1
|
Tanjak P, Chaiboonchoe A, Suwatthanarak T, Thanormjit K, Acharayothin O, Chanthercrob J, Parakonthun T, Methasate A, Fischer JM, Wong MH, Chinswangwatanakul V. Tumor-immune hybrid cells evade the immune response and potentiate colorectal cancer metastasis through CTLA4. Clin Exp Med 2024; 25:2. [PMID: 39499374 PMCID: PMC11538261 DOI: 10.1007/s10238-024-01515-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/22/2024] [Indexed: 11/07/2024]
Abstract
Understanding the metastatic cascade is critical for the treatment and prevention of cancer-related death. Within a tumor, immune cells have the capacity to fuse with tumor cells to generate tumor-immune hybrid cells (THCs). THCs are hypothesized to be a subset of cancer cells with the capacity to enter circulation as circulating hybrid cells (CHC) and seed metastases. To understand the mechanism of THC metastasis, we investigated CHCs in peripheral blood from patients with stage IV colorectal cancer (CRC), as well as THCs in tissues of primary colorectal cancers and their liver metastasis sites using immunofluorescence, spatial proteomic, spatial transcriptomic, molecular classification, and molecular pathway analyses. Our findings indicated a high prevalence of CHCs and THCs in patients with stage IV CRC. THCs expressed CTLA4 in primary CRC lesions and correlated with upregulation of CD68, CD4, and HLA-DR in metastatic liver lesions, which is found in the consensus molecular subtype (CMS) 1 of primary CRC tissue. Pathway analysis of these genes suggested that THCs are associated with neutrophils due to upregulation of neutrophil extracellular trap signaling (NET) and neutrophil degranulation pathways. These data provide molecular pathways for the formation of THCs suggesting fusion with neutrophils, which may facilitate extravasation and metastatic seeding.
Collapse
Grants
- R016234003 Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
- R016234003 Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
- R016234003 Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
- R016234003 Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
- R016234003 Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
- RO16241047 Foundation for Cancer Care, Siriraj Hospital, Thailand
- RO16241047 Foundation for Cancer Care, Siriraj Hospital, Thailand
- RO16241047 Foundation for Cancer Care, Siriraj Hospital, Thailand
- RO16241047 Foundation for Cancer Care, Siriraj Hospital, Thailand
- RO16241047 Foundation for Cancer Care, Siriraj Hospital, Thailand
- RO16241047 Foundation for Cancer Care, Siriraj Hospital, Thailand
- RO16241047 Foundation for Cancer Care, Siriraj Hospital, Thailand
- 63-117 and 66-083 Health Systems Research Institute (HSRI), Thailand
- 63-117 and 66-083 Health Systems Research Institute (HSRI), Thailand
- 63-117 and 66-083 Health Systems Research Institute (HSRI), Thailand
- 63-117 and 66-083 Health Systems Research Institute (HSRI), Thailand
- 63-117 and 66-083 Health Systems Research Institute (HSRI), Thailand
- 63-117 and 66-083 Health Systems Research Institute (HSRI), Thailand
- 63-117 and 66-083 Health Systems Research Institute (HSRI), Thailand
- Mahidol University
Collapse
Affiliation(s)
- Pariyada Tanjak
- Faculty of Medicine Siriraj Hospital, Siriraj Cancer Center, Mahidol University, Bangkok, 10700, Thailand
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Amphun Chaiboonchoe
- Siriraj Center of Research Excellent for Systems Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Thanawat Suwatthanarak
- Faculty of Medicine Siriraj Hospital, Siriraj Cancer Center, Mahidol University, Bangkok, 10700, Thailand
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Kullanist Thanormjit
- Faculty of Medicine Siriraj Hospital, Siriraj Cancer Center, Mahidol University, Bangkok, 10700, Thailand
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Onchira Acharayothin
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Jantappapa Chanthercrob
- Siriraj Center of Research Excellent for Systems Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Thammawat Parakonthun
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Asada Methasate
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Jared M Fischer
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97201, USA
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland , OR, 97201, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Melissa H Wong
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97201, USA
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, 97201, USA
| | - Vitoon Chinswangwatanakul
- Faculty of Medicine Siriraj Hospital, Siriraj Cancer Center, Mahidol University, Bangkok, 10700, Thailand.
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
2
|
Patel RK, Parappilly M, Farley HC, Latour EJ, Wang LG, Nair AM, Lu ES, Sims Z, Park B, Nelson K, Mayo SC, Mills GB, Sheppard BC, Chang YH, Gibbs SL, Kardosh A, Lopez CD, Wong MH. Circulating Neoplastic-Immune Hybrid Cells Are Biomarkers of Occult Metastasis and Treatment Response in Pancreatic Cancer. Cancers (Basel) 2024; 16:3650. [PMID: 39518088 PMCID: PMC11545756 DOI: 10.3390/cancers16213650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES Pancreatic ductal adenocarcinoma (PDAC) presents significant diagnostic and prognostic challenges, as current biomarkers frequently fail to accurately stage disease, predict rapid metastatic recurrence (rPDAC), or assess response to neoadjuvant therapy (NAT). We investigated the potential for circulating neoplastic-immune hybrid cells (CHCs) as a non-invasive, multifunctional biomarker for PDAC. METHODS Peripheral blood specimens were obtained from patients diagnosed with PDAC. CHCs were detected by co-expression of pan-cytokeratin and CD45, normalized to 50,000 peripheral blood mononuclear cells. rPDAC was defined as metastatic recurrence within six months of margin-negative pancreatectomy. Cyclic immunofluorescence (CyCIF) analyses compared hybrid phenotypes in blood and tumors. RESULTS Blood samples were collected from 42 patients with PDAC prior to resection. Those with radiographically occult metastatic disease and rPDAC had higher preoperative CHC numbers compared to patients who did not (65.0 and 74.4, vs. 11.52 CHCs; p < 0.001). Patients with complete or near-complete pathologic responses to NAT had lower preoperative CHC numbers than partial and/or non-responders (1.7 vs. 13.1 CHCs; p = 0.008). When assessed longitudinally, those with partial pathologic response saw CHC levels become undetectable while on treatment but increase in the interval between NAT completion and resection. In contrast, patients with poor responses or development of metastatic disease experienced persistent CHC detection during therapy or rising levels prior to radiographic evidence of metastases. Further, in metastatic PDAC patients, treatment-induced phenotypic changes in hybrid cells mirrored those in paired metastatic tumor samples. CONCLUSIONS CHC enumeration and phenotyping display promise as a real-time indicator of disease burden, recurrence risk, and treatment response in PDAC. CHCs have great potential as tumor-derived biomarkers to optimize therapeutic strategies and improve survival in patients with PDAC.
Collapse
Affiliation(s)
- Ranish K. Patel
- Department of Surgery, Division of Surgical Oncology, Oregon Health & Science University (OHSU), Portland, OR 97239, USA; (R.K.P.)
| | - Michael Parappilly
- Department of Cell, Developmental and Cancer Biology, OHSU, Portland, OR 97201, USA
| | - Hannah C. Farley
- Department of Cell, Developmental and Cancer Biology, OHSU, Portland, OR 97201, USA
| | - Emile J. Latour
- Biostatistics Shared Resource, Knight Cancer Institute, OHSU, Portland, OR 97239, USA
| | - Lei G. Wang
- Department of Biomedical Engineering, OHSU, Portland, OR 97201, USA
| | - Ashvin M. Nair
- Department of Cell, Developmental and Cancer Biology, OHSU, Portland, OR 97201, USA
| | - Ethan S. Lu
- Department of Cell, Developmental and Cancer Biology, OHSU, Portland, OR 97201, USA
| | - Zachary Sims
- Department of Biomedical Engineering, OHSU, Portland, OR 97201, USA
| | - Byung Park
- Biostatistics Shared Resource, Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Knight Cancer Institute, OHSU, Portland, OR 97201, USA
| | - Katherine Nelson
- Gastrointestinal Clinical Trials, Knight Cancer Institute, OHSU, Portland, OR 97239, USA
| | - Skye C. Mayo
- Department of Surgery, Division of Surgical Oncology, Oregon Health & Science University (OHSU), Portland, OR 97239, USA; (R.K.P.)
- Knight Cancer Institute, OHSU, Portland, OR 97201, USA
| | - Gordon B. Mills
- Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Division of Oncological Sciences, Knight Cancer Institute, OHSU, Portland, OR 97239, USA
| | - Brett C. Sheppard
- Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Department of Surgery, Division of General Surgery, OHSU, Portland, OR 97239, USA
| | - Young Hwan Chang
- Department of Biomedical Engineering, OHSU, Portland, OR 97201, USA
- Knight Cancer Institute, OHSU, Portland, OR 97201, USA
| | - Summer L. Gibbs
- Department of Biomedical Engineering, OHSU, Portland, OR 97201, USA
- Knight Cancer Institute, OHSU, Portland, OR 97201, USA
| | - Adel Kardosh
- Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Department of Medicine, Division of Medical Oncology, OHSU, Portland, OR 97239, USA
| | - Charles D. Lopez
- Knight Cancer Institute, OHSU, Portland, OR 97201, USA
- Department of Medicine, Division of Medical Oncology, OHSU, Portland, OR 97239, USA
| | - Melissa H. Wong
- Department of Cell, Developmental and Cancer Biology, OHSU, Portland, OR 97201, USA
- Knight Cancer Institute, OHSU, Portland, OR 97201, USA
| |
Collapse
|
3
|
Shultes PV, Weaver DT, Tadele DS, Barker-Clarke RJ, Scott JG. Cell-cell fusion in cancer: The next cancer hallmark? Int J Biochem Cell Biol 2024; 175:106649. [PMID: 39186970 PMCID: PMC11752790 DOI: 10.1016/j.biocel.2024.106649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024]
Abstract
In this review, we consider the role of cell-cell fusion in cancer development and progression through an evolutionary lens. We begin by summarizing the origins of fusion proteins (fusogens), of which there are many distinct classes that have evolved through convergent evolution. We then use an evolutionary framework to highlight how the persistence of fusion over generations and across different organisms can be attributed to traits that increase fitness secondary to fusion; these traits map well to the expanded hallmarks of cancer. By studying the tumor microenvironment, we can begin to identify the key selective pressures that may favor higher rates of fusion compared to healthy tissues. The paper concludes by discussing the increasing number of research questions surrounding fusion, recommendations for how to answer them, and the need for a greater interest in exploring cell fusion and evolutionary principles in oncology moving forward.
Collapse
Affiliation(s)
- Paulameena V Shultes
- Translational Hematology and Oncology (THOR), Cleveland Clinic, Cleveland, OH 44120, USA; School of Medicine, Case Western Reserve University, Cleveland, OH 44120, USA
| | - Davis T Weaver
- Translational Hematology and Oncology (THOR), Cleveland Clinic, Cleveland, OH 44120, USA; School of Medicine, Case Western Reserve University, Cleveland, OH 44120, USA
| | - Dagim S Tadele
- Translational Hematology and Oncology (THOR), Cleveland Clinic, Cleveland, OH 44120, USA; Oslo University Hospital, Ullevål, Department of Medical Genetics, Oslo, Norway
| | - Rowan J Barker-Clarke
- Translational Hematology and Oncology (THOR), Cleveland Clinic, Cleveland, OH 44120, USA
| | - Jacob G Scott
- Translational Hematology and Oncology (THOR), Cleveland Clinic, Cleveland, OH 44120, USA; School of Medicine, Case Western Reserve University, Cleveland, OH 44120, USA; Physics Department, Case Western Reserve University, Cleveland, OH 44120, USA.
| |
Collapse
|
4
|
Marcotte E, Goyeneche A, Abdouh M, Burnier JV, Burnier MN. The Phenotypical Characterization of Dual-Nature Hybrid Cells in Uveal Melanoma. Cancers (Basel) 2024; 16:3231. [PMID: 39335202 PMCID: PMC11429545 DOI: 10.3390/cancers16183231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Metastasis, occurring years after primary diagnosis, represents a poor prognosis in uveal melanoma (UM)-affected individuals. The nature of cells involved in this process is under debate. Circulating hybrid cells that have combined tumor and immune cell features found in blood were predictive of metastasis and may correspond to dual-nature cells (DNC) in the primary tumor. Herein, we sought to determine the presence of DNCs in primary UM tumors, the cell types involved in their genesis, and their ability to be formed in vitro. METHODS UM lesions (n = 38) were immunolabeled with HMB45 in combination with immune-cell-specific antibodies. In parallel, we co-cultured UM cells and peripheral blood mononuclear cells (PBMCs) to analyze DNC formation. RESULTS HMB45+/CD45+ DNCs were present in 90% (26/29) of the tumors, HMB45+/CD8+ DNCs were present in 93% (26/28), and HMB45+/CD68+ DNCs were present in 71% (17/24). DNCs formed with CD8+ and CD68+ cells were positively correlated to the infiltration of their respective immune cells. Notably, UM cells were prone to hybridize with PBMCs in vitro. CONCLUSIONS This phenotypical characterization of DNCs in UM demonstrates that CD8+ T-cells and macrophages are capable of DNC formation, and they are important for better understanding metastatic dissemination, thus paving the path towards novel therapeutic avenues.
Collapse
Affiliation(s)
- Emily Marcotte
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- The MUHC-McGill University Ocular Pathology & Translational Research Laboratory, McGill University, Montreal, QC H4A 3J1, Canada
| | - Alicia Goyeneche
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- The MUHC-McGill University Ocular Pathology & Translational Research Laboratory, McGill University, Montreal, QC H4A 3J1, Canada
| | - Mohamed Abdouh
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- The MUHC-McGill University Ocular Pathology & Translational Research Laboratory, McGill University, Montreal, QC H4A 3J1, Canada
| | - Julia Valdemarin Burnier
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Experimental Pathology Unit, Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H3A 3T2, Canada
| | - Miguel Noel Burnier
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- The MUHC-McGill University Ocular Pathology & Translational Research Laboratory, McGill University, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
5
|
Patel RK, Parappilly MS, Walker BS, Heussner RT, Fung A, Chang YH, Kardosh A, Lopez CD, Mayo SC, Wong MH. Exploratory Analyses of Circulating Neoplastic-Immune Hybrid Cells as Prognostic Biomarkers in Advanced Intrahepatic Cholangiocarcinoma. Int J Mol Sci 2024; 25:9198. [PMID: 39273147 PMCID: PMC11395231 DOI: 10.3390/ijms25179198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
Existing clinical biomarkers do not reliably predict treatment response or disease progression in patients with advanced intrahepatic cholangiocarcinoma (ICC). Circulating neoplastic-immune hybrid cells (CHCs) have great promise as a blood-based biomarker for patients with advanced ICC. Peripheral blood specimens were longitudinally collected from patients with advanced ICC enrolled in the HELIX-1 phase II clinical trial (NCT04251715). CHCs were identified by co-expression of pan-cytokeratin (CK) and CD45, and levels were correlated to patient clinical disease course. Unsupervised machine learning was then performed to extract their morphological features to compare them across disease courses. Five patients were included in this study, with a median of nine specimens collected per patient. A median of 13.5 CHCs per 50,000 peripheral blood mononuclear cells were identified at baseline, and levels decreased to zero following the initiation of treatment in all patients. Counts remained undetectable in three patients who demonstrated end-of-trial clinical treatment response and conversely increased in two patients with evidence of therapeutic resistance. In the post-trial surveillance period, interval counts increased prior to or at the time of clinical progression in three patients and remain undetectable in one patient with continued long-term disease stability. Using our machine learning platform, treatment-resistant CHCs exhibited upregulation of CK and downregulation of CD45 relative to treatment-responsive CHCs. CHCs represent a promising blood-based biomarker to supplement traditional radiographic and biochemical measures.
Collapse
Affiliation(s)
- Ranish K. Patel
- Department of Surgery, Division of Surgical Oncology, Oregon Health & Science University (OHSU), Portland, OR 97239, USA; (R.K.P.)
| | - Michael S. Parappilly
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University (OHSU), Portland, OR 97201, USA
| | - Brett S. Walker
- Department of Surgery, Division of Surgical Oncology, Oregon Health & Science University (OHSU), Portland, OR 97239, USA; (R.K.P.)
| | - Robert T. Heussner
- Department of Biomedical Engineering, Oregon Health & Science University (OHSU), Portland, OR 97201, USA
| | - Alice Fung
- Department of Diagnostic Radiology, Oregon Health & Science University (OHSU), Portland, OR 97239, USA
| | - Young Hwan Chang
- Department of Biomedical Engineering, Oregon Health & Science University (OHSU), Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University (OHSU), Portland, OR 97201, USA
| | - Adel Kardosh
- Knight Cancer Institute, Oregon Health & Science University (OHSU), Portland, OR 97201, USA
- Department of Medicine, Division of Medical Oncology, Oregon Health & Science University (OHSU), Portland, OR 97239, USA
| | - Charles D. Lopez
- Knight Cancer Institute, Oregon Health & Science University (OHSU), Portland, OR 97201, USA
- Department of Medicine, Division of Medical Oncology, Oregon Health & Science University (OHSU), Portland, OR 97239, USA
| | - Skye C. Mayo
- Department of Surgery, Division of Surgical Oncology, Oregon Health & Science University (OHSU), Portland, OR 97239, USA; (R.K.P.)
- Knight Cancer Institute, Oregon Health & Science University (OHSU), Portland, OR 97201, USA
| | - Melissa H. Wong
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University (OHSU), Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University (OHSU), Portland, OR 97201, USA
| |
Collapse
|
6
|
Kulbay M, Marcotte E, Remtulla R, Lau THA, Paez-Escamilla M, Wu KY, Burnier MN. Uveal Melanoma: Comprehensive Review of Its Pathophysiology, Diagnosis, Treatment, and Future Perspectives. Biomedicines 2024; 12:1758. [PMID: 39200222 PMCID: PMC11352094 DOI: 10.3390/biomedicines12081758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 09/02/2024] Open
Abstract
Uveal melanoma (UM) is the most common intraocular malignancy in adults. Recent advances highlight the role of tumor-derived extracellular vesicles (TEV) and circulating hybrid cells (CHC) in UM tumorigenesis. Bridged with liquid biopsies, a novel technology that has shown incredible performance in detecting cancer cells or products derived from tumors in bodily fluids, it can significantly impact disease management and outcome. The aim of this comprehensive literature review is to provide a summary of current knowledge and ongoing advances in posterior UM pathophysiology, diagnosis, and treatment. The first section of the manuscript discusses the complex and intricate role of TEVs and CHCs. The second part of this review delves into the epidemiology, etiology and risk factors, clinical presentation, and prognosis of UM. Third, current diagnostic methods, ensued by novel diagnostic tools for the early detection of UM, such as liquid biopsies and artificial intelligence-based technologies, are of paramount importance in this review. The fundamental principles, limits, and challenges associated with these diagnostic tools, as well as their potential as a tracker for disease progression, are discussed. Finally, a summary of current treatment modalities is provided, followed by an overview of ongoing preclinical and clinical research studies to provide further insights on potential biomolecular pathway alterations and therapeutic targets for the management of UM. This review is thus an important resource for all healthcare professionals, clinicians, and researchers working in the field of ocular oncology.
Collapse
Affiliation(s)
- Merve Kulbay
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 3S5, Canada; (M.K.); (R.R.); (T.H.A.L.); (M.P.-E.)
| | - Emily Marcotte
- McGill University Ocular Pathology and Translational Research Laboratory, McGill University, Montreal, QC H4A 3J1, Canada;
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Raheem Remtulla
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 3S5, Canada; (M.K.); (R.R.); (T.H.A.L.); (M.P.-E.)
| | - Tsz Hin Alexander Lau
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 3S5, Canada; (M.K.); (R.R.); (T.H.A.L.); (M.P.-E.)
| | - Manuel Paez-Escamilla
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 3S5, Canada; (M.K.); (R.R.); (T.H.A.L.); (M.P.-E.)
| | - Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada;
| | - Miguel N. Burnier
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 3S5, Canada; (M.K.); (R.R.); (T.H.A.L.); (M.P.-E.)
- McGill University Ocular Pathology and Translational Research Laboratory, McGill University, Montreal, QC H4A 3J1, Canada;
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
7
|
Anderson AN, Conley P, Klocke CD, Sengupta SK, Pang A, Farley HC, Gillingham AR, Dawson AD, Fan Y, Jones JA, Gibbs SL, Skalet AH, Wu G, Wong MH. Detection of neoplastic-immune hybrid cells with metastatic properties in uveal melanoma. Biomark Res 2024; 12:67. [PMID: 39030653 PMCID: PMC11264923 DOI: 10.1186/s40364-024-00609-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/18/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Uveal melanoma is the most common non-cutaneous melanoma and is an intraocular malignancy affecting nearly 7,000 individuals per year worldwide. Of these, approximately 50% will progress to metastatic disease for which there are currently no effective curative therapies. Despite advances in molecular profiling and metastatic stratification of uveal melanoma tumors, little is known regarding their underlying biology of metastasis. Our group has identified a disseminated neoplastic cell population characterized by co-expression of immune and melanoma proteins, circulating hybrid cells (hybrids), in patients with uveal melanoma. Compared to circulating tumor cells, which lack expression of immune proteins, hybrids are detected at an increased prevalence in peripheral blood and can be used as a non-invasive biomarker to predict metastatic progression. METHODS To ascertain mechanisms underlying enhanced hybrid cell dissemination we identified hybrid cells within primary uveal melanoma tumors using single cell RNA sequencing (n = 8) and evaluated their gene expression and predicted ligand-receptor interactions in relation to other melanoma and immune cells within the primary tumor. We then verified expression of upregulated hybrid pathways within patient-matched tumor and peripheral blood hybrids (n = 4) using cyclic immunofluorescence and quantified their protein expression relative to other non-hybrid tumor and disseminated tumor cells. RESULTS Among the top upregulated genes and pathways in hybrid cells were those involved in enhanced cell motility and cytoskeletal rearrangement, immune evasion, and altered cellular metabolism. In patient-matched tumor and peripheral blood, we verified gene expression by examining concordant protein expression for each pathway category: TMSB10 (cell motility), CD74 (immune evasion) and GPX1 (metabolism). Both TMSB10 and GPX1 were expressed on significantly higher numbers of disseminated hybrid cells compared to circulating tumor cells, and CD74 and GPX1 were expressed on more disseminated hybrids than tumor-resident hybrids. Lastly, we identified that hybrid cells express ligand-receptor signaling pathways implicated in promoting metastasis including GAS6-AXL, CXCL12-CXCR4, LGALS9-P4HB and IGF1-IGFR1. CONCLUSION These findings highlight the importance of TMSB10, GPX1 and CD74 for successful hybrid cell dissemination and survival in circulation. Our results contribute to the understanding of uveal melanoma tumor progression and interactions between tumor cells and immune cells in the tumor microenvironment that may promote metastasis.
Collapse
Affiliation(s)
- Ashley N Anderson
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Patrick Conley
- Department of Medical Informatics and Clinical Epidemiology, OHSU, Portland, OR, USA
| | - Christopher D Klocke
- Department of Medical Informatics and Clinical Epidemiology, OHSU, Portland, OR, USA
| | - Sidharth K Sengupta
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Amara Pang
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Hannah C Farley
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University (OHSU), Portland, OR, USA
- Department of Biomedical Engineering, OHSU, Portland, OR, USA
| | - Abigail R Gillingham
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Aubrey D Dawson
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Yichen Fan
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Jocelyn A Jones
- Department of Biomedical Engineering, OHSU, Portland, OR, USA
| | - Summer L Gibbs
- Department of Biomedical Engineering, OHSU, Portland, OR, USA
- Knight Cancer Institute, OHSU, Portland, OR, USA
| | - Alison H Skalet
- Casey Eye Institute, OHSU, Portland, OR, USA
- Knight Cancer Institute, OHSU, Portland, OR, USA
| | - Guanming Wu
- Department of Medical Informatics and Clinical Epidemiology, OHSU, Portland, OR, USA
- Knight Cancer Institute, OHSU, Portland, OR, USA
| | - Melissa H Wong
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University (OHSU), Portland, OR, USA.
- Knight Cancer Institute, OHSU, Portland, OR, USA.
| |
Collapse
|
8
|
Fuentes-Rodriguez A, Mitchell A, Guérin SL, Landreville S. Recent Advances in Molecular and Genetic Research on Uveal Melanoma. Cells 2024; 13:1023. [PMID: 38920653 PMCID: PMC11201764 DOI: 10.3390/cells13121023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 06/27/2024] Open
Abstract
Uveal melanoma (UM), a distinct subtype of melanoma, presents unique challenges in its clinical management due to its complex molecular landscape and tendency for liver metastasis. This review highlights recent advancements in understanding the molecular pathogenesis, genetic alterations, and immune microenvironment of UM, with a focus on pivotal genes, such as GNAQ/11, BAP1, and CYSLTR2, and delves into the distinctive genetic and chromosomal classifications of UM, emphasizing the role of mutations and chromosomal rearrangements in disease progression and metastatic risk. Novel diagnostic biomarkers, including circulating tumor cells, DNA and extracellular vesicles, are discussed, offering potential non-invasive approaches for early detection and monitoring. It also explores emerging prognostic markers and their implications for patient stratification and personalized treatment strategies. Therapeutic approaches, including histone deacetylase inhibitors, MAPK pathway inhibitors, and emerging trends and concepts like CAR T-cell therapy, are evaluated for their efficacy in UM treatment. This review identifies challenges in UM research, such as the limited treatment options for metastatic UM and the need for improved prognostic tools, and suggests future directions, including the discovery of novel therapeutic targets, immunotherapeutic strategies, and advanced drug delivery systems. The review concludes by emphasizing the importance of continued research and innovation in addressing the unique challenges of UM to improve patient outcomes and develop more effective treatment strategies.
Collapse
Affiliation(s)
- Aurélie Fuentes-Rodriguez
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada; (A.F.-R.); (A.M.); (S.L.G.)
- Hôpital du Saint-Sacrement, Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC G1S 4L8, Canada
- Centre de Recherche en Organogénèse Expérimentale de l‘Université Laval/LOEX, Quebec City, QC G1J 1Z4, Canada
- Université Laval Cancer Research Center, Quebec City, QC G1R 3S3, Canada
| | - Andrew Mitchell
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada; (A.F.-R.); (A.M.); (S.L.G.)
- Hôpital du Saint-Sacrement, Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC G1S 4L8, Canada
- Centre de Recherche en Organogénèse Expérimentale de l‘Université Laval/LOEX, Quebec City, QC G1J 1Z4, Canada
- Université Laval Cancer Research Center, Quebec City, QC G1R 3S3, Canada
| | - Sylvain L. Guérin
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada; (A.F.-R.); (A.M.); (S.L.G.)
- Hôpital du Saint-Sacrement, Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC G1S 4L8, Canada
- Centre de Recherche en Organogénèse Expérimentale de l‘Université Laval/LOEX, Quebec City, QC G1J 1Z4, Canada
| | - Solange Landreville
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada; (A.F.-R.); (A.M.); (S.L.G.)
- Hôpital du Saint-Sacrement, Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC G1S 4L8, Canada
- Centre de Recherche en Organogénèse Expérimentale de l‘Université Laval/LOEX, Quebec City, QC G1J 1Z4, Canada
- Université Laval Cancer Research Center, Quebec City, QC G1R 3S3, Canada
| |
Collapse
|
9
|
Ke H, Kao S, van Zandwijk N, Rasko JEJ, Yeo D. Circulating tumor cell detection may offer earlier diagnosis in patients suspected of asbestos-related lung cancer. Lung Cancer 2024; 192:107829. [PMID: 38810528 DOI: 10.1016/j.lungcan.2024.107829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024]
Abstract
Asbestos-Related Lung Cancer (ARLC) presents ongoing diagnostic challenges despite improved imaging technologies. The long latency period, coupled with limited access to occupational and environmental data along with the confounding effects of smoking and other carcinogens adds complexity to the diagnostic process. Compounding these challenges is the absence of a specific histopathologic or mutational signature of ARLC. A correlation between PD-L1 expression and response to immune checkpoint inhibition has not yet been proven. Thus, new biomarkers are needed to allow accurate diagnoses of ARLC, to enable prognostication and to offer personalized treatments. Liquid biopsies, encompassing circulating DNA and circulating tumor cells (CTCs), have gained attention as novel diagnostic methods in lung cancer to screen high-risk populations including those exposed to asbestos. CTCs can be enumerated and molecularly profiled to provide predictive and prognostic information. CTC studies have not been undertaken in populations at risk of ARLC to date. The potential of CTCs to provide real-time molecular insight into ARLC biology may significantly improve the diagnosis and management of ARLC patients.
Collapse
Affiliation(s)
- Helen Ke
- Li Ka Shing Cell & Gene Therapy Program, The University of Sydney, Camperdown, 2050 NSW, Australia; Precision Oncology Laboratory, Gene and Stem Cell Therapy Program, Centenary Institute, The University of Sydney, Camperdown, 2050 NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Camperdown, 2050 NSW, Australia; Medical Oncology, Chris O'Brien Lifehouse, NSW 2050 Camperdown, Australia
| | - Steven Kao
- Faculty of Medicine and Health, The University of Sydney, Camperdown, 2050 NSW, Australia; Medical Oncology, Chris O'Brien Lifehouse, NSW 2050 Camperdown, Australia; Asbestos Diseases Research Institute, NSW 2139 Concord, Australia
| | - Nico van Zandwijk
- Faculty of Medicine and Health, The University of Sydney, Camperdown, 2050 NSW, Australia; Cell and Molecular Therapies, Royal Prince Alfred Hospital, Sydney Local Health District (SLHD), Camperdown, 2050 NSW, Australia
| | - John E J Rasko
- Li Ka Shing Cell & Gene Therapy Program, The University of Sydney, Camperdown, 2050 NSW, Australia; Precision Oncology Laboratory, Gene and Stem Cell Therapy Program, Centenary Institute, The University of Sydney, Camperdown, 2050 NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Camperdown, 2050 NSW, Australia; Cell and Molecular Therapies, Royal Prince Alfred Hospital, Sydney Local Health District (SLHD), Camperdown, 2050 NSW, Australia.
| | - Dannel Yeo
- Li Ka Shing Cell & Gene Therapy Program, The University of Sydney, Camperdown, 2050 NSW, Australia; Precision Oncology Laboratory, Gene and Stem Cell Therapy Program, Centenary Institute, The University of Sydney, Camperdown, 2050 NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Camperdown, 2050 NSW, Australia; Cell and Molecular Therapies, Royal Prince Alfred Hospital, Sydney Local Health District (SLHD), Camperdown, 2050 NSW, Australia.
| |
Collapse
|
10
|
Rotatori S, Zhang Y, Madden-Hennessey K, Mohammed C, Yang CH, Urbani J, Shrestha P, Pettinelli J, Wang D, Liu X, Zhao Q. Live cell pool and rare cell isolation using Enrich TROVO system. N Biotechnol 2024; 80:12-20. [PMID: 38176452 DOI: 10.1016/j.nbt.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 12/12/2023] [Accepted: 12/30/2023] [Indexed: 01/06/2024]
Abstract
Although several technologies have been developed to isolate cells of interest from a heterogenous sample, clogging and impaired cell viability limit such isolation. We have developed the Enrich TROVO system as a novel, nonfluidic technology to sort live cells. The TROVO system combines imaging-based cell selection and photo-crosslinking of (gelatin methacrylate) gelMA-hydrogel to capture cells. After capture, cells are released by enzymatic digestion of the hydrogel and then retrieved for downstream analysis or further cell culturing. The system can capture cells with a recovery rate of 48% while maintaining 90% viability. Moreover, TROVO can enrich rare cells 506-fold with 93% efficiency using single step isolation from a 1:104 cell mixture, and can also capture one target cell from 1 million cells, reaching an enrichment ratio of 9128. In addition, 100% purity and 49% recovery rate can be achieved by a following negative isolation process. Compared to existing technologies, the TROVO system is clog-resistant, highly biocompatible, and can process a wide range of sample sizes.
Collapse
Affiliation(s)
- Stephen Rotatori
- Enrich Biosystems Inc., 21 Business Park Drive. STE. 4, Branford, CT 06405, USA
| | - Yichong Zhang
- Enrich Biosystems Inc., 21 Business Park Drive. STE. 4, Branford, CT 06405, USA.
| | | | - Christina Mohammed
- Enrich Biosystems Inc., 21 Business Park Drive. STE. 4, Branford, CT 06405, USA
| | - Chi-Han Yang
- Enrich Biosystems Inc., 21 Business Park Drive. STE. 4, Branford, CT 06405, USA
| | - Jordan Urbani
- Enrich Biosystems Inc., 21 Business Park Drive. STE. 4, Branford, CT 06405, USA
| | - Prem Shrestha
- Enrich Biosystems Inc., 21 Business Park Drive. STE. 4, Branford, CT 06405, USA
| | - Joseph Pettinelli
- Enrich Biosystems Inc., 21 Business Park Drive. STE. 4, Branford, CT 06405, USA
| | - Dong Wang
- Enrich Biosystems Inc., 21 Business Park Drive. STE. 4, Branford, CT 06405, USA
| | - Xueqi Liu
- Enrich Biosystems Inc., 21 Business Park Drive. STE. 4, Branford, CT 06405, USA
| | - Qi Zhao
- Enrich Biosystems Inc., 21 Business Park Drive. STE. 4, Branford, CT 06405, USA.
| |
Collapse
|
11
|
Heussner RT, Whalen RM, Anderson A, Theison H, Baik J, Gibbs S, Wong MH, Chang YH. Quantitative image analysis pipeline for detecting circulating hybrid cells in immunofluorescence images with human-level accuracy. Cytometry A 2024; 105:345-355. [PMID: 38385578 PMCID: PMC11217923 DOI: 10.1002/cyto.a.24826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/10/2024] [Accepted: 01/24/2024] [Indexed: 02/23/2024]
Abstract
Circulating hybrid cells (CHCs) are a newly discovered, tumor-derived cell population found in the peripheral blood of cancer patients and are thought to contribute to tumor metastasis. However, identifying CHCs by immunofluorescence (IF) imaging of patient peripheral blood mononuclear cells (PBMCs) is a time-consuming and subjective process that currently relies on manual annotation by laboratory technicians. Additionally, while IF is relatively easy to apply to tissue sections, its application to PBMC smears presents challenges due to the presence of biological and technical artifacts. To address these challenges, we present a robust image analysis pipeline to automate the detection and analysis of CHCs in IF images. The pipeline incorporates quality control to optimize specimen preparation protocols and remove unwanted artifacts, leverages a β-variational autoencoder (VAE) to learn meaningful latent representations of single-cell images, and employs a support vector machine (SVM) classifier to achieve human-level CHC detection. We created a rigorously labeled IF CHC data set including nine patients and two disease sites with the assistance of 10 annotators to evaluate the pipeline. We examined annotator variation and bias in CHC detection and provided guidelines to optimize the accuracy of CHC annotation. We found that all annotators agreed on CHC identification for only 65% of the cells in the data set and had a tendency to underestimate CHC counts for regions of interest (ROIs) containing relatively large amounts of cells (>50,000) when using the conventional enumeration method. On the other hand, our proposed approach is unbiased to ROI size. The SVM classifier trained on the β-VAE embeddings achieved an F1 score of 0.80, matching the average performance of human annotators. Our pipeline enables researchers to explore the role of CHCs in cancer progression and assess their potential as a clinical biomarker for metastasis. Further, we demonstrate that the pipeline can identify discrete cellular phenotypes among PBMCs, highlighting its utility beyond CHCs.
Collapse
Affiliation(s)
- Robert T. Heussner
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Riley M. Whalen
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon, USA
| | - Ashley Anderson
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon, USA
| | - Heather Theison
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon, USA
| | - Joseph Baik
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Summer Gibbs
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Melissa H. Wong
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Young Hwan Chang
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
12
|
Ali AM, Raza A. scRNAseq and High-Throughput Spatial Analysis of Tumor and Normal Microenvironment in Solid Tumors Reveal a Possible Origin of Circulating Tumor Hybrid Cells. Cancers (Basel) 2024; 16:1444. [PMID: 38611120 PMCID: PMC11010995 DOI: 10.3390/cancers16071444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Metastatic cancer is a leading cause of death in cancer patients worldwide. While circulating hybrid cells (CHCs) are implicated in metastatic spread, studies documenting their tissue origin remain sparse, with limited candidate approaches using one-two markers. Utilizing high-throughput single-cell and spatial transcriptomics, we identified tumor hybrid cells (THCs) co-expressing epithelial and macrophage markers and expressing a distinct transcriptome. Rarely, normal tissue showed these cells (NHCs), but their transcriptome was easily distinguishable from THCs. THCs with unique transcriptomes were observed in breast and colon cancers, suggesting this to be a generalizable phenomenon across cancer types. This study establishes a framework for HC identification in large datasets, providing compelling evidence for their tissue residence and offering comprehensive transcriptomic characterization. Furthermore, it sheds light on their differential function and identifies pathways that could explain their newly acquired invasive capabilities. THCs should be considered as potential therapeutic targets.
Collapse
Affiliation(s)
- Abdullah Mahmood Ali
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Edward P Evans MDS Center, Herbert Irving Comprehensive Cancer Center, New York, NY 10032, USA
| | - Azra Raza
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Edward P Evans MDS Center, Herbert Irving Comprehensive Cancer Center, New York, NY 10032, USA
| |
Collapse
|
13
|
Whalen RM, Anderson AN, Jones JA, Sims Z, Chang YH, Nederlof MA, Wong MH, Gibbs SL. Ultra high content analyses of circulating and tumor associated hybrid cells reveal phenotypic heterogeneity. Sci Rep 2024; 14:7350. [PMID: 38538742 PMCID: PMC10973471 DOI: 10.1038/s41598-024-57381-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/18/2024] [Indexed: 07/03/2024] Open
Abstract
Persistently high, worldwide mortality from cancer highlights the unresolved challenges of disease surveillance and detection that impact survival. Development of a non-invasive, blood-based biomarker would transform survival from cancer. We demonstrate the functionality of ultra-high content analyses of a newly identified population of tumor cells that are hybrids between neoplastic and immune cells in patient matched tumor and peripheral blood specimens. Using oligonucleotide conjugated antibodies (Ab-oligo) permitting cyclic immunofluorescence (cyCIF), we present analyses of phenotypes among tumor and peripheral blood hybrid cells. Interestingly, the majority of circulating hybrid cell (CHC) subpopulations were not identified in tumor-associated hybrids. These results highlight the efficacy of ultra-high content phenotypic analyses using Ab-oligo based cyCIF applied to both tumor and peripheral blood specimens. The combination of a multiplex phenotypic profiling platform that is gentle enough to analyze blood to detect and evaluate disseminated tumor cells represents a novel approach to exploring novel tumor biology and potential utility for developing the population as a blood-based biomarker in cancer.
Collapse
Affiliation(s)
- Riley M Whalen
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University (OHSU), Portland, OR, 97201, USA
| | - Ashley N Anderson
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University (OHSU), Portland, OR, 97201, USA
| | - Jocelyn A Jones
- Department of Biomedical Engineering, OHSU, Portland, OR, 97201, USA
| | - Zachary Sims
- Department of Biomedical Engineering, OHSU, Portland, OR, 97201, USA
| | - Young Hwan Chang
- Department of Biomedical Engineering, OHSU, Portland, OR, 97201, USA
- Knight Cancer Institute, OHSU, Portland, OR, 97201, USA
| | | | - Melissa H Wong
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University (OHSU), Portland, OR, 97201, USA.
- Knight Cancer Institute, OHSU, Portland, OR, 97201, USA.
| | - Summer L Gibbs
- Department of Biomedical Engineering, OHSU, Portland, OR, 97201, USA.
- Knight Cancer Institute, OHSU, Portland, OR, 97201, USA.
| |
Collapse
|
14
|
Magri V, De Renzi G, Marino L, De Meo M, Siringo M, Gelibter A, Gareri R, Cataldi C, Giannini G, Santini D, Nicolazzo C, Gazzaniga P. Circulating Cancer-Associated Macrophage-like Cells as a Blood-Based Biomarker of Response to Immune Checkpoint Inhibitors. Int J Mol Sci 2024; 25:3752. [PMID: 38612563 PMCID: PMC11011814 DOI: 10.3390/ijms25073752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Evidence has been provided that circulating cancer-associated macrophage-like cell (CAM-L) numbers increase in response to chemotherapy, with an inverse trend compared to circulating tumor cells (CTCs). In the era of evolving cancer immunotherapy, whether CAM-Ls might have a potential role as predictive biomarkers of response has been unexplored. We evaluated whether a serial blood evaluation of CTC to CAM-L ratio might predict response to immune checkpoint inhibitors in a cohort of non-small-cell lung cancer patients. At baseline, CTCs, CAM-Ls, and the CTC/CAM-L ratio significantly correlate with both progression-free survival (PFS) and overall survival (OS). The baseline CTC/CAM-L ratio was significantly different in early progressors (4.28 ± 3.21) compared to long responders (0.42 ± 0.47) (p = 0.001). In patients treated with immune checkpoint inhibitors, a CTC/CAM-L ratio ≤ 0.25 at baseline is associated with better PFS and OS. A baseline CTC/CAM-L ratio ≤ 0.25 is statistically significant to discriminate early progressions from durable response. The results of the present pilot study suggest that CAM-Ls together with CTCs could play an important role in evaluating patients treated with cancer immunotherapy.
Collapse
Affiliation(s)
- Valentina Magri
- Department of Pathology, Oncology and Radiology, Sapienza University of Rome, 00161 Rome, Italy; (M.S.); (A.G.); (C.C.); (D.S.)
| | - Gianluigi De Renzi
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (G.D.R.); (M.D.M.); (G.G.); (C.N.); (P.G.)
| | - Luca Marino
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, 00184 Rome, Italy;
| | - Michela De Meo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (G.D.R.); (M.D.M.); (G.G.); (C.N.); (P.G.)
| | - Marco Siringo
- Department of Pathology, Oncology and Radiology, Sapienza University of Rome, 00161 Rome, Italy; (M.S.); (A.G.); (C.C.); (D.S.)
| | - Alain Gelibter
- Department of Pathology, Oncology and Radiology, Sapienza University of Rome, 00161 Rome, Italy; (M.S.); (A.G.); (C.C.); (D.S.)
| | - Roberta Gareri
- UOC di Oncologia Medica, Ospedale Leopoldo Parodi Delfino, 00034 Colleferro, Italy;
| | - Chiara Cataldi
- Department of Pathology, Oncology and Radiology, Sapienza University of Rome, 00161 Rome, Italy; (M.S.); (A.G.); (C.C.); (D.S.)
| | - Giuseppe Giannini
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (G.D.R.); (M.D.M.); (G.G.); (C.N.); (P.G.)
| | - Daniele Santini
- Department of Pathology, Oncology and Radiology, Sapienza University of Rome, 00161 Rome, Italy; (M.S.); (A.G.); (C.C.); (D.S.)
| | - Chiara Nicolazzo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (G.D.R.); (M.D.M.); (G.G.); (C.N.); (P.G.)
| | - Paola Gazzaniga
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (G.D.R.); (M.D.M.); (G.G.); (C.N.); (P.G.)
| |
Collapse
|
15
|
Patel RK, Parappilly M, Rahman S, Schwantes IR, Sewell M, Giske NR, Whalen RM, Durmus NG, Wong MH. The Hallmarks of Circulating Hybrid Cells. Results Probl Cell Differ 2024; 71:467-485. [PMID: 37996690 DOI: 10.1007/978-3-031-37936-9_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
While tumor metastases represent the primary driver of cancer-related mortality, our understanding of the mechanisms that underlie metastatic initiation and progression remains incomplete. Recent work identified a novel tumor-macrophage hybrid cell population, generated through the fusion between neoplastic and immune cells. These hybrid cells are detected in primary tumor tissue, peripheral blood, and in metastatic sites. In-depth analyses of hybrid cell biology indicate that they can exploit phenotypic properties of both parental tumor and immune cells, in order to intravasate into circulation, evade the immune response, and seed tumors at distant sites. Thus, it has become increasingly evident that the development and dissemination of tumor-immune hybrid cells play an intricate and fundamental role in the metastatic cascade and can provide invaluable information regarding tumor characteristics and patient prognostication. In this chapter, we review the current understanding of this novel hybrid cell population, the specific hallmarks of cancer that these cells exploit to promote cancer progression and metastasis, and discuss exciting new frontiers that remain to be explored.
Collapse
Affiliation(s)
- Ranish K Patel
- Department of Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Michael Parappilly
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Shahrose Rahman
- Department of Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Issac R Schwantes
- Department of Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Marisa Sewell
- Department of Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Nicole R Giske
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Riley M Whalen
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Naside Gozde Durmus
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Melissa H Wong
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA.
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
16
|
Sieler M, Dittmar T. Cell Fusion and Syncytia Formation in Cancer. Results Probl Cell Differ 2024; 71:433-465. [PMID: 37996689 DOI: 10.1007/978-3-031-37936-9_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
The natural phenomenon of cell-cell fusion does not only take place in physiological processes, such as placentation, myogenesis, or osteoclastogenesis, but also in pathophysiological processes, such as cancer. More than a century ago postulated, today the hypothesis that the fusion of cancer cells with normal cells leads to the formation of cancer hybrid cells with altered properties is in scientific consensus. Some studies that have investigated the mechanisms and conditions for the fusion of cancer cells with other cells, as well as studies that have characterized the resulting cancer hybrid cells, are presented in this review. Hypoxia and the cytokine TNFα, for example, have been found to promote cell fusion. In addition, it has been found that both the protein Syncytin-1, which normally plays a role in placentation, and phosphatidylserine signaling on the cell membrane are involved in the fusion of cancer cells with other cells. In human cancer, cancer hybrid cells were detected not only in the primary tumor, but also in the circulation of patients as so-called circulating hybrid cells, where they often correlated with a worse outcome. Although some data are available, the questions of how and especially why cancer cells fuse with other cells are still not fully answered.
Collapse
Affiliation(s)
- Mareike Sieler
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke, Witten, Germany.
| | - Thomas Dittmar
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke, Witten, Germany
| |
Collapse
|
17
|
Anderson AN, Conley P, Klocke CD, Sengupta SK, Pang A, Farley HC, Gillingham AR, Dawson AD, Fan Y, Jones JA, Gibbs SL, Skalet AH, Wu G, Wong MH. Detection of neoplastic-immune hybrid cells with metastatic properties in uveal melanoma. RESEARCH SQUARE 2023:rs.3.rs-3694879. [PMID: 38106024 PMCID: PMC10723549 DOI: 10.21203/rs.3.rs-3694879/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Background Uveal melanoma is the most common non-cutaneous melanoma and is an intraocular malignancy affecting nearly 7,000 individuals per year worldwide. Of these, approximately 50% will progress to metastatic disease for which there are currently no effective therapies. Despite advances in molecular profiling and metastatic stratification of uveal melanoma tumors, little is known regarding their underlying biology of metastasis. Our group has identified a disseminated neoplastic cell population characterized by co-expression of immune and melanoma proteins, circulating hybrid cells (hybrids), in patients with uveal melanoma. Compared to circulating tumor cells, which lack expression of immune proteins, hybrids are detected at an increased prevalence in peripheral blood and can be used as a non-invasive biomarker to predict metastatic progression. Methods To ascertain mechanisms underlying enhanced hybrid cell dissemination we identified hybrid cells within primary uveal melanoma tumors using single cell RNA sequencing and evaluated their gene expression and predicted ligand-receptor interactions in relation to other melanoma and immune cells within the primary tumor. We then verified expression of upregulated hybrid pathways within patient-matched tumor and peripheral blood hybrids using cyclic immunofluorescence and quantified their protein expression relative to other non-hybrid tumor and disseminated tumor cells. Results Among the top upregulated genes and pathways in hybrid cells were those involved in enhanced cell motility and cytoskeletal rearrangement, immune evasion, and altered cellular metabolism. In patient-matched tumor and peripheral blood, we verified gene expression by examining concordant protein expression for each pathway category: TMSB10 (cell motility), CD74 (immune evasion) and GPX1 (metabolism). Both TMSB10 and GPX1 were expressed on significantly higher numbers of disseminated hybrid cells compared to circulating tumor cells, and CD74 and GPX1 were expressed on more disseminated hybrids than tumor-resident hybrids. Lastly, we identified that hybrid cells express ligand-receptor signaling pathways implicated in promoting metastasis including GAS6-AXL, CXCL12-CXCR4, LGALS9-P4HB and IGF1-IGFR1. Conclusion These findings highlight the importance of TMSB10, GPX1 and CD74 for successful hybrid cell dissemination and survival in circulation. Our results contribute to the understanding of uveal melanoma tumor progression and interactions between tumor cells and immune cells in the tumor microenvironment that may promote metastasis.
Collapse
|
18
|
Anderson AN, Conley P, Klocke CD, Sengupta SK, Robinson TL, Fan Y, Jones JA, Gibbs SL, Skalet AH, Wu G, Wong MH. Analysis of uveal melanoma scRNA sequencing data identifies neoplastic-immune hybrid cells that exhibit metastatic potential. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563815. [PMID: 37961378 PMCID: PMC10634980 DOI: 10.1101/2023.10.24.563815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Uveal melanoma (UM) is the most common non-cutaneous melanoma and is an intraocular malignancy that affects nearly 7,000 individuals per year worldwide. Of these, nearly 50% will progress to metastatic disease for which there are currently no effective therapies. Despite advances in the molecular profiling and metastatic stratification of class 1 and 2 UM tumors, little is known regarding the underlying biology of UM metastasis. Our group has identified a disseminated tumor cell population characterized by co-expression of immune and melanoma proteins, (circulating hybrid cells (CHCs), in patients with UM. Compared to circulating tumor cells, CHCs are detected at an increased prevalence in peripheral blood and can be used as a non-invasive biomarker to predict metastatic progression. To identify mechanisms underlying enhanced hybrid cell dissemination we sought to identify hybrid cells within a primary UM single cell RNA-seq dataset. Using rigorous doublet discrimination approaches, we identified UM hybrids and evaluated their gene expression, predicted ligand-receptor status, and cell-cell communication state in relation to other melanoma and immune cells within the primary tumor. We identified several genes and pathways upregulated in hybrid cells, including those involved in enhancing cell motility and cytoskeleton rearrangement, evading immune detection, and altering cellular metabolism. In addition, we identified that hybrid cells express ligand-receptor signaling pathways implicated in promoting cancer metastasis including IGF1-IGFR1, GAS6-AXL, LGALS9-P4HB, APP-CD74 and CXCL12-CXCR4. These results contribute to our understanding of tumor progression and interactions between tumor cells and immune cells in the UM microenvironment that may promote metastasis.
Collapse
|
19
|
Chou CW, Hung CN, Chiu CHL, Tan X, Chen M, Chen CC, Saeed M, Hsu CW, Liss MA, Wang CM, Lai Z, Alvarez N, Osmulski PA, Gaczynska ME, Lin LL, Ortega V, Kirma NB, Xu K, Liu Z, Kumar AP, Taverna JA, Velagaleti GVN, Chen CL, Zhang Z, Huang THM. Phagocytosis-initiated tumor hybrid cells acquire a c-Myc-mediated quasi-polarization state for immunoevasion and distant dissemination. Nat Commun 2023; 14:6569. [PMID: 37848444 PMCID: PMC10582093 DOI: 10.1038/s41467-023-42303-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 10/06/2023] [Indexed: 10/19/2023] Open
Abstract
While macrophage phagocytosis is an immune defense mechanism against invading cellular organisms, cancer cells expressing the CD47 ligand send forward signals to repel this engulfment. Here we report that the reverse signaling using CD47 as a receptor additionally enhances a pro-survival function of prostate cancer cells under phagocytic attack. Although low CD47-expressing cancer cells still allow phagocytosis, the reverse signaling delays the process, leading to incomplete digestion of the entrapped cells and subsequent tumor hybrid cell (THC) formation. Viable THCs acquire c-Myc from parental cancer cells to upregulate both M1- and M2-like macrophage polarization genes. Consequently, THCs imitating dual macrophage features can confound immunosurveillance, gaining survival advantage in the host. Furthermore, these cells intrinsically express low levels of androgen receptor and its targets, resembling an adenocarcinoma-immune subtype of metastatic castration-resistant prostate cancer. Therefore, phagocytosis-generated THCs may represent a potential target for treating the disease.
Collapse
Affiliation(s)
- Chih-Wei Chou
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Chia-Nung Hung
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Cheryl Hsiang-Ling Chiu
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Xi Tan
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Meizhen Chen
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Chien-Chin Chen
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Moawiz Saeed
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Che-Wei Hsu
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Michael A Liss
- Department of Urology, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Chiou-Miin Wang
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Zhao Lai
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Nathaniel Alvarez
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Pawel A Osmulski
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Maria E Gaczynska
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Li-Ling Lin
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Veronica Ortega
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Nameer B Kirma
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Kexin Xu
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Zhijie Liu
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Addanki P Kumar
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Department of Urology, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Josephine A Taverna
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Gopalrao V N Velagaleti
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Chun-Liang Chen
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA.
- Biobehavior Laboratory, School of Nursing, University of Texas Health Science Center, San Antonio, TX, 78229, USA.
| | - Zhao Zhang
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA.
| | - Tim Hui-Ming Huang
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA.
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, 78229, USA.
| |
Collapse
|
20
|
Dittmar T, Sieler M, Hass R. Why do certain cancer cells alter functionality and fuse? Biol Chem 2023; 404:951-960. [PMID: 37246410 DOI: 10.1515/hsz-2023-0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/11/2023] [Indexed: 05/30/2023]
Abstract
Cancer cell fusion represents a rare event. However, the surviving cancer hybrid cells after a post-hybrid selection process (PHSP) can overgrow other cancer cells by exhibiting a proliferation advantage and/or expression of cancer stem-like properties. Addition of new tumor properties during hetero-fusion of cancer cells e.g. with mesenchymal stroma-/stem-like cells (MSC) contribute to enhanced tumor plasticity via acquisition of new/altered functionalities. This provides new avenues for tumor development and metastatic behavior. Consequently, the present review article will also address the question as to whether cancer cell fusion represents a general and possibly evolutionary-conserved program or rather a random process?
Collapse
Affiliation(s)
- Thomas Dittmar
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, D-58448 Witten, Germany
| | - Mareike Sieler
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, D-58448 Witten, Germany
| | - Ralf Hass
- Department of Obstetrics and Gynecology, Biochemistry and Tumor Biology Laboratory, Hannover Medical School, D-30625 Hannover, Germany
| |
Collapse
|
21
|
Patel RK, Rahman S, Schwantes IR, Bartlett A, Eil R, Farsad K, Fowler K, Goodyear SM, Hansen L, Kardosh A, Nabavizadeh N, Rocha FG, Tsikitis VL, Wong MH, Mayo SC. Updated Management of Colorectal Cancer Liver Metastases: Scientific Advances Driving Modern Therapeutic Innovations. Cell Mol Gastroenterol Hepatol 2023; 16:881-894. [PMID: 37678799 PMCID: PMC10598050 DOI: 10.1016/j.jcmgh.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
Colorectal cancer is the second leading cause of cancer-related deaths in the United States and accounts for an estimated 1 million deaths annually worldwide. The liver is the most common site of metastatic spread from colorectal cancer, significantly driving both morbidity and mortality. Although remarkable advances have been made in recent years in the management for patients with colorectal cancer liver metastases, significant challenges remain in early detection, prevention of progression and recurrence, and in the development of more effective therapeutics. In 2017, our group held a multidisciplinary state-of-the-science symposium to discuss the rapidly evolving clinical and scientific advances in the field of colorectal liver metastases, including novel early detection and prognostic liquid biomarkers, identification of high-risk cohorts, advances in tumor-immune therapy, and different regional and systemic therapeutic strategies. Since that time, there have been scientific discoveries translating into therapeutic innovations addressing the current management challenges. These innovations are currently reshaping the treatment paradigms and spurring further scientific discovery. Herein, we present an updated discussion of both the scientific and clinical advances and future directions in the management of colorectal liver metastases, including adoptive T-cell therapies, novel blood-based biomarkers, and the role of the tumor microbiome. In addition, we provide a comprehensive overview detailing the role of modern multidisciplinary clinical approaches used in the management of patients with colorectal liver metastases, including considerations toward specific molecular tumor profiles identified on next generation sequencing, as well as quality of life implications for these innovative treatments.
Collapse
Affiliation(s)
- Ranish K Patel
- Department of Surgery, Oregon Health & Science University (OHSU), Portland, Oregon
| | - Shahrose Rahman
- Department of Surgery, Oregon Health & Science University (OHSU), Portland, Oregon
| | - Issac R Schwantes
- Department of Surgery, Oregon Health & Science University (OHSU), Portland, Oregon
| | - Alexandra Bartlett
- Division of Surgical Oncology, Department of Surgery, OHSU, Portland, Oregon
| | - Robert Eil
- Division of Surgical Oncology, Department of Surgery, OHSU, Portland, Oregon; The Knight Cancer Institute, OHSU, Portland, Oregon
| | - Khashayar Farsad
- Charles T. Dotter Department of Interventional Radiology, OHSU, Portland, Oregon
| | - Kathryn Fowler
- Department of Surgery, Oregon Health & Science University (OHSU), Portland, Oregon
| | - Shaun M Goodyear
- The Knight Cancer Institute, OHSU, Portland, Oregon; Division of Hematology and Oncology, School of Medicine, OHSU, Portland, Oregon
| | - Lissi Hansen
- The Knight Cancer Institute, OHSU, Portland, Oregon; School of Nursing, OHSU, Portland, Oregon
| | - Adel Kardosh
- The Knight Cancer Institute, OHSU, Portland, Oregon; Division of Hematology and Oncology, School of Medicine, OHSU, Portland, Oregon
| | - Nima Nabavizadeh
- The Knight Cancer Institute, OHSU, Portland, Oregon; Department of Radiation Medicine, OHSU, Portland, Oregon
| | - Flavio G Rocha
- Division of Surgical Oncology, Department of Surgery, OHSU, Portland, Oregon; The Knight Cancer Institute, OHSU, Portland, Oregon
| | - V Liana Tsikitis
- The Knight Cancer Institute, OHSU, Portland, Oregon; Division of Gastrointestinal Surgery, Department of Surgery, OHSU, Portland, Oregon
| | - Melissa H Wong
- The Knight Cancer Institute, OHSU, Portland, Oregon; Department of Cell, Developmental and Cancer Biology, OHSU, Portland, Oregon
| | - Skye C Mayo
- Division of Surgical Oncology, Department of Surgery, OHSU, Portland, Oregon; The Knight Cancer Institute, OHSU, Portland, Oregon.
| |
Collapse
|
22
|
Heussner RT, Whalen RM, Anderson A, Theison H, Baik J, Gibbs S, Wong MH, Chang YH. Quantitative image analysis pipeline for detecting circulating hybrid cells in immunofluorescence images with human-level accuracy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.24.554733. [PMID: 37662330 PMCID: PMC10473764 DOI: 10.1101/2023.08.24.554733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Circulating hybrid cells (CHCs) are a newly discovered, tumor-derived cell population identified in the peripheral blood of cancer patients and are thought to contribute to tumor metastasis. However, identifying CHCs by immunofluorescence (IF) imaging of patient peripheral blood mononuclear cells (PBMCs) is a time-consuming and subjective process that currently relies on manual annotation by laboratory technicians. Additionally, while IF is relatively easy to apply to tissue sections, its application on PBMC smears presents challenges due to the presence of biological and technical artifacts. To address these challenges, we present a robust image analysis pipeline to automate the detection and analyses of CHCs in IF images. The pipeline incorporates quality control to optimize specimen preparation protocols and remove unwanted artifacts, leverages a β-variational autoencoder (VAE) to learn meaningful latent representations of single-cell images and employs a support vector machine (SVM) classifier to achieve human-level CHC detection. We created a rigorously labeled IF CHC dataset including 9 patients and 2 disease sites with the assistance of 10 annotators to evaluate the pipeline. We examined annotator variation and bias in CHC detection and then provided guidelines to optimize the accuracy of CHC annotation. We found that all annotators agreed on CHC identification for only 65% of the cells in the dataset and had a tendency to underestimate CHC counts for regions of interest (ROI) containing relatively large amounts of cells (>50,000) when using conventional enumeration methods. On the other hand, our proposed approach is unbiased to ROI size. The SVM classifier trained on the β-VAE encodings achieved an F1 score of 0.80, matching the average performance of annotators. Our pipeline enables researchers to explore the role of CHCs in cancer progression and assess their potential as a clinical biomarker for metastasis. Further, we demonstrate that the pipeline can identify discrete cellular phenotypes among PBMCs, highlighting its utility beyond CHCs.
Collapse
Affiliation(s)
- Robert T. Heussner
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97201, USA
| | - Riley M. Whalen
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
| | - Ashley Anderson
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
| | - Heather Theison
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
| | - Joseph Baik
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97201, USA
| | - Summer Gibbs
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Melissa H. Wong
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Young Hwan Chang
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| |
Collapse
|
23
|
Surappa S, Multani P, Parlatan U, Sinawang PD, Kaifi J, Akin D, Demirci U. Integrated "lab-on-a-chip" microfluidic systems for isolation, enrichment, and analysis of cancer biomarkers. LAB ON A CHIP 2023; 23:2942-2958. [PMID: 37314731 PMCID: PMC10834032 DOI: 10.1039/d2lc01076c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The liquid biopsy has garnered considerable attention as a complementary clinical tool for the early detection, molecular characterization and monitoring of cancer over the past decade. In contrast to traditional solid biopsy techniques, liquid biopsy offers a less invasive and safer alternative for routine cancer screening. Recent advances in microfluidic technologies have enabled handling of liquid biopsy-derived biomarkers with high sensitivity, throughput, and convenience. The integration of these multi-functional microfluidic technologies into a 'lab-on-a-chip' offers a powerful solution for processing and analyzing samples on a single platform, thereby reducing the complexity, bio-analyte loss and cross-contamination associated with multiple handling and transfer steps in more conventional benchtop workflows. This review critically addresses recent developments in integrated microfluidic technologies for cancer detection, highlighting isolation, enrichment, and analysis strategies for three important sub-types of cancer biomarkers: circulating tumor cells, circulating tumor DNA and exosomes. We first discuss the unique characteristics and advantages of the various lab-on-a-chip technologies developed to operate on each biomarker subtype. This is then followed by a discussion on the challenges and opportunities in the field of integrated systems for cancer detection. Ultimately, integrated microfluidic platforms form the core of a new class of point-of-care diagnostic tools by virtue of their ease-of-operation, portability and high sensitivity. Widespread availability of such tools could potentially result in more frequent and convenient screening for early signs of cancer at clinical labs or primary care offices.
Collapse
Affiliation(s)
- Sushruta Surappa
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Lab, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA.
| | - Priyanka Multani
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Lab, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA.
| | - Ugur Parlatan
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Lab, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA.
| | - Prima Dewi Sinawang
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Lab, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA.
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Jussuf Kaifi
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO 65212, USA
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA
| | - Demir Akin
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Lab, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA.
- Center for Cancer Nanotechnology Excellence for Translational Diagnostics (CCNE-TD), School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Utkan Demirci
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Lab, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA.
| |
Collapse
|
24
|
Cozzo AJ, Coleman MF, Hursting SD. You complete me: tumor cell-myeloid cell nuclear fusion as a facilitator of organ-specific metastasis. Front Oncol 2023; 13:1191332. [PMID: 37427108 PMCID: PMC10324515 DOI: 10.3389/fonc.2023.1191332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/25/2023] [Indexed: 07/11/2023] Open
Abstract
Every cancer genome is unique, resulting in potentially near infinite cancer cell phenotypes and an inability to predict clinical outcomes in most cases. Despite this profound genomic heterogeneity, many cancer types and subtypes display a non-random distribution of metastasis to distant organs, a phenomenon known as organotropism. Proposed factors in metastatic organotropism include hematogenous versus lymphatic dissemination, the circulation pattern of the tissue of origin, tumor-intrinsic factors, compatibility with established organ-specific niches, long-range induction of premetastatic niche formation, and so-called "prometastatic niches" that facilitate successful colonization of the secondary site following extravasation. To successfully complete the steps required for distant metastasis, cancer cells must evade immunosurveillance and survive in multiple new and hostile environments. Despite substantial advances in our understanding of the biology underlying malignancy, many of the mechanisms used by cancer cells to survive the metastatic journey remain a mystery. This review synthesizes the rapidly growing body of literature demonstrating the relevance of an unusual cell type known as "fusion hybrid" cells to many of the hallmarks of cancer, including tumor heterogeneity, metastatic conversion, survival in circulation, and metastatic organotropism. Whereas the concept of fusion between tumor cells and blood cells was initially proposed over a century ago, only recently have technological advancements allowed for detection of cells containing components of both immune and neoplastic cells within primary and metastatic lesions as well as among circulating malignant cells. Specifically, heterotypic fusion of cancer cells with monocytes and macrophages results in a highly heterogeneous population of hybrid daughter cells with enhanced malignant potential. Proposed mechanisms behind these findings include rapid, massive genome rearrangement during nuclear fusion and/or acquisition of monocyte/macrophage features such as migratory and invasive capability, immune privilege, immune cell trafficking and homing, and others. Rapid acquisition of these cellular traits may increase the likelihood of both escape from the primary tumor site and extravasation of hybrid cells at a secondary location that is amenable to colonization by that particular hybrid phenotype, providing a partial explanation for the patterns observed in some cancers with regard to sites of distant metastases.
Collapse
Affiliation(s)
- Alyssa J. Cozzo
- Duke University School of Medicine, Durham, NC, United States
- Department of Pathology, Duke University Medical Center, Durham, NC, United States
| | - Michael F. Coleman
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Stephen D. Hursting
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
| |
Collapse
|
25
|
Li M, Basile JR, Mallya S, Lin YL. The impact and outcomes of cancer-macrophage fusion. BMC Cancer 2023; 23:497. [PMID: 37264310 PMCID: PMC10236829 DOI: 10.1186/s12885-023-10961-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/14/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND Cancer's hallmark feature is its ability to evolve, leading to metastasis and recurrence. Although genetic mutations and epigenetic changes have been implicated, they don't fully explain the leukocytic traits that many cancers develop. Cell fusion between cancer and somatic cells, particularly macrophages, has been suggested as an alternative pathway for cancer cells to obtain new traits by acquiring exogenous genetic material. METHODS This study aims to investigate the potential biological outcomes of tumor-myeloid cell fusion by generating tumor-macrophage hybrid cells. Two clones with markedly different tumorigenicity were selected, and RNA-seq was used to compare their RNA expressions with that of the control cells. Based on the results that the hybrid cells showed differential activation in several upstream regulator pathways that impact their biological behaviors, the hybrid cells' abilities to recruit stromal cells and establish angiogenesis as well as their cell cycle distributions were investigated through in vitro and in vivo studies. RESULTS Although both hybrid clones demonstrated p53 activation and reduced growth rates, they exhibited distinct cell cycle distributions and ability to grow in vivo. Notably, while one clone was highly tumorigenic, the other showed little tumorigenicity. Despite these differences, both hybrid clones were potent environmental modifiers, exhibiting significant abilities to recruit stromal and immune cells and establish angiogenesis. CONCLUSIONS The study revealed that tumor-somatic cell fusion is a potent environmental modifier that can modulate tumor survival and evolution, despite its relatively low occurrence. These findings suggest that tumor-somatic cell fusion could be a promising target for developing new cancer therapies. Furthermore, this study provides an experimental animal platform to investigate cancer-myeloid fusion and highlights the potential role of tumor-somatic cell fusion in modulating the tumor environment.
Collapse
Affiliation(s)
- Mengtao Li
- Division of Diagnostic and Surgical Sciences, School of Dentistry, University of California, CHS 23-068B. 10833 Le Conte Ave, Los Angeles, CA, 90095, USA
| | - John R Basile
- Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, Baltimore, MD, USA
- Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650 W. Baltimore St, Baltimore, MD, 7261, 21201, USA
| | - Sanjay Mallya
- Division of Diagnostic and Surgical Sciences, School of Dentistry, University of California, CHS 23-068B. 10833 Le Conte Ave, Los Angeles, CA, 90095, USA
| | - Yi-Ling Lin
- Division of Diagnostic and Surgical Sciences, School of Dentistry, University of California, CHS 23-068B. 10833 Le Conte Ave, Los Angeles, CA, 90095, USA.
- Gene regulation program, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA.
| |
Collapse
|
26
|
Dittmar T, Hass R. Intrinsic signalling factors associated with cancer cell-cell fusion. Cell Commun Signal 2023; 21:68. [PMID: 37016404 PMCID: PMC10071245 DOI: 10.1186/s12964-023-01085-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/21/2023] [Indexed: 04/06/2023] Open
Abstract
Cellular fusion e.g. between cancer cells and normal cells represents a stepwise process that is tightly regulated. During a pre-hybrid preparation program somatic cells and/or cancer cells are promoted to a pro-fusogenic state as a prerequisite to prepare a fusion process. A pro-fusogenic state requires significant changes including restructure of the cytoskeleton, e.g., by the formation of F-actin. Moreover, distinct plasma membrane lipids such as phosphatidylserine play an important role during cell fusion. In addition, the expression of distinct fusogenic factors such as syncytins and corresponding receptors are of fundamental importance to enable cellular mergers. Subsequent hybrid formation and fusion are followed by a post-hybrid selection process. Fusion among normal cells is important and often required during organismal development. Cancer cells fusion appears more rarely and is associated with the generation of new cancer hybrid cell populations. These cancer hybrid cells contribute to an elevated tumour plasticity by altered metastatic behaviour, changes in therapeutic and apoptotic responses, and even in the formation of cancer stem/ initiating cells. While many parts within this multi-step cascade are still poorly understood, this review article predominantly focusses on the intracellular necessities for fusion among cancer cells or with other cell populations of the tumour microenvironment. Video Abstract.
Collapse
Affiliation(s)
- Thomas Dittmar
- Institute of Immunology, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58448, Witten, Germany.
| | - Ralf Hass
- Biochemistry and Tumor Biology Laboratory, Department of Obstetrics and Gynaecology, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
27
|
Menyailo ME, Zainullina VR, Khozyainova AA, Tashireva LA, Zolotareva SY, Gerashchenko TS, Alifanov VV, Savelieva OE, Grigoryeva ES, Tarabanovskaya NA, Popova NO, Choinzonov EL, Cherdyntseva NV, Perelmuter VM, Denisov EV. Heterogeneity of Circulating Epithelial Cells in Breast Cancer at Single-Cell Resolution: Identifying Tumor and Hybrid Cells. Adv Biol (Weinh) 2023; 7:e2200206. [PMID: 36449636 DOI: 10.1002/adbi.202200206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/13/2022] [Indexed: 12/03/2022]
Abstract
Circulating tumor cells and hybrid cells formed by the fusion of tumor cells with normal cells are leading players in metastasis and have prognostic relevance. This study applies single-cell RNA sequencing to profile CD45-negative and CD45-positive circulating epithelial cells (CECs) in nonmetastatic breast cancer patients. CECs are represented by transcriptionally-distinct populations that include both aneuploid and diploid cells. CD45- CECs are predominantly aneuploid, but one population contained more diploid than aneuploid cells. CD45+ CECs mostly diploid: only two populations have aneuploid cells. Diploid CD45+ CECs annotated as different immune cells, surprisingly harbored many copy number aberrations, and positively correlated to tumor grade. It is noteworthy that cancer-associated signaling pathways areabundant only in one aneuploid CD45- CEC population, which may represent an aggressive subset of circulating tumor cells. Thus, CD45- and CD45+ CECs are highly heterogeneous in breast cancer patients and include aneuploid cells, which are most likely circulating tumor and hybrid cells, respectively, and diploid cells. DNA ploidy analysis can be an effective instrument for identifying tumor and hybrid cells among CECs. Further follow-up study is needed to determine which subsets of circulating tumor and hybrid cells contribute to breast cancer metastasis.
Collapse
Affiliation(s)
- Maxim E Menyailo
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Viktoria R Zainullina
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Anna A Khozyainova
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Liubov A Tashireva
- Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Sofia Yu Zolotareva
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Tatiana S Gerashchenko
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Vladimir V Alifanov
- Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Olga E Savelieva
- Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Evgeniya S Grigoryeva
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Nataliya A Tarabanovskaya
- Department of General Oncology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Nataliya O Popova
- Department of Chemotherapy, Cancer Research Institute, Tomsk National Research Medical Center Russian Academy of Sciences, Tomsk, Russia
| | - Evgeny L Choinzonov
- Department of Head and Neck Cancer, Cancer Research Institute, Tomsk National Research Medical Center Russian Academy of Sciences, Tomsk, Russia
| | - Nadezhda V Cherdyntseva
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Vladimir M Perelmuter
- Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Evgeny V Denisov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
28
|
McMahon NP, Jones JA, Anderson AN, Dietz MS, Wong MH, Gibbs SL. Flexible Cyclic Immunofluorescence (cyCIF) Using Oligonucleotide Barcoded Antibodies. Cancers (Basel) 2023; 15:827. [PMID: 36765785 PMCID: PMC9913741 DOI: 10.3390/cancers15030827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Advances in our understanding of the complex, multifaceted interactions between tumor epithelia, immune infiltrate, and tumor microenvironmental cells have been driven by highly multiplexed imaging technologies. These techniques are capable of labeling many more biomarkers than conventional immunostaining methods. However, multiplexed imaging techniques suffer from low detection sensitivity, cell loss-particularly in fragile samples-, and challenges with antibody labeling. Herein, we developed and optimized an oligonucleotide antibody barcoding strategy for cyclic immunofluorescence (cyCIF) that can be amplified to increase the detection efficiency of low-abundance antigens. Stained fluorescence signals can be readily removed using ultraviolet light treatment, preserving tissue and fragile cell sample integrity. We also extended the oligonucleotide barcoding strategy to secondary antibodies to enable the inclusion of difficult-to-label primary antibodies in a cyCIF panel. Using both the amplification oligonucleotides to label DNA barcoded antibodies and in situ hybridization of multiple fluorescently labeled oligonucleotides resulted in signal amplification and increased signal-to-background ratios. This procedure was optimized through the examination of staining parameters including staining oligonucleotide concentration, staining temperature, and oligonucleotide sequence design, resulting in a robust amplification technique. As a proof-of-concept, we demonstrate the flexibility of our cyCIF strategy by simultaneously imaging with the original oligonucleotide conjugated antibody (Ab-oligo) cyCIF strategy, the novel Ab-oligo cyCIF amplification strategy, as well as direct and indirect immunofluorescence to generate highly multiplexed images.
Collapse
Affiliation(s)
- Nathan P. McMahon
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201, USA
| | - Jocelyn A. Jones
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201, USA
| | - Ashley N. Anderson
- Department of Cell, Development & Cancer Biology Department, Oregon Health & Science University, Portland, OR 97201, USA
| | - Matthew S. Dietz
- Department of Cell, Development & Cancer Biology Department, Oregon Health & Science University, Portland, OR 97201, USA
| | - Melissa H. Wong
- Department of Cell, Development & Cancer Biology Department, Oregon Health & Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Summer L. Gibbs
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| |
Collapse
|
29
|
Dittmar T, Hass R. Extracellular Events Involved in Cancer Cell-Cell Fusion. Int J Mol Sci 2022; 23:ijms232416071. [PMID: 36555709 PMCID: PMC9784959 DOI: 10.3390/ijms232416071] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Fusion among different cell populations represents a rare process that is mediated by both intrinsic and extracellular events. Cellular hybrid formation is relayed by orchestrating tightly regulated signaling pathways that can involve both normal and neoplastic cells. Certain important cell merger processes are often required during distinct organismal and tissue development, including placenta and skeletal muscle. In a neoplastic environment, however, cancer cell fusion can generate new cancer hybrid cells. Following survival during a subsequent post-hybrid selection process (PHSP), the new cancer hybrid cells express different tumorigenic properties. These can include elevated proliferative capacity, increased metastatic potential, resistance to certain therapeutic compounds, and formation of cancer stem-like cells, all of which characterize significantly enhanced tumor plasticity. However, many parts within this multi-step cascade are still poorly understood. Aside from intrinsic factors, cell fusion is particularly affected by extracellular conditions, including an inflammatory microenvironment, viruses, pH and ionic stress, hypoxia, and exosome signaling. Accordingly, the present review article will primarily highlight the influence of extracellular events that contribute to cell fusion in normal and tumorigenic tissues.
Collapse
Affiliation(s)
- Thomas Dittmar
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58448 Witten, Germany
- Correspondence: (T.D.); (R.H.); Tel.: +49-2302-926165 (T.D.); +49-5115-326070 (R.H.)
| | - Ralf Hass
- Biochemistry and Tumor Biology Laboratory, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany
- Correspondence: (T.D.); (R.H.); Tel.: +49-2302-926165 (T.D.); +49-5115-326070 (R.H.)
| |
Collapse
|
30
|
Parappilly MS, Chin Y, Whalen RM, Anderson AN, Robinson TS, Strgar L, Sutton TL, Conley P, Klocke C, Gibbs SL, Chang YH, Wu G, Wong MH, Skalet AH. Circulating Neoplastic-Immune Hybrid Cells Predict Metastatic Progression in Uveal Melanoma. Cancers (Basel) 2022; 14:cancers14194617. [PMID: 36230539 PMCID: PMC9564048 DOI: 10.3390/cancers14194617] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 01/25/2023] Open
Abstract
Background: Uveal melanoma is an aggressive cancer with high metastatic risk. Recently, we identified a circulating cancer cell population that co-expresses neoplastic and leukocyte antigens, termed circulating hybrid cells (CHCs). In other cancers, CHCs are more numerous and better predict oncologic outcomes compared to circulating tumor cells (CTCs). We sought to investigate the potential of CHCs as a prognostic biomarker in uveal melanoma. Methods: We isolated peripheral blood monocular cells from uveal melanoma patients at the time of primary treatment and used antibodies against leukocyte and melanoma markers to identify and enumerate CHCs and CTCs by immunocytochemistry. Results: Using a multi-marker approach to capture the heterogeneous disseminated tumor cell population, detection of CHCs was highly sensitive in uveal melanoma patients regardless of disease stage. CHCs were detected in 100% of stage I-III uveal melanoma patients (entire cohort, n = 68), whereas CTCs were detected in 58.8% of patients. CHCs were detected at levels statically higher than CTCs across all stages (p = 0.05). Moreover, CHC levels, but not CTCs, predicted 3 year progression-free survival (p < 0.03) and overall survival (p < 0.04). Conclusion: CHCs are a novel and promising prognostic biomarker in uveal melanoma.
Collapse
Affiliation(s)
- Michael S. Parappilly
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
| | - Yuki Chin
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
| | - Riley M. Whalen
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
| | - Ashley N. Anderson
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
| | - Trinity S. Robinson
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
| | - Luke Strgar
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97201, USA
- Department of Computational Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Thomas L. Sutton
- Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Patrick Conley
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Christopher Klocke
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Summer L. Gibbs
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Young Hwan Chang
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97201, USA
- Department of Computational Biology, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Guanming Wu
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Melissa H. Wong
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
- Correspondence: (M.H.W.); (A.H.S.)
| | - Alison H. Skalet
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Correspondence: (M.H.W.); (A.H.S.)
| |
Collapse
|
31
|
Sutton TL, Patel RK, Anderson AN, Bowden SG, Whalen R, Giske NR, Wong MH. Circulating Cells with Macrophage-like Characteristics in Cancer: The Importance of Circulating Neoplastic-Immune Hybrid Cells in Cancer. Cancers (Basel) 2022; 14:cancers14163871. [PMID: 36010865 PMCID: PMC9405966 DOI: 10.3390/cancers14163871] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary In cancer, disseminated neoplastic cells circulating in blood are a source of tumor DNA, RNA, and protein, which can be harnessed to diagnose, monitor, and better understand the biology of the tumor from which they are derived. Historically, circulating tumor cells (CTCs) have dominated this field of study. While CTCs are shed directly into circulation from a primary tumor, they remain relatively rare, particularly in early stages of disease, and thus are difficult to utilize as a reliable cancer biomarker. Neoplastic-immune hybrid cells represent a novel subpopulation of circulating cells that are more reliably attainable as compared to their CTC counterparts. Here, we review two recently identified circulating cell populations in cancer—cancer-associated macrophage-like cells and circulating hybrid cells—and discuss the future impact for the exciting area of disseminated hybrid cells. Abstract Cancer remains a significant cause of mortality in developed countries, due in part to difficulties in early detection, understanding disease biology, and assessing treatment response. If effectively harnessed, circulating biomarkers promise to fulfill these needs through non-invasive “liquid” biopsy. While tumors disseminate genetic material and cellular debris into circulation, identifying clinically relevant information from these analytes has proven difficult. In contrast, cell-based circulating biomarkers have multiple advantages, including a source for tumor DNA and protein, and as a cellular reflection of the evolving tumor. While circulating tumor cells (CTCs) have dominated the circulating cell biomarker field, their clinical utility beyond that of prognostication has remained elusive, due to their rarity. Recently, two novel populations of circulating tumor-immune hybrid cells in cancer have been characterized: cancer-associated macrophage-like cells (CAMLs) and circulating hybrid cells (CHCs). CAMLs are macrophage-like cells containing phagocytosed tumor material, while CHCs can result from cell fusion between cancer and immune cells and play a role in the metastatic cascade. Both are detected in higher numbers than CTCs in peripheral blood and demonstrate utility in prognostication and assessing treatment response. Additionally, both cell populations are heterogeneous in their genetic, transcriptomic, and proteomic signatures, and thus have the potential to inform on heterogeneity within tumors. Herein, we review the advances in this exciting field.
Collapse
Affiliation(s)
- Thomas L. Sutton
- Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ranish K. Patel
- Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ashley N. Anderson
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
| | - Stephen G. Bowden
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Riley Whalen
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
| | - Nicole R. Giske
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
| | - Melissa H. Wong
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
- Correspondence: ; Tel.: +1-503-494-8749; Fax: +1-503-494-4253
| |
Collapse
|
32
|
Chaperonin containing TCP1 as a marker for identification of circulating tumor cells in blood. PLoS One 2022; 17:e0264651. [PMID: 35749519 PMCID: PMC9232171 DOI: 10.1371/journal.pone.0264651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/14/2022] [Indexed: 11/23/2022] Open
Abstract
Herein we report the use of Chaperonin-Containing TCP-1 (CCT or TRiC) as a marker to detect circulating tumor cells (CTCs) that are shed from tumors during oncogenesis. Most detection methods used in liquid biopsy approaches for enumeration of CTCs from blood, employ epithelial markers like cytokeratin (CK). However, such markers provide little information on the potential of these shed tumor cells, which are normally short-lived, to seed metastatic sites. To identify a marker that could go beyond enumeration and provide actionable data on CTCs, we evaluated CCT. CCT is a protein-folding complex composed of eight subunits. Previously, we found that expression of the second subunit (CCT2 or CCTβ) inversely correlated with cancer patient survival and was essential for tumorigenesis in mice, driving tumor-promoting processes like proliferation and anchorage-independent growth. In this study, we examined CCT2 expression in cancer compared to normal tissues and found statistically significant increases in tumors. Because not all blood samples from cancer patients contain detectable CTCs, we used the approach of spiking a known number of cancer cells into blood from healthy donors to test a liquid biopsy approach using CCT2 to distinguish rare cancer cells from the large number of non-cancer cells in blood. Using a clinically validated method for capturing CTCs, we evaluated detection of intracellular CCT2 staining for visualization of breast cancer and small cell lung (SCLC) cancer cells. We demonstrated that CCT2 staining could be incorporated into a CTC capture and staining protocol, providing biologically relevant information to improve detection of cancer cells shed in blood. These results were confirmed with a pilot study of blood from SCLC patients. Our studies demonstrate that detection of CCT2 could identify rare cancer cells in blood and has application in liquid biopsy approaches to enhance the use of minimally invasive methods for cancer diagnosis.
Collapse
|
33
|
Kaigorodova EV, Kozik AV, Zavaruev IS, Grishchenko MY. Hybrid/Atypical Forms of Circulating Tumor Cells: Current State of the Art. BIOCHEMISTRY (MOSCOW) 2022; 87:380-390. [PMID: 35527376 PMCID: PMC8993035 DOI: 10.1134/s0006297922040071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cancer is one of the most common diseases worldwide, and its treatment is associated with many challenges such as drug and radioresistance and formation of metastases. These difficulties are due to tumor heterogeneity, which has many causes. One may be the cell fusion, a process that is relevant to both physiological (e.g., wound healing) and pathophysiological (cancer and viral infection) processes. This literature review aimed to summarize the existing data on the hybrid/atypical forms of circulating cancer cells and their role in tumor progression. For that, the bioinformatics search in universal databases, such as PubMed, NCBI, and Google Scholar was conducted by using the keywords “hybrid cancer cells”, “cancer cell fusion”, etc. In this review the latest information related to the hybrid tumor cells, theories of their genesis, characteristics of different variants with data from our own researches are presented. Many aspects of the hybrid cell research are still in their infancy. However, with the level of knowledge already accumulated, circulating hybrids such as CAML and CHC could be considered as promising biomarkers of cancerous tumors, and even more as a new approach to cancer treatment.
Collapse
Affiliation(s)
- Evgeniya V Kaigorodova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634050, Russia.
- Siberian State Medical University, Tomsk, 634050, Russia
| | - Alexey V Kozik
- Siberian State Medical University, Tomsk, 634050, Russia
| | | | | |
Collapse
|
34
|
Tretyakova MS, Subbalakshmi AR, Menyailo ME, Jolly MK, Denisov EV. Tumor Hybrid Cells: Nature and Biological Significance. Front Cell Dev Biol 2022; 10:814714. [PMID: 35242760 PMCID: PMC8886020 DOI: 10.3389/fcell.2022.814714] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Metastasis is the leading cause of cancer death and can be realized through the phenomenon of tumor cell fusion. The fusion of tumor cells with other tumor or normal cells leads to the appearance of tumor hybrid cells (THCs) exhibiting novel properties such as increased proliferation and migration, drug resistance, decreased apoptosis rate, and avoiding immune surveillance. Experimental studies showed the association of THCs with a high frequency of cancer metastasis; however, the underlying mechanisms remain unclear. Many other questions also remain to be answered: the role of genetic alterations in tumor cell fusion, the molecular landscape of cells after fusion, the lifetime and fate of different THCs, and the specific markers of THCs, and their correlation with various cancers and clinicopathological parameters. In this review, we discuss the factors and potential mechanisms involved in the occurrence of THCs, the types of THCs, and their role in cancer drug resistance and metastasis, as well as potential therapeutic approaches for the prevention, and targeting of tumor cell fusion. In conclusion, we emphasize the current knowledge gaps in the biology of THCs that should be addressed to develop highly effective therapeutics and strategies for metastasis suppression.
Collapse
Affiliation(s)
- Maria S Tretyakova
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Ayalur R Subbalakshmi
- Cancer Systems Biology Laboratory, Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Maxim E Menyailo
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Mohit Kumar Jolly
- Cancer Systems Biology Laboratory, Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Evgeny V Denisov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
35
|
Dotse E, Lim KH, Wang M, Wijanarko KJ, Chow KT. An Immunological Perspective of Circulating Tumor Cells as Diagnostic Biomarkers and Therapeutic Targets. Life (Basel) 2022; 12:323. [PMID: 35207611 PMCID: PMC8878951 DOI: 10.3390/life12020323] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 11/19/2022] Open
Abstract
Immune modulation is a hallmark of cancer. Cancer-immune interaction shapes the course of disease progression at every step of tumorigenesis, including metastasis, of which circulating tumor cells (CTCs) are regarded as an indicator. These CTCs are a heterogeneous population of tumor cells that have disseminated from the tumor into circulation. They have been increasingly studied in recent years due to their importance in diagnosis, prognosis, and monitoring of treatment response. Ample evidence demonstrates that CTCs interact with immune cells in circulation, where they must evade immune surveillance or modulate immune response. The interaction between CTCs and the immune system is emerging as a critical point by which CTCs facilitate metastatic progression. Understanding the complex crosstalk between the two may provide a basis for devising new diagnostic and treatment strategies. In this review, we will discuss the current understanding of CTCs and the complex immune-CTC interactions. We also present novel options in clinical interventions, targeting the immune-CTC interfaces, and provide some suggestions on future research directions.
Collapse
Affiliation(s)
- Eunice Dotse
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (E.D.); (K.H.L.); (M.W.)
| | - King H. Lim
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (E.D.); (K.H.L.); (M.W.)
| | - Meijun Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (E.D.); (K.H.L.); (M.W.)
| | - Kevin Julio Wijanarko
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3010, Australia;
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia
| | - Kwan T. Chow
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (E.D.); (K.H.L.); (M.W.)
| |
Collapse
|
36
|
Label-free enrichment of rare unconventional circulating neoplastic cells using a microfluidic dielectrophoretic sorting device. Commun Biol 2021; 4:1130. [PMID: 34561533 PMCID: PMC8463600 DOI: 10.1038/s42003-021-02651-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/08/2021] [Indexed: 02/08/2023] Open
Abstract
Cellular circulating biomarkers from the primary tumor such as circulating tumor cells (CTCs) and circulating hybrid cells (CHCs) have been described to harbor tumor-like phenotype and genotype. CHCs are present in higher numbers than CTCs supporting their translational potential. Methods for isolation of CHCs do not exist and are restricted to low-throughput, time consuming, and biased methodologies. We report the development of a label-free dielectrophoretic microfluidic platform facilitating enrichment of CHCs in a high-throughput and rapid fashion by depleting healthy peripheral blood mononuclear cells (PBMCs). We demonstrated up to 96.5% depletion of PBMCs resulting in 18.6-fold enrichment of cancer cells. In PBMCs from pancreatic adenocarcinoma patients, the platform enriched neoplastic cells identified by their KRAS mutant status using droplet digital PCR with one hour of processing. Enrichment was achieved in 75% of the clinical samples analyzed, establishing this approach as a promising way to non-invasively analyze tumor cells from patients.
Collapse
|