1
|
Poma-Angamarca RA, Rojas JR, Sánchez-Rodríguez A, Ruiz-González MX. Diversity of Leaf Fungal Endophytes from Two Coffea arabica Varieties and Antagonism towards Coffee Leaf Rust. PLANTS (BASEL, SWITZERLAND) 2024; 13:814. [PMID: 38592839 PMCID: PMC11154406 DOI: 10.3390/plants13060814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 04/11/2024]
Abstract
Coffee has immense value as a worldwide-appreciated commodity. However, its production faces the effects of climate change and the spread of severe diseases such as coffee leaf rust (CLR). The exploration of fungal endophytes associated with Coffea sp. has already found the existence of nearly 600 fungal species, but their role in the plants remains practically unknown. We have researched the diversity of leaf fungal endophytes in two Coffea arabica varieties: one susceptible and one resistant to CLR. Then, we conducted cross-infection essays with four common endophyte species (three Colletotrichum sp. and Xylaria sp. 1) and Hemileia vastatrix (CLR) in leaf discs, to investigate the interaction of the endophytes on CLR colonisation success and severity of infection. Two Colletotrichum sp., when inoculated 72 h before H. vastatrix, prevented the colonisation of the leaf disc by the latter. Moreover, the presence of endophytes prior to the arrival of H. vastatrix ameliorated the severity of CLR. Our work highlights both the importance of characterising the hidden biodiversity of endophytes and investigating their potential roles in the plant-endophyte interaction.
Collapse
Affiliation(s)
- Ruth A. Poma-Angamarca
- Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, Loja 1101608, Ecuador; (R.A.P.-A.); (J.R.R.); (A.S.-R.)
| | - Jacqueline R. Rojas
- Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, Loja 1101608, Ecuador; (R.A.P.-A.); (J.R.R.); (A.S.-R.)
| | - Aminael Sánchez-Rodríguez
- Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, Loja 1101608, Ecuador; (R.A.P.-A.); (J.R.R.); (A.S.-R.)
| | - Mario X. Ruiz-González
- Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, Loja 1101608, Ecuador; (R.A.P.-A.); (J.R.R.); (A.S.-R.)
- SENESCYT is the Secretaría de Educación Superior, Ciencia, Tecnología e Innovación from the Government of Ecuador, Proyecto Prometeo SENESCYT, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, Loja 1101608, Ecuador
| |
Collapse
|
2
|
Zeng Z, Yang Z, Yang A, Li Y, Zhang H. Genetic Evidence for Colletotrichum gloeosporioides Transmission Between the Invasive Plant Ageratina adenophora and Co-occurring Neighbor Plants. MICROBIAL ECOLOGY 2023; 86:2192-2201. [PMID: 37166500 DOI: 10.1007/s00248-023-02237-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/03/2023] [Indexed: 05/12/2023]
Abstract
To understand the disease-mediated invasion of exotic plants and the potential risk of disease transmission in local ecosystems, it is necessary to characterize population genetic structure and spatio-temporal dynamics of fungal community associated with both invasive and co-occurring plants. In this study, multiple genes were used to characterize the genetic diversity of 165 strains of Colletotrichum gloeosporioides species complex (CGSC) isolated from healthy leaves and symptomatic leaves of invasive plant Ageratina adenophora, as well as symptomatic leaves of its neighbor plants from eleven geographic sites in China. The data showed that these CGSC strains had a high genetic diversity in each geographic site (all Hd > 0.67 and Pi > 0.01). Haplotype diversity and nucleotide diversity varied greatly in individual gene locus: gs had the highest haplotype diversity (Hd = 0.8972), gapdh had the highest nucleotide diversity (Pi = 0.0705), and ITS had the lowest nucleotide diversity (Pi = 0.0074). Haplotypes were not clustered by geographic site, invasive age, or isolation source. AMOVA revealed that the genetic variation was mainly from within-populations, regardless of geographic or isolation origin. Both AMOVA and neutrality tests indicated these CGSC strains occurred gene exchange among geographic populations but did not experience population expansion along with A. adenophora invasion progress. Our data indicated that A. adenophora primarily accumulated these CGSC fungi in the introduced range, suggesting a high frequency of CGSC transmission between A. adenophora and co-occurring neighbor plants. This study is valuable for understanding the disease-mediated plant invasion and the potential risk of disease transmission driven by exotic plants in local ecosystems.
Collapse
Affiliation(s)
- ZhaoYing Zeng
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - ZhiPing Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - AiLing Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - YuXuan Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - HanBo Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.
| |
Collapse
|
3
|
Thao LD, Choi H, Choi Y, Mageswari A, Lee D, Hong SB. Re-identification of Colletotrichum acutatum Species Complex in Korea and Their Host Plants. THE PLANT PATHOLOGY JOURNAL 2023; 39:384-396. [PMID: 37550984 PMCID: PMC10412970 DOI: 10.5423/ppj.oa.05.2023.0078] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 08/09/2023]
Abstract
Colletotrichum acutatum species complex is one of the most important groups in the genus Colletotrichum with a high species diversity and a wide range of host plants. C. acutatum and related species have been collected from different plants and locations in Korea and deposited into the Korean Agricultural Culture Collection (KACC), National Institute of Agricultural Sciences since the 1990s. These fungal isolates were previously identified based mainly on morphological characteristics, and a limitation of molecular data was provided. To confirm the identification of species, 64 C. acutatum species complex isolates in KACC were used in this study for DNA sequence analyses of six loci: nuclear ribosomal internal transcribed spacers (ITS), betatubulin 2 (TUB2), histone-3 (HIS3), glyceraldehyde3-phosphate dehydrogenase (GAPDH), chitin synthase 1 (CHS-1), and actin (ACT). The molecular analysis revealed that they were identified in six different species of C. fioriniae (24 isolates), C. nymphaeae (21 isolates), C. scovillei (12 isolates), C. chrysanthemi (three isolates), C. lupini (two isolates), and C. godetiae (one isolate), and a novel species candidate. We compared the hosts of KACC isolates with "The List of Plant Diseases in Korea", previous reports in Korea and global reports and found that 23 combinations between hosts and pathogens could be newly reported in Korea after pathogenicity tests, and 12 of these have not been recorded in the world.
Collapse
Affiliation(s)
- Le Dinh Thao
- Korean Agricultural Culture Collection, Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Korea
- Plant Protection Research Institute, Duc Thang, Bac Tu Liem, Ha Noi, Vietnam
| | - Hyorim Choi
- Korean Agricultural Culture Collection, Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Korea
| | - Yunhee Choi
- Korean Agricultural Culture Collection, Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Korea
| | - Anbazhagan Mageswari
- Korean Agricultural Culture Collection, Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Korea
| | - Daseul Lee
- Korean Agricultural Culture Collection, Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Korea
| | - Seung-Beom Hong
- Korean Agricultural Culture Collection, Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Korea
| |
Collapse
|
4
|
Alkemade JA, Baroncelli R, Messmer MM, Hohmann P. Attack of the clones: Population genetics reveals clonality of Colletotrichum lupini, the causal agent of lupin anthracnose. MOLECULAR PLANT PATHOLOGY 2023; 24:616-627. [PMID: 37078402 PMCID: PMC10189766 DOI: 10.1111/mpp.13332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/08/2023] [Accepted: 03/17/2023] [Indexed: 05/03/2023]
Abstract
Colletotrichum lupini, the causative agent of lupin anthracnose, affects lupin cultivation worldwide. Understanding its population structure and evolutionary potential is crucial to design successful disease management strategies. The objective of this study was to employ population genetics to investigate the diversity, evolutionary dynamics, and molecular basis of the interaction of this notorious lupin pathogen with its host. A collection of globally representative C. lupini isolates was genotyped through triple digest restriction site-associated DNA sequencing, resulting in a data set of unparalleled resolution. Phylogenetic and structural analysis could distinguish four independent lineages (I-IV). The strong population structure and high overall standardized index of association (r̅d ) indicates that C. lupini reproduces clonally. Different morphologies and virulence patterns on white lupin (Lupinus albus) and Andean lupin (Lupinus mutabilis) were observed between and within clonal lineages. Isolates belonging to lineage II were shown to have a minichromosome that was also partly present in lineage III and IV, but not in lineage I isolates. Variation in the presence of this minichromosome could imply a role in host-pathogen interaction. All four lineages were present in the South American Andes region, which is suggested to be the centre of origin of this species. Only members of lineage II have been found outside South America since the 1990s, indicating it as the current pandemic population. As a seedborne pathogen, C. lupini has mainly spread through infected but symptomless seeds, stressing the importance of phytosanitary measures to prevent future outbreaks of strains that are yet confined to South America.
Collapse
Affiliation(s)
- Joris A. Alkemade
- Department of Crop SciencesResearch Institute of Organic Agriculture (FiBL)FrickSwitzerland
- Department of Agricultural and Food Sciences (DISTAL)University of BolognaBolognaItaly
| | - Riccardo Baroncelli
- Department of Agricultural and Food Sciences (DISTAL)University of BolognaBolognaItaly
- Centre for Studies on Bioinspired Agro‐Enviromental Technology, Università di Napoli Federico IIPortici80055Italy
| | - Monika M. Messmer
- Department of Crop SciencesResearch Institute of Organic Agriculture (FiBL)FrickSwitzerland
| | - Pierre Hohmann
- Department of Crop SciencesResearch Institute of Organic Agriculture (FiBL)FrickSwitzerland
- Bonaplanta, BioCrops Innovations SLManresaSpain
| |
Collapse
|
5
|
Dell’Olmo E, Tiberini A, Sigillo L. Leguminous Seedborne Pathogens: Seed Health and Sustainable Crop Management. PLANTS (BASEL, SWITZERLAND) 2023; 12:2040. [PMID: 37653957 PMCID: PMC10221191 DOI: 10.3390/plants12102040] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 09/02/2023]
Abstract
Pulses have gained popularity over the past few decades due to their use as a source of protein in food and their favorable impact on soil fertility. Despite being essential to modern agriculture, these species face a number of challenges, such as agronomic crop management and threats from plant seed pathogens. This review's goal is to gather information on the distribution, symptomatology, biology, and host range of seedborne pathogens. Important diagnostic techniques are also discussed as a part of a successful process of seed health certification. Additionally, strategies for sustainable control are provided. Altogether, the data collected are suggested as basic criteria to set up a conscious laboratory approach.
Collapse
Affiliation(s)
- Eliana Dell’Olmo
- Council for Agricultural Research and Economics, Research Center for Vegetable and Ornamental Crops (CREA-OF), Via Cavalleggeri 25, 84098 Pontecagnano Faiano, Italy
| | - Antonio Tiberini
- Council for Agricultural Research and Economics, Research Center for Plant Protection and Certification (CREA-DC), Via C. G. Bertero, 22, 00156 Rome, Italy
| | - Loredana Sigillo
- Council for Agricultural Research and Economics, Research Center for Vegetable and Ornamental Crops (CREA-OF), Via Cavalleggeri 25, 84098 Pontecagnano Faiano, Italy
| |
Collapse
|
6
|
Rattanakreetakul C, Keawmanee P, Bincader S, Mongkolporn O, Phuntumart V, Chiba S, Pongpisutta R. Two Newly Identified Colletotrichum Species Associated with Mango Anthracnose in Central Thailand. PLANTS (BASEL, SWITZERLAND) 2023; 12:1130. [PMID: 36903990 PMCID: PMC10004820 DOI: 10.3390/plants12051130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Anthracnose caused by Colletotrichum spp. is one of the major problems in mango production worldwide, including Thailand. All mango cultivars are susceptible, but Nam Dok Mai See Thong (NDMST) is the most vulnerable. Through a single spore isolation method, a total of 37 isolates of Colletotrichum spp. were obtained from NDMST showing anthracnose symptoms. Identification was performed using a combination of morphology characteristics, Koch's postulates, and phylogenetic analysis. The pathogenicity assay and Koch's postulates on leaves and fruit confirmed that all Colletotrichum spp. tested were causal agents of mango anthracnose. Multilocus analysis using DNA sequences of internal transcribed spacer (ITS) regions, β-tubulin (TUB2), actin (ACT), and chitin synthase (CHS-1) was performed for molecular identification. Two concatenated phylogenetic trees were constructed using either two-loci of ITS and TUB2, or four-loci of ITS, TUB2, ACT, and CHS-1. Both phylogenetic trees were indistinguishable and showed that these 37 isolates belong to C. acutatum, C. asianum, C. gloeosporioides, and C. siamense. Our results indicated that using at least two loci of ITS and TUB2, were sufficient to infer Colletotrichum species complexes. Of 37 isolates, C. gloeosporioides was the most dominant species (19 isolates), followed by C. asianum (10 isolates), C. acutatum (5 isolates), and C. siamense (3 isolates). In Thailand, C. gloeosporioides and C. acutatum have been reported to cause anthracnose in mango, however, this is the first report of C. asianum and C. siamense associated with mango anthracnose in central Thailand.
Collapse
Affiliation(s)
- Chainarong Rattanakreetakul
- Department of Plant Pathology, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom 73140, Thailand
| | - Pisut Keawmanee
- Department of Plant Pathology, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom 73140, Thailand
| | - Santiti Bincader
- Program Plant Science, Agricultural Technology and Agro-Industry Faculty, Rajamangala University of Technology Suvarnabhumi, Phra Nakhon Si Ayutthaya 13000, Thailand
| | - Orarat Mongkolporn
- Department of Horticulture, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom 73140, Thailand
| | - Vipaporn Phuntumart
- Department of Biological Sciences, 129 Life Sciences Building, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Sotaro Chiba
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Ratiya Pongpisutta
- Department of Plant Pathology, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom 73140, Thailand
| |
Collapse
|
7
|
Sigova EA, Pushkova EN, Rozhmina TA, Kudryavtseva LP, Zhuchenko AA, Novakovskiy RO, Zhernova DA, Povkhova LV, Turba AA, Borkhert EV, Melnikova NV, Dmitriev AA, Dvorianinova EM. Assembling Quality Genomes of Flax Fungal Pathogens from Oxford Nanopore Technologies Data. J Fungi (Basel) 2023; 9:301. [PMID: 36983469 PMCID: PMC10055923 DOI: 10.3390/jof9030301] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Flax (Linum usitatissimum L.) is attacked by numerous devastating fungal pathogens, including Colletotrichum lini, Aureobasidium pullulans, and Fusarium verticillioides (Fusarium moniliforme). The effective control of flax diseases follows the paradigm of extensive molecular research on pathogenicity. However, such studies require quality genome sequences of the studied organisms. This article reports on the approaches to assembling a high-quality fungal genome from the Oxford Nanopore Technologies data. We sequenced the genomes of C. lini, A. pullulans, and F. verticillioides (F. moniliforme) and received different volumes of sequencing data: 1.7 Gb, 3.9 Gb, and 11.1 Gb, respectively. To obtain the optimal genome sequences, we studied the effect of input data quality and genome coverage on assembly statistics and tested the performance of different assembling and polishing software. For C. lini, the most contiguous and complete assembly was obtained by the Flye assembler and the Homopolish polisher. The genome coverage had more effect than data quality on assembly statistics, likely due to the relatively low amount of sequencing data obtained for C. lini. The final assembly was 53.4 Mb long and 96.4% complete (according to the glomerellales_odb10 BUSCO dataset), consisted of 42 contigs, and had an N50 of 4.4 Mb. For A. pullulans and F. verticillioides (F. moniliforme), the best assemblies were produced by Canu-Medaka and Canu-Homopolish, respectively. The final assembly of A. pullulans had a length of 29.5 Mb, 99.4% completeness (dothideomycetes_odb10), an N50 of 2.4 Mb and consisted of 32 contigs. F. verticillioides (F. moniliforme) assembly was 44.1 Mb long, 97.8% complete (hypocreales_odb10), consisted of 54 contigs, and had an N50 of 4.4 Mb. The obtained results can serve as a guideline for assembling a de novo genome of a fungus. In addition, our data can be used in genomic studies of fungal pathogens or plant-pathogen interactions and assist in the management of flax diseases.
Collapse
Affiliation(s)
- Elizaveta A. Sigova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- Moscow Institute of Physics and Technology, Moscow 141701, Russia
| | - Elena N. Pushkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | | | | | - Alexander A. Zhuchenko
- Federal Research Center for Bast Fiber Crops, Torzhok 172002, Russia
- All-Russian Horticultural Institute for Breeding, Agrotechnology and Nursery, Moscow 115598, Russia
| | - Roman O. Novakovskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Daiana A. Zhernova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Liubov V. Povkhova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- Moscow Institute of Physics and Technology, Moscow 141701, Russia
| | - Anastasia A. Turba
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Elena V. Borkhert
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Nataliya V. Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | | |
Collapse
|
8
|
Alkemade JA, Nazzicari N, Messmer MM, Annicchiarico P, Ferrari B, Voegele RT, Finckh MR, Arncken C, Hohmann P. Genome-wide association study reveals white lupin candidate gene involved in anthracnose resistance. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1011-1024. [PMID: 34988630 PMCID: PMC8942938 DOI: 10.1007/s00122-021-04014-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/06/2021] [Indexed: 05/11/2023]
Abstract
GWAS identifies candidate gene controlling resistance to anthracnose disease in white lupin. White lupin (Lupinus albus L.) is a promising grain legume to meet the growing demand for plant-based protein. Its cultivation, however, is severely threatened by anthracnose disease caused by the fungal pathogen Colletotrichum lupini. To dissect the genetic architecture for anthracnose resistance, genotyping by sequencing was performed on white lupin accessions collected from the center of domestication and traditional cultivation regions. GBS resulted in 4611 high-quality single-nucleotide polymorphisms (SNPs) for 181 accessions, which were combined with resistance data observed under controlled conditions to perform a genome-wide association study (GWAS). Obtained disease phenotypes were shown to highly correlate with overall three-year disease assessments under Swiss field conditions (r > 0.8). GWAS results identified two significant SNPs associated with anthracnose resistance on gene Lalb_Chr05_g0216161 encoding a RING zinc-finger E3 ubiquitin ligase which is potentially involved in plant immunity. Population analysis showed a remarkably fast linkage disequilibrium decay, weak population structure and grouping of commercial varieties with landraces, corresponding to the slow domestication history and scarcity of modern breeding efforts in white lupin. Together with 15 highly resistant accessions identified in the resistance assay, our findings show promise for further crop improvement. This study provides the basis for marker-assisted selection, genomic prediction and studies aimed at understanding anthracnose resistance mechanisms in white lupin and contributes to improving breeding programs worldwide.
Collapse
Affiliation(s)
- Joris A Alkemade
- Department of Crop Sciences, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| | - Nelson Nazzicari
- Research Centre for Animal Production and Aquaculture, CREA, Lodi, Italy
| | - Monika M Messmer
- Department of Crop Sciences, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland.
| | | | - Barbara Ferrari
- Research Centre for Animal Production and Aquaculture, CREA, Lodi, Italy
| | - Ralf T Voegele
- Institute of Phytomedicine, University of Hohenheim, Stuttgart, Germany
| | - Maria R Finckh
- Department of Ecological Plant Protection, University of Kassel, Witzenhausen, Germany
| | - Christine Arncken
- Department of Crop Sciences, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| | - Pierre Hohmann
- Department of Crop Sciences, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| |
Collapse
|
9
|
Falconí CE, Yánez-Mendizábal V. Available Strategies for the Management of Andean Lupin Anthracnose. PLANTS (BASEL, SWITZERLAND) 2022; 11:654. [PMID: 35270124 PMCID: PMC8912773 DOI: 10.3390/plants11050654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
The lupin (Lupinus mutabilis Sweet) is a legume domesticated and cultivated for more than 4000 years by the pre-Hispanic cultures of the Andean zone. Due to its good taste and protein content, the lupin seed contributes significantly to the food and nutritional security of the Andean population. However, lupin is susceptible to diseases, and of these, anthracnose is the most devastating as it affects the whole crop, including leaves, stems, pods, and seeds. This review focuses on available strategies for management of lupin anthracnose from sowing to harvest. Seed disinfection is the primary anthracnose management strategy. Seed treatment with fungicides reduces transmission from seed to seedling, but it does not eradicate anthracnose. Attention is given to alternative strategies to limit this seed-borne pathogen as well as to enhance plant resistance and to promote plant growth. For anthracnose management in the field, integrated practices are discussed that encompass control of volunteer plants, lupin ontogenetic resistance, and rotation of biocontrol with chemical fungicides at susceptible phenological stages. This review covers some local experiences on various aspects of anthracnose management that could prove useful to other the groups focusing on the problem.
Collapse
Affiliation(s)
- César E. Falconí
- Departamento de Ciencias de la Vida, Carrera de Ingeniería Agropecuaria, Universidad de las Fuerzas Armadas (ESPE), Av. General Ruminahui s/n, Sangolqui 171103, Ecuador
| | - Viviana Yánez-Mendizábal
- Facultad de Ingeniería y Ciencias Aplicadas, Carrera de Ingeniería en Agroindustrias, Universidad de las Américas, Quito 170503, Ecuador
| |
Collapse
|
10
|
A qPCR Assay for the Fast Detection and Quantification of Colletotrichum lupini. PLANTS 2021; 10:plants10081548. [PMID: 34451593 PMCID: PMC8401954 DOI: 10.3390/plants10081548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/14/2021] [Accepted: 07/26/2021] [Indexed: 11/22/2022]
Abstract
White lupin (Lupinus albus) represents an important legume crop in Europe and other parts of the world due to its high protein content and potential for low-input agriculture. However, most cultivars are susceptible to anthracnose caused by Colletotrichum lupini, a seed- and air-borne fungal pathogen that causes severe yield losses. The aim of this work was to develop a C. lupini-specific quantitative real-time TaqMan PCR assay that allows for quick and reliable detection and quantification of the pathogen in infected seed and plant material. Quantification of C. lupini DNA in dry seeds allowed us to distinguish infected and certified (non-infected) seed batches with DNA loads corresponding to the disease score index and yield of the mother plants. Additionally, C. lupini DNA could be detected in infected lupin shoots and close to the infection site, thereby allowing us to study the disease cycle of this hemibiotrophic pathogen. This qPCR assay provides a useful diagnostic tool to determine anthracnose infection levels of white lupin seeds and will facilitate the use of seed health assessments as a strategy to reduce the primary infection source and spread of this disease.
Collapse
|