticles.
Collapse
Affiliation(s)
- Eman Selem
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Asmaa F. Mekky
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Wesam A. Hassanein
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Fifi M. Reda
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Yasser A. Selim
- Faculty of Specific Education, Zagazig University, Zagazig, Egypt
| |
Collapse
|
29
|
Rodríguez-Barajas N, de Jesús Martín-Camacho U, Pérez-Larios A. Mechanisms of Metallic Nanomaterials to Induce an Antibacterial Effect. Curr Top Med Chem 2022; 22:2506-2526. [PMID: 36121083 DOI: 10.2174/1568026622666220919124104] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 01/20/2023]
Abstract
Pathogenic microorganisms, including bacteria, are becoming resistant to most existing drugs, which increases the failure of pharmacologic treatment. Therefore, new nanomaterials were studied to spearhead improvement against the same resistant pathogenic bacteria. This has increased the mortality in the world population, principally in under-developed countries. Moreover, recently there has been research to find new drug formulations to kill the most dangerous microorganisms, such as bacteria cells which should avoid the spread of disease. Therefore, lately, investigations have been focusing on nanomaterials because they can exhibit the capacity to show an antibacterial effect. These studies have been trying oriented in their ability to produce an improvement to get antibacterial damage against the same pathogenic bacteria resistance. However, there are many problems with the use of nanoparticles. One of them is understanding how they act against bacteria, "their mechanism(s) action" to induce reduction or even kill the bacterial strains. Therefore, it is essential to understand the specific mechanism(s) of each nanomaterial used to observe the interaction between bacteria cells and nanoparticles. In addition, since nanoparticles can be functionalized with different antibacterial drugs, it is necessary to consider and distinguish the antibacterial activity of the nanoparticles from the antibacterial activity of the drugs to avoid confusion about how the nanoparticles work. Knowledge of these differences can help better understand the applications of the primary nanoparticles (i.e., Ag, Au, CuO, ZnO, and TiO2, among others) described in detail in this review which are toxic against various bacterial strains.
Collapse
Affiliation(s)
- Noé Rodríguez-Barajas
- Laboratorio de Investigación en Materiales, Agua y Energía, Departamento de Ingeniería, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, 47600, México
| | - Ubaldo de Jesús Martín-Camacho
- Laboratorio de Investigación en Materiales, Agua y Energía, Departamento de Ingeniería, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, 47600, México
| | - Alejandro Pérez-Larios
- Laboratorio de Investigación en Materiales, Agua y Energía, Departamento de Ingeniería, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, 47600, México
| |
Collapse
|
30
|
Excellent Antimicrobial, Antioxidant, and Catalytic Activities of Medicinal Plant Aqueous Leaf Extract Derived Silver Nanoparticles. Processes (Basel) 2022. [DOI: 10.3390/pr10101949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Antimicrobial resistance is one of the crucial public health challenges that we need to combat. Thus, in concern over public health and the economy, controlling the emergence of infectious diseases is critical worldwide. One of the ways to overcome the influences of antimicrobial resistance is by developing new, efficient, and improved antimicrobial agents. Medicinal plant-derived silver nanoparticles (AgNPs) are under intensive examination for a variety of therapeutic purposes and targeted applications in nanomedicine and nanotechnology. Plants belonging to the genus Thevetia [Syn. Casabela], which is known for its medicinal uses and has rarely been applied for the synthesis of AgNPs, is an attractive alternative as they have a high content of secondary metabolites. Herein, using aqueous leaf extract of Cascabela thevetia, which was locally found in the Makkah region, Saudi Arabia, green synthesis of AgNPs is reported. Active components of Cascabela thevetia aqueous leaf extract were sufficient to reduce AgNO3 into AgNPs and stabilize them as this was confirmed through UV-Visible absorption, Fourier transforms infrared (FTIR), X-ray diffraction (XRD), filed emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) studies. UV-Visible, HPLC, and FTIR analysis demonstrated the presence of gallic acid in aqueous extract and solution of C-AgNPs. The spherical Cascabela thevetia derived C-AgNPs with an average diameter in the range of 20–30 nm were highly dispersed, as seen from FESEM and TEM images, and demonstrated the high antibacterial and antifungal activities when incubated with Gram-positive bacteria Methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus aureus (S. aureus), Enterococcus faecalis (E. faecalis), Gram-negative bacteria Escherichia coli (E. coli), Salmonella typhimurium (S. typhimurium), Klebsiella pneumoniae (K. pneumoniae), Pseudomonas aeruginosa (P. aeruginosa) and fungi Candida albicans (C. albicans) and Candida parapsilosis (C. parapsilosis). The lowest MIC values of C-AgNPs versus S. aureus, E. faecalis, and E. coli were found. Finally, the antioxidant activity and catalytic property of C-AgNPs were assessed by neutralizing DPPH free radical and reducing methylene blue and rhodamine B dyes, respectively.
Collapse
|
31
|
Brucella species-induced brucellosis: Antimicrobial effects, potential resistance and toxicity of silver and gold nanosized particles. PLoS One 2022; 17:e0269963. [PMID: 35834538 PMCID: PMC9282596 DOI: 10.1371/journal.pone.0269963] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/31/2022] [Indexed: 12/02/2022] Open
Abstract
Brucellosis is an endemic zoonotic disease caused by Brucella species, which are intramacrophage pathogens that make treating this disease challenging. The negative effects of the treatment regime have prompted the development of new antimicrobials against brucellosis. A new treatment modality for antibiotic-resistant microorganisms is the use of nanoparticles (NPs). In this study, we examined the antibacterial activities of silver and gold NPs (SNPs and GNPs, respectively), the resistance developed by Brucella melitensis (B. melitensis) and Brucella abortus (B. abortus) strains and the toxicity of both of these NPs in experimental rats. To test the bactericidal effects of the SNPs and GNPs, we used 22 multidrug-resistant Brucella isolates (10 B. melitensis and 12 B. abortus). The minimal inhibitory concentrations (MICs) of both types of NPs were determined utilizing the microdilution technique. To test the stability of resistance, 7 B. melitensis and 6 B. abortus isolates were passaged ten times in culture with subinhibitory concentrations of NPs and another ten times without NPs. Histopathological analysis was completed after rats were given 0.25, 0.5, 1, and 2 mg/kg NPs orally for 28 consecutive days. The MIC values (μg/ml) of the 10-nm SNPs and 20-nm GNPs against B. melitensis were 22.43 ± 2.32 and 13.56 ± 1.22, while these values were 18.77 ± 1.33 and 12.45 ± 1.59 for B. abortus, respectively. After extensive in vitro exposure, most strains showed no resistance to the 10-nm SNPs or 20-nm GNPs. The NPs and antibiotics did not cross-react in any of the evolved Brucella strains. SNPs and GNPs at doses below 2 mg/kg were not harmful to rat tissue according to organ histopathological examinations. However, a greater dose of NPs (2 mg/kg) harmed all of the tissues studied. The bactericidal properties of NPs are demonstrated in this work. Brucella strains develop similar resistance to SNPs and GNPs, and at low dosages, neither SNPs nor GNPs were hazardous to rats.
Collapse
|
32
|
Kumar V, Kumar A, Chauhan NS, Yadav G, Goswami M, Packirisamy G. Design and Fabrication of a Dual Protein-Based Trilayered Nanofibrous Scaffold for Efficient Wound Healing. ACS APPLIED BIO MATERIALS 2022; 5:2726-2740. [PMID: 35594572 DOI: 10.1021/acsabm.2c00200] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chronic wound healing is a major threat all over the world. There are currently a plethora of biomaterials-based wound dressings available for wound healing applications. In this study, a dual protein-based (silk fibroin and sericin) nanofibrous scaffold from a natural source (B.mori silkworm cocoons) with antibacterial and antioxidative properties for wound healing was investigated. An electrospun layer-by-layer silk protein-based nanofibrous scaffold was fabricated with a top layer of hydrophobic silk fibroin protein blended with polyvinyl alcohol (PVA), a middle layer of waste protein silk sericin loaded with silver(I) sulfadiazine as an antibacterial agent, and a bottom layer using silk fibroin blended with polycaprolactone (PCL). The trilayered nanofibrous scaffold with a smooth and bead-free morphology demonstrated excellent wettability, slow in vitro degradation, controlled drug release, and potent antibacterial and antioxidant properties. In vitro, the scaffold also demonstrated excellent hemocompatibility and biocompatibility. Furthermore, in vivo wound contraction, histological, and micro-CT investigations show complete wound healing and the formation of new skin tissue in a male Balb/c mouse model treated with the scaffold. The antioxidant properties of the sericin protein and SSD-based triple-layered nanofibrous scaffold protect the wound from bacterial infection and improve wound healing in a mouse model. The current study develops a dual protein-based nanofibrous scaffold with antibacterial and antioxidant properties as a promising wound dressing material.
Collapse
Affiliation(s)
- Vinay Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee Roorkee 247667, Uttarakhand, India
| | - Amit Kumar
- Laboratory Animal Facility, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, Jammu and Kashmir, India
| | - Narendra Singh Chauhan
- Laboratory Animal Facility, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, Jammu and Kashmir, India
| | - Govind Yadav
- Laboratory Animal Facility, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, Jammu and Kashmir, India
| | - Mayank Goswami
- Divyadrishti Imaging Laboratory, Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Gopinath Packirisamy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee Roorkee 247667, Uttarakhand, India.,Nanobiotechnology Laboratory, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
33
|
Shabatina T, Vernaya O, Shumilkin A, Semenov A, Melnikov M. Nanoparticles of Bioactive Metals/Metal Oxides and Their Nanocomposites with Antibacterial Drugs for Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3602. [PMID: 35629629 PMCID: PMC9147160 DOI: 10.3390/ma15103602] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023]
Abstract
The increasing appearance of new strains of microorganisms resistant to the action of existing antibiotics is a modern problem that requires urgent decision. A promising potential solution is the use of nanoparticles of bioactive metals and their oxides as new antibacterial agents, since they are capable of affecting pathogenic microorganisms by mechanisms different from the mechanisms of action of antibiotics. Inorganic nanoparticles possess a wide spectrum of antibacterial activity. These particles can be easily conjugated with drug molecules and become carriers in targeted drug-delivery systems. This paper discusses the benefits and prospects of the application of nanoparticles from metals and metal oxides and their nanocomposites with antibacterial drugs.
Collapse
Affiliation(s)
- Tatyana Shabatina
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia; (O.V.); (A.S.); (A.S.); (M.M.)
- Department of Natural Sciences, N.E. Bauman Moscow State Technical University, Moscow 105005, Russia
| | - Olga Vernaya
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia; (O.V.); (A.S.); (A.S.); (M.M.)
| | - Aleksei Shumilkin
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia; (O.V.); (A.S.); (A.S.); (M.M.)
| | - Alexander Semenov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia; (O.V.); (A.S.); (A.S.); (M.M.)
- Department of Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Mikhail Melnikov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia; (O.V.); (A.S.); (A.S.); (M.M.)
| |
Collapse
|
34
|
Biogenic Preparation, Characterization, and Biomedical Applications of Chitosan Functionalized Iron Oxide Nanocomposite. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6050120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Chitosan (CS) functionalization over nanomaterials has gained more attention in the biomedical field due to their biocompatibility, biodegradability, and enhanced properties. In the present study, CS functionalized iron (II) oxide nanocomposite (CS/FeO NC) was prepared using Sida acuta leaf extract by a facile and eco-friendly green chemistry route. Phyto-compounds of S. acuta leaf were used as a reductant to prepare CS/FeO NC. The existence of CS and FeO crystalline peaks in CS/FeO NC was confirmed by XRD. FE-SEM analysis revealed that the prepared CS/FeO NC were spherical with a 10–100 nm average size. FTIR analyzed the existence of CS and metal-oxygen bands in the prepared NC. The CS/FeO NC showed the potential bactericidal activity against E. coli, B. subtilis, and S. aureus pathogens. Further, CS/FeO NC also exhibited the dose-dependent anti-proliferative property against human lung cancer cells (A549). Thus, the obtained outcomes revealed that the prepared CS/FeO NC could be a promising candidate in the biomedical sector to inhibit the growth of bacterial pathogens and lung cancer cells.
Collapse
|
35
|
Combating Bacterial Biofilm Formation in Urinary Catheter by Green Silver Nanoparticle. Antibiotics (Basel) 2022; 11:antibiotics11040495. [PMID: 35453246 PMCID: PMC9032029 DOI: 10.3390/antibiotics11040495] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 02/06/2023] Open
Abstract
Urinary catheters are commonly associated with urinary tract infections. This study aims to inhibit bacterial colonisation and biofilm of urinary tract catheters. Silicon catheter pieces were varnished with green silver nanoparticles (AgNPs) using Pistacia lentiscus mastic to prevent bacterial colonisation. Pomegranate rind extract was used to synthesize AgNPs. AgNPs were characterized by UV-Vis spectroscopy, X-ray crystallography, and transmission electron microscopy (TEM). Results obtained revealed that the size of most AgNPs ranged between 15–25 nm and they took crystallised metal and oxidised forms. The amounts of released silver ions from 1 cm pieces of catheters coated with AgNPs were estimated for five days and ranged between 10.82 and 4.8 µg. AgNPs coated catheters significantly inhibited the colonisation of catheters by antibiotic-resistant clinical Gram-positive (Staphylococcus epidermidis and Staphylococcus aureus) and Gram-negative (Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, and Pseudomonas aeruginosa) bacteria. AgNPs-varnish was more active against Gram-negative bacteria than Gram-positive bacteria. The significant inhibitory effect of coated catheters lasted for 72 h for both Gram-positive and Gram-negative bacteria. Varnishing catheters with AgNPs may help to prevent bacterial colonisation and infections.
Collapse
|
36
|
Tripathi N, Goshisht MK. Recent Advances and Mechanistic Insights into Antibacterial Activity, Antibiofilm Activity, and Cytotoxicity of Silver Nanoparticles. ACS APPLIED BIO MATERIALS 2022; 5:1391-1463. [PMID: 35358388 DOI: 10.1021/acsabm.2c00014] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The substantial increase in multidrug-resistant (MDR) pathogenic bacteria is a major threat to global health. Recently, the Centers for Disease Control and Prevention reported possibilities of greater deaths due to bacterial infections than cancer. Nanomaterials, especially small-sized (size ≤10 nm) silver nanoparticles (AgNPs), can be employed to combat these deadly bacterial diseases. However, high reactivity, instability, susceptibility to fast oxidation, and cytotoxicity remain crucial shortcomings for their uptake and clinical application. In this review, we discuss various AgNPs-based approaches to eradicate bacterial infections and provide comprehensive mechanistic insights and recent advances in antibacterial activity, antibiofilm activity, and cytotoxicity (both in vitro and in vivo) of AgNPs. The mechanistic of antimicrobial activity involves four steps: (i) adhesion of AgNPs to cell wall/membrane and its disruption; (ii) intracellular penetration and damage; (iii) oxidative stress; and (iv) modulation of signal transduction pathways. Numerous factors affecting the bactericidal activity of AgNPs such as shape, size, crystallinity, pH, and surface coating/charge have also been described in detail. The review also sheds light on antimicrobial photodynamic therapy and the role of AgNPs versus Ag+ ions release in bactericidal activities. In addition, different methods of synthesis of AgNPs have been discussed in brief.
Collapse
Affiliation(s)
- Neetu Tripathi
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Manoj Kumar Goshisht
- Department of Chemistry, Government Naveen College Tokapal, Bastar, Chhattisgarh 494442, India
| |
Collapse
|
37
|
Girija AR, Balasubramanian S, Cowin AJ. Nanomaterials-based drug delivery approaches for wound healing. Curr Pharm Des 2022; 28:711-726. [DOI: 10.2174/1381612828666220328121211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/11/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Wound healing is a complex and dynamic process that requires intricate synchronization between multiple cell types within appropriate extracellular microenvironment. Wound healing process involves four overlapping phases in a precisely regulated manner, consisting of hemostasis, inflammation, proliferation, and maturation. For an effective wound healing all four phases must follow in a sequential pattern within a time frame. Several factors might interfere with one or more of these phases in healing process, thus causing improper or impaired wound healing resulting in non-healing chronic wounds. The complications associated with chronic non-healing wounds, along with the limitations of existing wound therapies, have led to the development and emergence of novel and innovative therapeutic interventions. Nanotechnology presents unique and alternative approaches to accelerate the healing of chronic wounds by the interaction of nanomaterials during different phases of wound healing. This review focuses on recent innovative nanotechnology-based strategies for wound healing and tissue regeneration based on nanomaterials, including nanoparticles, nanocomposites and scaffolds. The efficacy of the intrinsic therapeutic potential of nanomaterials (including silver, gold, zinc oxide, copper, cerium oxide, etc.) and the ability of nanomaterials as carriers (liposomes, hydrogels, polymeric nanomaterials, nanofibers) as therapeutic agents associated with wound-healing applications have also been addressed. The significance of these nanomaterial-based therapeutic interventions for wound healing needs to be highlighted to engage researchers and clinicians towards this new and exciting area of bio-nanoscience. We believe that these recent developments will offer researchers an updated source on the use of nanomaterials as an advanced approach to improve wound healing.
Collapse
|
38
|
Suriyakala G, Sathiyaraj S, Devanesan S, AlSalhi MS, Rajasekar A, Maruthamuthu MK, Babujanarthanam R. Phytosynthesis of silver nanoparticles from Jatropha integerrima Jacq. flower extract and their possible applications as antibacterial and antioxidant agent. Saudi J Biol Sci 2022; 29:680-688. [PMID: 35197733 PMCID: PMC8848134 DOI: 10.1016/j.sjbs.2021.12.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 12/15/2022] Open
Abstract
Jatropha integerrima Jacq. flower extract was used for the synthesis of silver nanoparticles in the current study. Various spectroscopic analyses were used to characterize the synthesized nanoparticles (JIF-AgNPs). The antibacterial efficacy of JIF-AgNPs was studied by well diffusion and microdilution techniques. In addition, the impact of JIF-AgNPs on free radicals was evaluated. On the ultraviolet–visible spectrum, the nanoparticles exhibit the highest absorbance at 422 nm. Based on the Fourier transform infrared spectrum, phenols and amino acids were involved in capping the JIF-AgNPs. Crystalline sphere-shaped nanoparticles with an average size of 50.07 nm and zeta potential of −19.0 mV were confirmed by X-ray diffraction, transmission electron microscopy, and dynamic light scattering analysis respectively. The JIF-AgNPs exhibit the highest and lowest growth inhibitory activity towards E. coli and B. subtilis. The minimal inhibitory concentration of JIF-AgNPs against E. coli, K. pneumoniae, S. aureus, and B. subtilis were 2.5, 5.0, 5.0, and 7.5 μg/mL, respectively. The JIF-AgNPs exhibited significant radical scavenging activities against DPPH (IC50-32.5 ± 0.06 µg/mL), hydroxyl (IC50-25 ± 0.09 µg/mL), Superoxide (IC50-42.5 ± 0.13 µg/mL), and ABTs (IC50-33.5 ± 0.15 µg/mL). Thus, synthesized nanoparticles were a good alternative to develop an antibacterial and antioxidant agent.
Collapse
|
39
|
Chauhan A, Sillu D, Dhiman NK, Agnihotri S. Silver-Based Nano-formulations for Treating Antibiotic-Resistant Microbial Strains. NANOTECHNOLOGY IN THE LIFE SCIENCES 2022:279-309. [DOI: 10.1007/978-3-031-10220-2_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
40
|
Comparative studies of the biological efficacies of Ag and Ag-MgO nanocomposite formed by the green synthesis route. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2021.109082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|