1
|
Zhuang Z, Chen Y, Liu Z, Fu Y, Wang F, Bai L. Pharmacological validation of a novel exopolysaccharide from Streptomyces sp. 139 to effectively inhibit cytokine storms. Heliyon 2024; 10:e34392. [PMID: 39816356 PMCID: PMC11734065 DOI: 10.1016/j.heliyon.2024.e34392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 01/18/2025] Open
Abstract
With the rapid development of immunotherapy in recent years, cytokine storm has been recognized as a common adverse effect of immunotherapy. The emergence of COVID-19 has renewed global attention to it. The cytokine storm's inflammatory response results in infiltration of large amounts of monocytes/macrophages in the lungs, heart, spleen, lymph nodes, and kidneys. This infiltration leads to secondary tissue damage, acute respiratory distress syndrome (ARDS), organismal damage, and even death. However, there is currently no designated treatment for cytokine storm and the resulting ARDS. Consequently, there is a pressing need to identify a pharmaceutical agent that can effectively mitigate cytokine storms. Ebosin is a new exopolysaccharide generated by Streptomyces sp.139 and pharmacological activity for cytokine storm is investigated in vivo. The results show that Ebosin significantly augments the survival rates of mice, and its effectiveness increases with higher doses. It significantly inhibited the expression of cytokines IL-5, IL-6, IL-9 and chemokine Eotaxin in serum and lung tissues. Ebosin can alleviate the pathological damage in the lungs, liver, and spleen caused by LPS. Additionally, it can inhibit the phosphorylation of IKKα/β, Stat3 and NF-κB p65 upon LPS stimulation in vitro. We hypothesized that Ebosin may decrease cytokine release by inhibiting the phosphorylation of IKKα/β, Stat3, and NF-κB p65, neutrophil infiltration in animals. The article preliminarily elucidated the activity and mechanism of Ebosin against cytokine storm, which provides a reference for the study of anti-cytokine storm activity of microbial natural products.
Collapse
Affiliation(s)
- Zhuochen Zhuang
- NHC Key Laboratory of Biotechnology of Antibiotics, CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yu Chen
- NHC Key Laboratory of Biotechnology of Antibiotics, CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- School of Basic Medicine and Forensic Medicine, Baotou Medical College, Baotou, 014040, Inner Mongolia, China
| | - Zhe Liu
- NHC Key Laboratory of Biotechnology of Antibiotics, CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yu Fu
- NHC Key Laboratory of Biotechnology of Antibiotics, CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Fei Wang
- The Affiliated Hospital, Inner Mongolia Medical University, 1 Tong Dao Street, Hohhot, 010050, Inner Mongolia, China
| | - Liping Bai
- NHC Key Laboratory of Biotechnology of Antibiotics, CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| |
Collapse
|
2
|
Oliveira L, Silva MC, Gomes AP, Santos RF, Cardoso MS, Nóvoa A, Luche H, Cavadas B, Amorim I, Gärtner F, Malissen B, Mallo M, Carmo AM. CD5L as a promising biological therapeutic for treating sepsis. Nat Commun 2024; 15:4119. [PMID: 38750020 PMCID: PMC11096381 DOI: 10.1038/s41467-024-48360-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
Sepsis results from systemic, dysregulated inflammatory responses to infection, culminating in multiple organ failure. Here, we demonstrate the utility of CD5L for treating experimental sepsis caused by cecal ligation and puncture (CLP). We show that CD5L's important features include its ability to enhance neutrophil recruitment and activation by increasing circulating levels of CXCL1, and to promote neutrophil phagocytosis. CD5L-deficient mice exhibit impaired neutrophil recruitment and compromised bacterial control, rendering them susceptible to attenuated CLP. CD5L-/- peritoneal cells from mice subjected to medium-grade CLP exhibit a heightened pro-inflammatory transcriptional profile, reflecting a loss of control of the immune response to the infection. Intravenous administration of recombinant CD5L (rCD5L) in immunocompetent C57BL/6 wild-type (WT) mice significantly ameliorates measures of disease in the setting of high-grade CLP-induced sepsis. Furthermore, rCD5L lowers endotoxin and damage-associated molecular pattern (DAMP) levels, and protects WT mice from LPS-induced endotoxic shock. These findings warrant the investigation of rCD5L as a possible treatment for sepsis in humans.
Collapse
Affiliation(s)
- Liliana Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - M Carolina Silva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
- Universidade de Aveiro, Aveiro, Portugal
| | - Ana P Gomes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Rita F Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
- ESS, Politécnico do Porto, Porto, Portugal
| | - Marcos S Cardoso
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
- ESS, Politécnico do Porto, Porto, Portugal
| | - Ana Nóvoa
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Hervé Luche
- Centre d'Immunophénomique (CIPHE), Aix Marseille Université, INSERM, CNRS, 13288, Marseille, France
| | - Bruno Cavadas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Irina Amorim
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Fátima Gärtner
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Bernard Malissen
- Centre d'Immunophénomique (CIPHE), Aix Marseille Université, INSERM, CNRS, 13288, Marseille, France
| | - Moisés Mallo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Alexandre M Carmo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal.
| |
Collapse
|
3
|
Rashid A, Brusletto BS, Al-Obeidat F, Toufiq M, Benakatti G, Brierley J, Malik ZA, Hussain Z, Alkhazaimi H, Sharief J, Kadwa R, Sarpal A, Chaussabel D, Malik RA, Quraishi N, Khilnani P, Zaki SA, Nadeem R, Shaikh G, Al-Dubai A, Hafez W, Hussain A. A TRANSCRIPTOMIC APPRECIATION OF CHILDHOOD MENINGOCOCCAL AND POLYMICROBIAL SEPSIS FROM A PRO-INFLAMMATORY AND TRAJECTORIAL PERSPECTIVE, A ROLE FOR VASCULAR ENDOTHELIAL GROWTH FACTOR A AND B MODULATION? Shock 2023; 60:503-516. [PMID: 37553892 PMCID: PMC10581425 DOI: 10.1097/shk.0000000000002192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/12/2023] [Accepted: 07/19/2023] [Indexed: 08/10/2023]
Abstract
ABSTRACT This study investigated the temporal dynamics of childhood sepsis by analyzing gene expression changes associated with proinflammatory processes. Five datasets, including four meningococcal sepsis shock (MSS) datasets (two temporal and two longitudinal) and one polymicrobial sepsis dataset, were selected to track temporal changes in gene expression. Hierarchical clustering revealed three temporal phases: early, intermediate, and late, providing a framework for understanding sepsis progression. Principal component analysis supported the identification of gene expression trajectories. Differential gene analysis highlighted consistent upregulation of vascular endothelial growth factor A (VEGF-A) and nuclear factor κB1 (NFKB1), genes involved in inflammation, across the sepsis datasets. NFKB1 gene expression also showed temporal changes in the MSS datasets. In the postmortem dataset comparing MSS cases to controls, VEGF-A was upregulated and VEGF-B downregulated. Renal tissue exhibited higher VEGF-A expression compared with other tissues. Similar VEGF-A upregulation and VEGF-B downregulation patterns were observed in the cross-sectional MSS datasets and the polymicrobial sepsis dataset. Hexagonal plots confirmed VEGF-R (VEGF receptor)-VEGF-R2 signaling pathway enrichment in the MSS cross-sectional studies. The polymicrobial sepsis dataset also showed enrichment of the VEGF pathway in septic shock day 3 and sepsis day 3 samples compared with controls. These findings provide unique insights into the dynamic nature of sepsis from a transcriptomic perspective and suggest potential implications for biomarker development. Future research should focus on larger-scale temporal transcriptomic studies with appropriate control groups and validate the identified gene combination as a potential biomarker panel for sepsis.
Collapse
Affiliation(s)
- Asrar Rashid
- School of Computing, Edinburgh Napier University, Edinburgh, United Kingdom
- NMC Royal Hospital, Abu Dhabi, United Arab Emirates
| | - Berit S. Brusletto
- The Blood Cell Research Group, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, Norway
| | - Feras Al-Obeidat
- College of Technological Innovation at Zayed University, Abu Dhabi, United Arab Emirates
| | - Mohammed Toufiq
- The Jackson Laboratory for Genomic Medicine Farmington, Connecticut, USA
| | - Govind Benakatti
- Medanta Gururam, Delhi, India
- Yas Clinic, Abu Dhabi, United Arab Emirates
| | - Joe Brierley
- Great Ormond Street Children's Hospital, London, United Kingdom
| | - Zainab A. Malik
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Zain Hussain
- Edinburgh Medical School, University go Edinburgh, Edinburgh, United Kingdom
| | | | | | - Raziya Kadwa
- NMC Royal Hospital, Abu Dhabi, United Arab Emirates
| | - Amrita Sarpal
- Sidra Medicine, Doha, Qatar
- Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Damien Chaussabel
- The Jackson Laboratory for Genomic Medicine Farmington, Connecticut, USA
| | - Rayaz A. Malik
- Weill Cornell Medicine-Qatar, Doha, Qatar
- Institute of Cardiovascular Science, University of Manchester, Manchester, United Kingdom
| | - Nasir Quraishi
- Centre for Spinal Studies & Surgery, Queen's Medical Centre, The University of Nottingham, Nottingham, United Kingdom
| | | | - Syed A. Zaki
- All India Institute of Medical Sciences, Hyderabad, India
| | | | - Guftar Shaikh
- Endocrinology, Royal Hospital for Children, Glasgow, United Kingdom
| | - Ahmed Al-Dubai
- School of Computing, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Wael Hafez
- NMC Royal Hospital, Abu Dhabi, United Arab Emirates
- Medical Research Division, Department of Internal Medicine, The National Research Centre, Cairo, Egypt
| | - Amir Hussain
- School of Computing, Edinburgh Napier University, Edinburgh, United Kingdom
| |
Collapse
|
4
|
Elloumi N, Bahloul M, Benabdallah E, Kharrat S, Fakhfakh R, Bouchaala K, Abida O, Chtara K, Masmoudi H, Bouaziz M. Genes regulating oxidative-inflammatory response in circulating monocytes and neutrophils in septic syndrome. Biol Futur 2023; 74:199-207. [PMID: 37291472 DOI: 10.1007/s42977-023-00168-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 05/13/2023] [Indexed: 06/10/2023]
Abstract
Despite significant progress in the past decades, sepsis still lacks a specific treatment. Under normal conditions, leucocytes play a critical role in controlling infection and it is suggested that their activity is impaired during sepsis which contribute to the dysregulation of immune reactions. Indeed, in response to infection, several intracellular pathways are affected mainly those regulating the oxidative- inflammatory axis. Herein, we focused on the contribution of NF-kB, iNOS, Nrf2, HO-1 and MPO genes in the pathophysiology of septic syndrome, by analyzing the differential expression of their transcripts in circulating monocytes and neutrophils, and monitoring the nitrosative/oxidative status in septic syndrome patients. Circulating neutrophils of septic patients displayed a significant overexpression of NF-kB compared to other groups. In monocytes, patients with septic shock expressed the highest levels of iNOS and NF-kB mRNA. However, genes involved in cytoprotective response had increased expression in patients with sepsis, in particular, the Nrf2 and its target gene HO-1. Moreover, patient monitoring indicates that the iNOS enzyme expression and NO plasma levels may play a role in assessing the severity of septic conditions. Overall, in either monocytes or neutrophils, we pointed out the major role of NF-κB and Nrf2 in the pathophysiological process. Therefore, therapies targeted to redox abnormalities may be useful for better management of septic patients.
Collapse
Affiliation(s)
- Nesrine Elloumi
- Research Laboratory LR18/SP12 Auto-Immunity, Cancer and Immunogenetics, Immunology Department, Habib Bourguiba University Hospital, University of Sfax, 3029, Sfax, Tunisia.
| | - Mabrouk Bahloul
- Department of Intensive Care, Habib Bourguiba University Hospital, Sfax, Tunisia
| | - Emna Benabdallah
- Research Laboratory LR18/SP12 Auto-Immunity, Cancer and Immunogenetics, Immunology Department, Habib Bourguiba University Hospital, University of Sfax, 3029, Sfax, Tunisia
| | - Sana Kharrat
- Department of Intensive Care, Habib Bourguiba University Hospital, Sfax, Tunisia
| | - Raouia Fakhfakh
- Research Laboratory LR18/SP12 Auto-Immunity, Cancer and Immunogenetics, Immunology Department, Habib Bourguiba University Hospital, University of Sfax, 3029, Sfax, Tunisia
| | - Karama Bouchaala
- Department of Intensive Care, Habib Bourguiba University Hospital, Sfax, Tunisia
| | - Olfa Abida
- Research Laboratory LR18/SP12 Auto-Immunity, Cancer and Immunogenetics, Immunology Department, Habib Bourguiba University Hospital, University of Sfax, 3029, Sfax, Tunisia
| | - Kamilia Chtara
- Department of Intensive Care, Habib Bourguiba University Hospital, Sfax, Tunisia
| | - Hatem Masmoudi
- Research Laboratory LR18/SP12 Auto-Immunity, Cancer and Immunogenetics, Immunology Department, Habib Bourguiba University Hospital, University of Sfax, 3029, Sfax, Tunisia
| | - Mounir Bouaziz
- Department of Intensive Care, Habib Bourguiba University Hospital, Sfax, Tunisia
| |
Collapse
|
5
|
Rice M, Nicol A, Nuovo GJ. The differential expression of toll like receptors and RIG-1 in the placenta of neonates with in utero infections. Ann Diagn Pathol 2023; 62:152080. [PMID: 36535188 DOI: 10.1016/j.anndiagpath.2022.152080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Novel biomarkers of in utero infections are needed to help guide early therapy. The toll like receptors (TLRs) and retinoic acid-inducible gene 1 (RIG-1) are proteins involved in the initial reaction of the innate immune system to infectious diseases. This study tested the hypothesis that a panel of TLRs and RIG-1 in the placenta could serve as an early biomarker of in utero infections. The TLRs and RIG-1 expression as determined by immunohistochemistry was scored in 10 control placentas (normal delivery or neonatal damage from known non-infectious cause), 8 placentas from documented in utero bacterial infection, and 7 placentas from documented in utero viral infections blinded to the clinical information. The non-infected placentas showed the following profile: no expression (TLR1, TLR3, TLR4, TLR7, TLR8), moderate expression (TLR2), and strong expression (RIG-1). The bacterial and viral infection cases shared the following profile: no to mild expression (TLR 2, TLR7, and RIG1), moderate expression (TLR4), and strong expression (TLR1, TLR3, and TLR8). The histologic findings in the chorionic villi were equivalent in the infected cases and controls, underscoring the need for molecular testing by the surgical pathologist when in utero infection is suspected. The results suggest that a panel of TLRs/RIG-1 analyses can allow the pathologist and/or clinician to diagnose in utero infections soon after birth. Also, treatments to antagonize the effects of TLR1, 3, and 8 may help abrogate in utero neonatal damage.
Collapse
Affiliation(s)
| | - Alcina Nicol
- National Institute of Infectology (INI - FIOCRUZ), Rio de Janeiro, Brazil
| | - Gerard J Nuovo
- GnomeDX, Powell, OH, USA; Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
6
|
Zheng H, Wu P, Bonnet PA. Recent Advances on Small-Molecule Antagonists Targeting TLR7. Molecules 2023; 28:molecules28020634. [PMID: 36677692 PMCID: PMC9865772 DOI: 10.3390/molecules28020634] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
Toll-like receptor 7 (TLR7) is a class of pattern recognition receptors (PRRs) recognizing the pathogen-associated elements and damage and as such is a major player in the innate immune system. TLR7 triggers the release of pro-inflammatory cytokines or type-I interferons (IFN), which is essential for immunoregulation. Increasing reports also highlight that the abnormal activation of endosomal TLR7 is implicated in various immune-related diseases, carcinogenesis as well as the proliferation of human immunodeficiency virus (HIV). Hence, the design and development of potent and selective TLR7 antagonists based on small molecules or oligonucleotides may offer new tools for the prevention and management of such diseases. In this review, we offer an updated overview of the main structural features and therapeutic potential of small-molecule antagonists of TLR7. Various heterocyclic scaffolds targeting TLR7 binding sites are presented: pyrazoloquinoxaline, quinazoline, purine, imidazopyridine, pyridone, benzanilide, pyrazolopyrimidine/pyridine, benzoxazole, indazole, indole, and quinoline. Additionally, their structure-activity relationships (SAR) studies associated with biological activities and protein binding modes are introduced.
Collapse
Affiliation(s)
- Haoyang Zheng
- Faculty of Pharmacy, Montpellier University, 34093 Montpellier, France
| | - Peiyang Wu
- School of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Pierre-Antoine Bonnet
- Institut des Biomolécules Max Mousseron IBMM, Ecole Nationale Supérieure de Chimie de Montpellier ENSCM, Montpellier University, Centre National de La Recherche Scientifique CNRS, 34093 Montpellier, France
- Correspondence:
| |
Collapse
|
7
|
Liang S, Xing M, Chen X, Peng J, Song Z, Zou W. Predicting the prognosis in patients with sepsis by a pyroptosis-related gene signature. Front Immunol 2022; 13:1110602. [PMID: 36618365 PMCID: PMC9811195 DOI: 10.3389/fimmu.2022.1110602] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Background Sepsis remains a life-threatening disease with a high mortality rate that causes millions of deaths worldwide every year. Many studies have suggested that pyroptosis plays an important role in the development and progression of sepsis. However, the potential prognostic and diagnostic value of pyroptosis-related genes in sepsis remains unknown. Methods The GSE65682 and GSE95233 datasets were obtained from Gene Expression Omnibus (GEO) database and pyroptosis-related genes were obtained from previous literature and Molecular Signature Database. Univariate cox analysis and least absolute shrinkage and selection operator (LASSO) cox regression analysis were used to select prognostic differentially expressed pyroptosis-related genes and constructed a prognostic risk score. Functional analysis and immune infiltration analysis were used to investigate the biological characteristics and immune cell enrichment in sepsis patients who were classified as low- or high-risk based on their risk score. Then the correlation between pyroptosis-related genes and immune cells was analyzed and the diagnostic value of the selected genes was assessed using the receiver operating characteristic curve. Results A total of 16 pyroptosis-related differentially expressed genes were identified between sepsis patients and healthy individuals. A six-gene-based (GZMB, CHMP7, NLRP1, MYD88, ELANE, and AIM2) prognostic risk score was developed. Based on the risk score, sepsis patients were divided into low- and high-risk groups, and patients in the low-risk group had a better prognosis. Functional enrichment analysis found that NOD-like receptor signaling pathway, hematopoietic cell lineage, and other immune-related pathways were enriched. Immune infiltration analysis showed that some innate and adaptive immune cells were significantly different between low- and high-risk groups, and correlation analysis revealed that all six genes were significantly correlated with neutrophils. Four out of six genes (GZMB, CHMP7, NLRP1, and AIM2) also have potential diagnostic value in sepsis diagnosis. Conclusion We developed and validated a novel prognostic predictive risk score for sepsis based on six pyroptosis-related genes. Four out of the six genes also have potential diagnostic value in sepsis diagnosis.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Manyu Xing
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingyi Peng
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zongbin Song
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wangyuan Zou
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China,*Correspondence: Wangyuan Zou,
| |
Collapse
|
8
|
Ismail Y, Fahmy DM, Ghattas MH, Ahmed MM, Zehry W, Saleh SM, Abo-elmatty DM. Integrating experimental model, LC-MS/MS chemical analysis, and systems biology approach to investigate the possible antidiabetic effect and mechanisms of Matricaria aurea (Golden Chamomile) in type 2 diabetes mellitus. Front Pharmacol 2022; 13:924478. [PMID: 36160451 PMCID: PMC9490514 DOI: 10.3389/fphar.2022.924478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/11/2022] [Indexed: 11/18/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a heterogeneous disease with numerous abnormal targets and pathways involved in insulin resistance, low-grade inflammation, oxidative stress, beta cell dysfunction, and epigenetic factors. Botanical drugs provide a large chemical space that can modify various targets simultaneously. Matricaria aurea (MA, golden chamomile) is a widely used herb in Middle Eastern communities for many ailments, including diabetes mellitus, without any scientific basis to support this tradition. For the first time, this study aimed to investigate the possible antidiabetic activity of MA in a type 2 diabetic rat model, identify chemical constituents by LC-MS/MS, and then elucidate the molecular mechanism(s) using enzyme activity assays, q-RTPCR gene expression analysis, network pharmacology analysis, and molecular docking simulation. Our results demonstrated that only the polar hydroethanolic extract of MA had remarkable antidiabetic activity. Furthermore, it improved dyslipidemia, insulin resistance status, ALT, and AST levels. LC-MS/MS analysis of MA hydroethanolic extract identified 62 compounds, including the popular chamomile flavonoids apigenin and luteolin, other flavonoids and their glycosides, coumarin derivatives, and phenolic acids. Based on pharmacokinetic screening and literature, 46 compounds were chosen for subsequent network analysis, which linked to 364 candidate T2DM targets from various databases and literature. The network analysis identified 123 hub proteins, including insulin signaling and metabolic proteins: IRS1, IRS2, PIK3R1, AKT1, AKT2, MAPK1, MAPK3, and PCK1, inflammatory proteins: TNF and IL1B, antioxidant enzymes: CAT and SOD, and others. Subsequent filtering identified 40 crucial core targets (major hubs) of MA in T2DM treatment. Functional enrichment analyses of the candidate targets revealed that MA targets were mainly involved in the inflammatory module, energy-sensing/endocrine/metabolic module, and oxidative stress module. q-RTPCR gene expression analysis showed that MA hydroethanolic extract was able to significantly upregulate PIK3R1 and downregulate IL1B, PCK1, and MIR29A. Moreover, the activity of the antioxidant hub enzymes was substantially increased. Molecular docking scores were also consistent with the networks’ predictions. Based on experimental and computational analysis, this study revealed for the first time that MA exerted antidiabetic action via simultaneous modulation of multiple targets and pathways, including inflammatory pathways, energy-sensing/endocrine/metabolic pathways, and oxidative stress pathways.
Collapse
Affiliation(s)
- Yassin Ismail
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
- Natural Products Unit, Department of Medicinal and Aromatic Plants, Desert Research Center, Cairo, Egypt
- *Correspondence: Yassin Ismail,
| | - Dina M. Fahmy
- Natural Products Unit, Department of Medicinal and Aromatic Plants, Desert Research Center, Cairo, Egypt
| | - Maivel H. Ghattas
- Department of Medical Biochemistry, Faculty of Medicine, Port Said University, Port Said, Egypt
| | - Mai M. Ahmed
- Natural Products Unit, Department of Medicinal and Aromatic Plants, Desert Research Center, Cairo, Egypt
| | - Walaa Zehry
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Samy M. Saleh
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Dina M. Abo-elmatty
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
9
|
Ashfaq I, Sheikh N, Fatima N, Tayyeb A. Inhibition of anti-inflammatory pathway through suppressors of cytokine signalling (Socs2/Socs3) in the initiation of hepatocellular carcinoma. Saudi J Biol Sci 2022; 29:103348. [PMID: 35800143 PMCID: PMC9253924 DOI: 10.1016/j.sjbs.2022.103348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/30/2022] [Accepted: 06/10/2022] [Indexed: 11/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC), a leading cause of cancer related deaths is predominantly driven by chronic inflammatory responses. Due to asymptomatic nature and lack of early patient biopsies, precise involvement of inflammation in hepatic injury initiation remains unidentified. Aim of the study was to elucidate the regulation patterns of inflammatory signalling from initiation of hepatic injury to development of HCC. HCC mice model was established using DEN followed by repeated doses of CCl4 and sacrificed at three different stages of disease comprising 7, 14 and 21 weeks. Serum biochemical tests, hepatic lipids quantification, histopathology and qPCR analyses were conducted to characterize the initiation and progression of liver injury and inflammatory signalling. Notably, at 7 weeks, we observed hepatocyte damage and periportal necrotic bodies coupled with induction of Socs2/Socs3 and anti-inflammatory cytokine Il-10. At 14 weeks, mice liver showed advancement of liver injury with micro-vesicular steatosis and moderate collagen deposition around portal zone. With progression of injury, the expression of Socs3 was declined with further reduction of Il-10 and Tgf-β indicating the disturbance of anti-inflammatory mechanism. In contrast, pro-inflammatory cytokines Il1-β, Il6 and Tnf-α were upregulated contributing inflammation. Subsequently, at 21 weeks severe liver damage was estimated as characterized by macro-vesicular steatosis, perisinusoidal collagen bridging, immune cell recruitment and significant upregulation of Col-1α and α-Sma. In parallel, there was significant upregulation of pro/anti-inflammatory cytokines highlighting the commencement of chronic inflammation. Findings of the study suggest that differential regulation of cytokine suppressors and inflammatory cytokines might play role in the initiation and progression of hepatic injury leading towards HCC.
Collapse
Affiliation(s)
- Isbah Ashfaq
- Cell & Molecular Biology Lab, Institute of Zoology, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan
- School of Biological Sciences (SBS), University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan
| | - Nadeem Sheikh
- Cell & Molecular Biology Lab, Institute of Zoology, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan
| | - Naz Fatima
- Cell & Molecular Biology Lab, Institute of Zoology, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan
- Department of Zoology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Asima Tayyeb
- School of Biological Sciences (SBS), University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan
- Corresponding author at: School of Biological Sciences (SBS), University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan.
| |
Collapse
|
10
|
AbdAllah NB, Al Ageeli E, Shbeer A, Abdulhakim JA, Toraih EA, Salman DO, Fawzy MS, Nassar SS. Long Non-Coding RNAs ANRIL and HOTAIR Upregulation is Associated with Survival in Neonates with Sepsis in a Neonatal Intensive Care Unit. Int J Gen Med 2022; 15:6237-6247. [PMID: 35898301 PMCID: PMC9309290 DOI: 10.2147/ijgm.s373434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/12/2022] [Indexed: 11/23/2022] Open
Abstract
Background Recently, long non-coding RNAs (lncRNAs) have emerged as potential molecular biomarkers for sepsis. We aimed to profile the expression signature of three inflammation-related lncRNAs, MALAT1, ANRIL, and HHOTAIR, in the plasma of neonates with sepsis and correlate these signatures with the phenotype. Patients and Methods This case–control study included 124 neonates with sepsis (88 survivors/36 non-survivors) admitted to the neonatal ICU and 17 healthy neonates. The relative expressions were quantified by real-time PCR and correlated to the clinic-laboratory data. Results The three circulating lncRNAs were upregulated in the cases; the median levels were MALAT1 (median = 1.71, IQR: −0.5 to 3.27), ANRIL (median = 1.09, IQR: 0.89 to 1.30), and HOTAIR (median = 1.83, IQR: 1.44 to 2.41). Co-expression analysis showed that the three studied lncRNAs were directly correlated (all p-values <0.001). Overall and stratification by sex analyses revealed significantly higher levels of the three lncRNAs in non-survivors compared to the survivor group (all p-values <0.001). Principal component analysis showed a clear demarcation between the two study cohorts in males and females. Cohorts with upregulated ANRIL (hazard ratio; HR = 4.21, 95% CI = 1.15–10.4, p=0.030) and HOTAIR (HR = 2.49, 95% CI = 1.02–6.05, p=0.044) were at a higher risk of mortality. Conclusion Circulatory MALAT1, ANRIL, and HOTAIR were upregulated in neonatal sepsis, and the latter two may have the potential as prognostic biomarkers for survival in neonatal sepsis.
Collapse
Affiliation(s)
- Nouran B AbdAllah
- Department of Pediatrics, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Essam Al Ageeli
- Department of Clinical Biochemistry (Medical Genetics), Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Abdullah Shbeer
- Anesthesiology and Intensive Care, Department of Surgery, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Jawaher A Abdulhakim
- Medical Laboratory Department, College of Applied Medical Sciences, Taibah University, Yanbu, Saudi Arabia
| | - Eman A Toraih
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA, USA.,Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Doaa O Salman
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Manal S Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.,Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Sanaa S Nassar
- Department of Pediatrics, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
11
|
miR-340-5p Alleviates Oxidative Stress Injury by Targeting MyD88 in Sepsis-Induced Cardiomyopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2939279. [PMID: 35571255 PMCID: PMC9095363 DOI: 10.1155/2022/2939279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/07/2022] [Accepted: 03/26/2022] [Indexed: 11/17/2022]
Abstract
Background Sepsis-induced cardiomyopathy (SIC) is a sort of severe disease in the intensive care unit. This research focuses on exploring the influence of miR-340-5p on SIC and its specific mechanism. Methods Mice were administered with lipopolysaccharide (LPS) to construct a SIC animal model. Mice were intramyocardially injected with Adenoassociated Virus- (AAV-) 9 containing the miR-340-5p precursor to make the miR-340-5p overexpression in the myocardium. The expression level of myocardial miR-340-5p was evaluated by qRT-PCR. The cardiac function was measured by echocardiography, the myocardial morphology was observed by hematoxylin-eosin (HE) staining, and the oxidative stress level was detected by 4-hydroxynonenal (4-HNE) immunohistochemical staining and malondialdehyde (MDA) assay in mice. The cells were pretreated with miR-340-5p mimic, mimic-NC, miR-340-5p inhibitor, inhibitor-NC, MyD88 siRNA, or si-NC and then administered with LPS or PBS. The cell viability was measured with the CCK-8 assay. The level of intracellular oxidative stress was evaluated using reactive oxygen species (ROS), MDA, and glutathione (GSH) detection. The MyD88 level was assessed via Western blotting analysis. The interaction of miR-340-5p with the MyD88 mRNA was confirmed via dual-luciferase reporter assay and RNA pull-down assay. Results The miR-340-5p overexpression partially alleviated the increase of the MyD88 level, impairment of cardiac function, and oxidative stress injury in the SIC animal model. In the SIC cell model, miR-340-5p mimic pretreatment partially relieved oxidative stress injury, while the miR-340-5p inhibitor had the opposite effect. Besides, the miR-340-5p mimic and inhibitor could reduce and further increase the MyD88 level in the SIC cell model, respectively. Dual-luciferase reporter and RNA pull-down experiments confirmed the interaction between the MyD88 mRNA and miR-340-5p. Finally, it was found that MyD88 siRNA pretreatment also partially alleviates the oxidative stress injury in the SIC cell model. Conclusion In sum, our study demonstrated that miR-340-5p can improve myocardial oxidative stress injury by targeting MyD88 in SIC.
Collapse
|
12
|
Elngar EF, Azzam MA, Gobarah AA, Toraih EA, Fawzy MS, AbdAllah NB. Component 1 Inhibitor Missense (Val480Met) Variant Is Associated With Gene Expression and Sepsis Development in Neonatal Lung Disease. Front Pediatr 2022; 10:779511. [PMID: 35669402 PMCID: PMC9163386 DOI: 10.3389/fped.2022.779511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 04/11/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Neonatal lung disease has a multifaceted etiopathology, including an explosive inflammatory sequence in the immature lung. Complement component 1 Esterase INHibitor (C1INH) is implicated in controlling inflammation in response to infection/injury. AIM To explore for the first time the association of the C1INH rs4926 (Val480Met) variant and circulatory transcript expression levels in the neonates that had evidence of lung disease and the clinic-laboratory data. METHODS A total of 139 unrelated neonates were enrolled in this case-control study. C1INH genotyping and expression analyses were done using TaqMan Genotyping and Real-Time qPCR, respectively. RESULTS A/A genotype carriers were two times more likely to develop in newborns with lung disease under homozygote (A/A vs. G/G: OR = 2.66, 95%CI = 1.03-6.87, p = 0.039) and recessive (A/A vs. G/G-A/G: OR = 2.42, 95%CI = 1.07-6.06, p = 0.047) models. Also, a higher frequency of A/A genotype was observed in the patient's cohort complicated with sepsis (44.2 vs. 14.3%, p = 0.002). Neonates with lung disease with A variant had more risk for developing sepsis under homozygote (A/A vs. G/G: OR = 5.19, 95%CI = 1.73-15.6, p = 0.002), dominant (A/G-A/A vs. G/G: OR = 2.39, 95%CI = 1.02-5.58, p = 0.041), and recessive (A/A vs. G/G-A/G: OR = 5.38, 95%CI = 1.86-15.5, p < 0.001) models. Regression analysis revealed rs4926*A/A genotype as an independent predictor risk factor for sepsis development in cohorts with lung disease (adjusted OR = 4.26, 95%CI = 1.38-13.1, p = 0.012). The circulatory transcript was significantly downregulated in neonates with lung disease in whom rs4926*A/A carriers had the least expression levels (median: -2.86, IQR: -3.55 to -1.71; p < 0.001). ROC curve analysis revealed C1INH expression could differentiate between cohorts with/without subsequent development of sepsis, and the discrimination ability was enhanced when combined with circulatory IL-6 and CRP levels (AUC = 0.926, 95%CI = 0.87-0.97). CONCLUSION The C1INH rs4926 variant might play an essential role in the susceptibility to neonatal lung disease and could predict sepsis development in this cohort. Furthermore, the circulatory expression levels of this gene were downregulated in the neonatal lung disease cohort, supporting its potential role in the pathophysiology of this disorder, and highlighting its promising role in future targeted therapy.
Collapse
Affiliation(s)
- Enas F Elngar
- Department of Pediatrics, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Mona A Azzam
- Department of Pediatrics, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Ayman A Gobarah
- Department of Pediatrics, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Eman A Toraih
- Department of Surgery, School of Medicine, Tulane University, New Orleans, LA, United States.,Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Manal S Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.,Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Nouran B AbdAllah
- Department of Pediatrics, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
13
|
Zhang J, Zeng J, Zhang L, Yu X, Guo J, Li Z. The Utility of Peripheral Blood Leucocyte Ratios as Biomarkers in Neonatal Sepsis: A Systematic Review and Meta-Analysis. Front Pediatr 2022; 10:908362. [PMID: 35935369 PMCID: PMC9353072 DOI: 10.3389/fped.2022.908362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/10/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Early stage diagnosis of neonatal sepsis (NS) remains a major roadblock due to non-specific symptoms and the absence of precise laboratory index tests. The full blood count is a relatively cheap, universal, and rapid diagnostic test. METHOD This study assessed the diagnostic accuracies of immature-to-total neutrophil ratio (ITR), immature-to-mature neutrophil ratio (IMR), neutrophil-to-lymphocyte ratio (NLR), and platelet-to-lymphocyte ratio (PLR) used in the diagnosis of NS. Included studies were retrieved by searching four major databases and relevant references, and reviewed based on the inclusion/exclusion criteria. Pooled sensitivities and specificities were calculated, I 2 was utilized to test for heterogeneity, and the source was investigated via meta-regression analysis. RESULTS Finally, 38 studies passed the eligibility criteria. A total of thirty-one studies (6,221 neonates) included data on the ITR, eight studies (1,230 neonates) included data on the IMR, seven studies (751 neonates) included data on the NLR, and two studies (283 neonates) included data on the PLR. The summary sensitivity estimates with 95% confidence interval (CI) for the ITR, IMR, NLR, and PLR tests were, respectively, 0.74 (95% CI: 0.66-0.80), 0.74 (95% CI: 0.54-0.88), 0.73 (95% CI: 0.68-0.78), and 0.81 (95% CI: 0.55-1.00). The summary specificity values for the ITR, IMR, NLR, and PLR tests were 0.83 (95% CI: 0.77-0.87), 0.89 (95% CI: 0.80-0.94), 0.69 (95% CI: 0.57-0.79), and 0.93 (95% CI: 0.81-1.00), respectively. The area under the summary receiver operating characteristic curves for the ITR, IMR, and NLR tests were 0.85 (95% CI: 0.82-0.88), 0.91 (95% CI: 0.88-0.93), and 0.75 (95% CI: 0.71-0.79). The PLR could not be evaluated because only two studies included pertinent data. CONCLUSION The NLR test might not be sufficiently accurate in precisely diagnosing NS. The ITR and IMR tests alone can improve the accuracy of NS diagnosis, but the marked heterogeneity and the limited number of studies prevented us from reaching any definitive conclusions. Thus, further studies are warranted to validate these findings. SYSTEMATIC REVIEW REGISTRATION [https://www.crd.york.ac.uk/prospero/], identifier [CRD42021247850].
Collapse
Affiliation(s)
- Juanjuan Zhang
- Department of Neonatology, Northwest Women's and Children's Hospital, Xi'an, China
| | - Jun'an Zeng
- Department of Neonatology, Northwest Women's and Children's Hospital, Xi'an, China
| | - Liangjuan Zhang
- Department of Neonatology, Northwest Women's and Children's Hospital, Xi'an, China
| | - Xiping Yu
- Department of Neonatology, Northwest Women's and Children's Hospital, Xi'an, China
| | - Jinzhen Guo
- Department of Neonatology, Northwest Women's and Children's Hospital, Xi'an, China
| | - Zhankui Li
- Department of Neonatology, Northwest Women's and Children's Hospital, Xi'an, China
| |
Collapse
|
14
|
Tang XD, Ji TT, Dong JR, Feng H, Chen FQ, Chen X, Zhao HY, Chen DK, Ma WT. Pathogenesis and Treatment of Cytokine Storm Induced by Infectious Diseases. Int J Mol Sci 2021; 22:13009. [PMID: 34884813 PMCID: PMC8658039 DOI: 10.3390/ijms222313009] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022] Open
Abstract
Cytokine storm is a phenomenon characterized by strong elevated circulating cytokines that most often occur after an overreactive immune system is activated by an acute systemic infection. A variety of cells participate in cytokine storm induction and progression, with profiles of cytokines released during cytokine storm varying from disease to disease. This review focuses on pathophysiological mechanisms underlying cytokine storm induction and progression induced by pathogenic invasive infectious diseases. Strategies for targeted treatment of various types of infection-induced cytokine storms are described from both host and pathogen perspectives. In summary, current studies indicate that cytokine storm-targeted therapies can effectively alleviate tissue damage while promoting the clearance of invading pathogens. Based on this premise, "multi-omics" immune system profiling should facilitate the development of more effective therapeutic strategies to alleviate cytokine storms caused by various diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - De-Kun Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China; (X.-D.T.); (T.-T.J.); (J.-R.D.); (H.F.); (F.-Q.C.); (X.C.); (H.-Y.Z.)
| | - Wen-Tao Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China; (X.-D.T.); (T.-T.J.); (J.-R.D.); (H.F.); (F.-Q.C.); (X.C.); (H.-Y.Z.)
| |
Collapse
|