1
|
Tamayo E, Nada B, Hafermann I, Benz JP. Correlating sugar transporter expression and activities to identify transporters for an orphan sugar substrate. Appl Microbiol Biotechnol 2024; 108:83. [PMID: 38189952 PMCID: PMC10774165 DOI: 10.1007/s00253-023-12907-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 01/09/2024]
Abstract
Filamentous fungi like Neurospora crassa are able to take up and metabolize important sugars present, for example, in agricultural and human food wastes. However, only a fraction of all putative sugar transporters in filamentous fungi has been characterized to date, and for many sugar substrates, the corresponding transporters are unknown. In N. crassa, only 14 out of the 42 putative major facilitator superfamily (MFS)-type sugar transporters have been characterized so far. To uncover this hidden potential for biotechnology, it is therefore necessary to find new strategies. By correlation of the uptake profile of sugars of interest after different induction conditions with the expression profiles of all 44 genes encoding predicted sugar transporters in N. crassa, together with an exhaustive phylogenetic analysis using sequences of characterized fungal sugar transporters, we aimed to identify transporter candidates for the tested sugars. Following this approach, we found a high correlation of uptake rates and expression strengths for many sugars with dedicated transporters, like galacturonic acid and arabinose, while the correlation is loose for sugars that are transported by several transporters due to functional redundancy. Nevertheless, this combinatorial approach allowed us to elucidate the uptake system for the disaccharide lactose, a by-product of the dairy industry, which consists of the two main cellodextrin transporters CDT-1 and CDT-2 with a minor contribution of the related transporter NCU00809. Moreover, a non-MFS transporter involved in glycerol transport was also identified. Deorphanization of sugar transporters or identification of transporters for orphan sugar substrates by correlation of uptake kinetics with transporter expression and phylogenetic information can thus provide a way to optimize the reuse of food industry by-products and agricultural wastes by filamentous fungi in order to create economic value and reduce their environmental impact. KEY POINTS: • The Neurospora crassa genome contains 30 uncharacterized putative sugar transporter genes. • Correlation of transporter expression and sugar uptake profiles can help to identify transporters for orphan sugar substrates. • CDT-1, CDT-2, and NCU00809 are key players in the transport of the dairy by-product lactose in N. crassa.
Collapse
Affiliation(s)
- Elisabeth Tamayo
- Fungal Biotechnology in Wood Science, Holzforschung München, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.
| | - Basant Nada
- Fungal Biotechnology in Wood Science, Holzforschung München, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Isabell Hafermann
- Fungal Biotechnology in Wood Science, Holzforschung München, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - J Philipp Benz
- Fungal Biotechnology in Wood Science, Holzforschung München, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
2
|
Taveira IC, Carraro CB, Nogueira KMV, Pereira LMS, Bueno JGR, Fiamenghi MB, dos Santos LV, Silva RN. Structural and biochemical insights of xylose MFS and SWEET transporters in microbial cell factories: challenges to lignocellulosic hydrolysates fermentation. Front Microbiol 2024; 15:1452240. [PMID: 39397797 PMCID: PMC11466781 DOI: 10.3389/fmicb.2024.1452240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/16/2024] [Indexed: 10/15/2024] Open
Abstract
The production of bioethanol from lignocellulosic biomass requires the efficient conversion of glucose and xylose to ethanol, a process that depends on the ability of microorganisms to internalize these sugars. Although glucose transporters exist in several species, xylose transporters are less common. Several types of transporters have been identified in diverse microorganisms, including members of the Major Facilitator Superfamily (MFS) and Sugars Will Eventually be Exported Transporter (SWEET) families. Considering that Saccharomyces cerevisiae lacks an effective xylose transport system, engineered yeast strains capable of efficiently consuming this sugar are critical for obtaining high ethanol yields. This article reviews the structure-function relationship of sugar transporters from the MFS and SWEET families. It provides information on several tools and approaches used to identify and characterize them to optimize xylose consumption and, consequently, second-generation ethanol production.
Collapse
Affiliation(s)
- Iasmin Cartaxo Taveira
- Molecular Biotechnology Laboratory, Department of Biochemistry and Immunology, Ribeirao Preto Medical School (FMRP), University of São Paulo, São Paulo, Brazil
| | - Cláudia Batista Carraro
- Molecular Biotechnology Laboratory, Department of Biochemistry and Immunology, Ribeirao Preto Medical School (FMRP), University of São Paulo, São Paulo, Brazil
| | - Karoline Maria Vieira Nogueira
- Molecular Biotechnology Laboratory, Department of Biochemistry and Immunology, Ribeirao Preto Medical School (FMRP), University of São Paulo, São Paulo, Brazil
| | - Lucas Matheus Soares Pereira
- Molecular Biotechnology Laboratory, Department of Biochemistry and Immunology, Ribeirao Preto Medical School (FMRP), University of São Paulo, São Paulo, Brazil
| | - João Gabriel Ribeiro Bueno
- Genetics and Molecular Biology Graduate Program, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Mateus Bernabe Fiamenghi
- Genetics and Molecular Biology Graduate Program, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Leandro Vieira dos Santos
- Genetics and Molecular Biology Graduate Program, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Roberto N. Silva
- Molecular Biotechnology Laboratory, Department of Biochemistry and Immunology, Ribeirao Preto Medical School (FMRP), University of São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
de Assis MA, da Silva JJB, de Carvalho LM, Parreiras LS, Cairo JPLF, Marone MP, Gonçalves TA, Silva DS, Dantzger M, de Figueiredo FL, Carazzolle MF, Pereira GAG, Damasio A. A Multiomics Perspective on Plant Cell Wall-Degrading Enzyme Production: Insights from the Unexploited Fungus Trichoderma erinaceum. J Fungi (Basel) 2024; 10:407. [PMID: 38921393 PMCID: PMC11205114 DOI: 10.3390/jof10060407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Trichoderma erinaceum is a filamentous fungus that was isolated from decaying sugarcane straw at a Brazilian ethanol biorefinery. This fungus shows potential as a source of plant cell wall-degrading enzymes (PCWDEs). In this study, we conducted a comprehensive multiomics investigation of T. erinaceum to gain insights into its enzymatic capabilities and genetic makeup. Firstly, we performed genome sequencing and assembly, which resulted in the identification of 10,942 genes in the T. erinaceum genome. We then conducted transcriptomics and secretome analyses to map the gene expression patterns and identify the enzymes produced by T. erinaceum in the presence of different substrates such as glucose, microcrystalline cellulose, pretreated sugarcane straw, and pretreated energy cane bagasse. Our analyses revealed that T. erinaceum highly expresses genes directly related to lignocellulose degradation when grown on pretreated energy cane and sugarcane substrates. Furthermore, our secretome analysis identified 35 carbohydrate-active enzymes, primarily PCWDEs. To further explore the enzymatic capabilities of T. erinaceum, we selected a β-glucosidase from the secretome data for recombinant production in a fungal strain. The recombinant enzyme demonstrated superior performance in degrading cellobiose and laminaribiose compared to a well-known enzyme derived from Trichoderma reesei. Overall, this comprehensive study provides valuable insights into both the genetic patterns of T. erinaceum and its potential for lignocellulose degradation and enzyme production. The obtained genomic data can serve as an important resource for future genetic engineering efforts aimed at optimizing enzyme production from this fungus.
Collapse
Affiliation(s)
- Michelle A. de Assis
- Laboratory of Enzymology and Molecular Biology (LEBIMO), Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (M.A.d.A.); (J.P.L.F.C.); (T.A.G.); (F.L.d.F.)
| | - Jovanderson J. B. da Silva
- Genomics and BioEnergy Laboratory (LGE), Department of Genetics, Evolution, Microbiology and Immunology, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (J.J.B.d.S.); (L.M.d.C.); (L.S.P.); (M.D.); (M.F.C.); (G.A.G.P.)
| | - Lucas M. de Carvalho
- Genomics and BioEnergy Laboratory (LGE), Department of Genetics, Evolution, Microbiology and Immunology, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (J.J.B.d.S.); (L.M.d.C.); (L.S.P.); (M.D.); (M.F.C.); (G.A.G.P.)
| | - Lucas S. Parreiras
- Genomics and BioEnergy Laboratory (LGE), Department of Genetics, Evolution, Microbiology and Immunology, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (J.J.B.d.S.); (L.M.d.C.); (L.S.P.); (M.D.); (M.F.C.); (G.A.G.P.)
| | - João Paulo L. F. Cairo
- Laboratory of Enzymology and Molecular Biology (LEBIMO), Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (M.A.d.A.); (J.P.L.F.C.); (T.A.G.); (F.L.d.F.)
- York Structural Biology Laboratory (YSBL), Department of Chemistry, University of York, York YO10 5DD, UK
| | - Marina P. Marone
- Genomics and BioEnergy Laboratory (LGE), Department of Genetics, Evolution, Microbiology and Immunology, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (J.J.B.d.S.); (L.M.d.C.); (L.S.P.); (M.D.); (M.F.C.); (G.A.G.P.)
| | - Thiago A. Gonçalves
- Laboratory of Enzymology and Molecular Biology (LEBIMO), Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (M.A.d.A.); (J.P.L.F.C.); (T.A.G.); (F.L.d.F.)
| | - Desireé S. Silva
- SENAI Institute for Biomass Innovation, Três Lagoas 79640-250, Brazil;
| | - Miriam Dantzger
- Genomics and BioEnergy Laboratory (LGE), Department of Genetics, Evolution, Microbiology and Immunology, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (J.J.B.d.S.); (L.M.d.C.); (L.S.P.); (M.D.); (M.F.C.); (G.A.G.P.)
| | - Fernanda L. de Figueiredo
- Laboratory of Enzymology and Molecular Biology (LEBIMO), Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (M.A.d.A.); (J.P.L.F.C.); (T.A.G.); (F.L.d.F.)
| | - Marcelo F. Carazzolle
- Genomics and BioEnergy Laboratory (LGE), Department of Genetics, Evolution, Microbiology and Immunology, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (J.J.B.d.S.); (L.M.d.C.); (L.S.P.); (M.D.); (M.F.C.); (G.A.G.P.)
| | - Gonçalo A. G. Pereira
- Genomics and BioEnergy Laboratory (LGE), Department of Genetics, Evolution, Microbiology and Immunology, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (J.J.B.d.S.); (L.M.d.C.); (L.S.P.); (M.D.); (M.F.C.); (G.A.G.P.)
| | - André Damasio
- Laboratory of Enzymology and Molecular Biology (LEBIMO), Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (M.A.d.A.); (J.P.L.F.C.); (T.A.G.); (F.L.d.F.)
| |
Collapse
|
4
|
Zhang C, Gu L, Xie H, Liu Y, Huang P, Zhang J, Luo D, Zhang J. Glucose transport, transporters and metabolism in diabetic retinopathy. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166995. [PMID: 38142757 DOI: 10.1016/j.bbadis.2023.166995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/02/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Diabetic retinopathy (DR) is the most common reason for blindness in working-age individuals globally. Prolonged high blood glucose is a main causative factor for DR development, and glucose transport is prerequisite for the disturbances in DR caused by hyperglycemia. Glucose transport is mediated by its transporters, including the facilitated transporters (glucose transporter, GLUTs), the "active" glucose transporters (sodium-dependent glucose transporters, SGLTs), and the SLC50 family of uniporters (sugars will eventually be exported transporters, SWEETs). Glucose transport across the blood-retinal barrier (BRB) is crucial for nourishing the neuronal retina in the context of retinal physiology. This physiological process primarily relies on GLUTs and SGLTs, which mediate the glucose transportation across both the cell membrane of retinal capillary endothelial cells and the retinal pigment epithelium (RPE). Under diabetic conditions, increased accumulation of extracellular glucose enhances the retinal cellular glucose uptake and metabolism via both glycolysis and glycolytic side branches, which activates several biochemical pathways, including the protein kinase C (PKC), advanced glycation end-products (AGEs), polyol pathway and hexosamine biosynthetic pathway (HBP). These activated biochemical pathways further increase the production of reactive oxygen species (ROS), leading to oxidative stress and activation of Poly (ADP-ribose) polymerase (PARP). The activated PARP further affects all the cellular components in the retina, and finally resulting in microangiopathy, neurodegeneration and low-to-moderate grade inflammation in DR. This review aims to discuss the changes of glucose transport, glucose transporters, as well as its metabolism in DR, which influences the retinal neurovascular unit (NVU) and implies the possible therapeutic strategies for treating DR.
Collapse
Affiliation(s)
- Chaoyang Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases; Shanghai Clinical Research Center for Eye Diseases; Shanghai Key Clinical Specialty; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China.
| | - Limin Gu
- Department of Ophthalmology, Shanghai Aier Eye Hospital, Shanghai, China.
| | - Hai Xie
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases; Shanghai Clinical Research Center for Eye Diseases; Shanghai Key Clinical Specialty; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China.
| | - Yan Liu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases; Shanghai Clinical Research Center for Eye Diseases; Shanghai Key Clinical Specialty; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China.
| | - Peirong Huang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases; Shanghai Clinical Research Center for Eye Diseases; Shanghai Key Clinical Specialty; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China.
| | - Jingting Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases; Shanghai Clinical Research Center for Eye Diseases; Shanghai Key Clinical Specialty; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China.
| | - Dawei Luo
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases; Shanghai Clinical Research Center for Eye Diseases; Shanghai Key Clinical Specialty; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China.
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases; Shanghai Clinical Research Center for Eye Diseases; Shanghai Key Clinical Specialty; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China.
| |
Collapse
|
5
|
Nogueira KMV, Mendes V, Kamath KS, Cheruku A, Oshiquiri LH, de Paula RG, Carraro C, Pedersoli WR, Pereira LMS, Vieira LC, Steindorff AS, Amirkhani A, McKay MJ, Nevalainen H, Molloy MP, Silva RN. Proteome profiling of enriched membrane-associated proteins unraveled a novel sophorose and cello-oligosaccharide transporter in Trichoderma reesei. Microb Cell Fact 2024; 23:22. [PMID: 38229067 DOI: 10.1186/s12934-023-02279-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/18/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Trichoderma reesei is an organism extensively used in the bioethanol industry, owing to its capability to produce enzymes capable of breaking down holocellulose into simple sugars. The uptake of carbohydrates generated from cellulose breakdown is crucial to induce the signaling cascade that triggers cellulase production. However, the sugar transporters involved in this process in T. reesei remain poorly identified and characterized. RESULTS To address this gap, this study used temporal membrane proteomics analysis to identify five known and nine putative sugar transporters that may be involved in cellulose degradation by T. reesei. Docking analysis pointed out potential ligands for the putative sugar transporter Tr44175. Further functional validation of this transporter was carried out in Saccharomyces cerevisiae. The results showed that Tr44175 transports a variety of sugar molecules, including cellobiose, cellotriose, cellotetraose, and sophorose. CONCLUSION This study has unveiled a transporter Tr44175 capable of transporting cellobiose, cellotriose, cellotetraose, and sophorose. Our study represents the first inventory of T. reesei sugar transportome once exposed to cellulose, offering promising potential targets for strain engineering in the context of bioethanol production.
Collapse
Affiliation(s)
- Karoline Maria Vieira Nogueira
- Molecular Biotechnology Laboratory, Department of Biochemistry and Immunology, Ribeirao Preto Medical School (FMRP), University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Vanessa Mendes
- Molecular Biotechnology Laboratory, Department of Biochemistry and Immunology, Ribeirao Preto Medical School (FMRP), University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Karthik Shantharam Kamath
- Department of Natural Sciences, Macquarie University, Sydney, NSW, Australia
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, Australia
| | - Anusha Cheruku
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, Australia
| | - Letícia Harumi Oshiquiri
- Molecular Biotechnology Laboratory, Department of Biochemistry and Immunology, Ribeirao Preto Medical School (FMRP), University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Renato Graciano de Paula
- Department of Physiological Sciences, Health Sciences Centre, Federal University of Espirito Santo, Vitoria, ES, 29047-105, Brazil
| | - Claudia Carraro
- Molecular Biotechnology Laboratory, Department of Biochemistry and Immunology, Ribeirao Preto Medical School (FMRP), University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Wellington Ramos Pedersoli
- Molecular Biotechnology Laboratory, Department of Biochemistry and Immunology, Ribeirao Preto Medical School (FMRP), University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Lucas Matheus Soares Pereira
- Molecular Biotechnology Laboratory, Department of Biochemistry and Immunology, Ribeirao Preto Medical School (FMRP), University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Luiz Carlos Vieira
- Department of Molecular and Cell Biology, Ribeirao Preto Medical School (FMRP), University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Andrei Stecca Steindorff
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ardeshir Amirkhani
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, Australia
| | - Matthew J McKay
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, Australia
| | - Helena Nevalainen
- Department of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| | - Mark P Molloy
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, Australia
| | - Roberto N Silva
- Molecular Biotechnology Laboratory, Department of Biochemistry and Immunology, Ribeirao Preto Medical School (FMRP), University of Sao Paulo, Ribeirao Preto, SP, Brazil.
| |
Collapse
|
6
|
Ruffinatti FA, Scarpellino G, Chinigò G, Visentin L, Munaron L. The Emerging Concept of Transportome: State of the Art. Physiology (Bethesda) 2023; 38:0. [PMID: 37668550 DOI: 10.1152/physiol.00010.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023] Open
Abstract
The array of ion channels and transporters expressed in cell membranes, collectively referred to as the transportome, is a complex and multifunctional molecular machinery; in particular, at the plasma membrane level it finely tunes the exchange of biomolecules and ions, acting as a functionally adaptive interface that accounts for dynamic plasticity in the response to environmental fluctuations and stressors. The transportome is responsible for the definition of membrane potential and its variations, participates in the transduction of extracellular signals, and acts as a filter for most of the substances entering and leaving the cell, thus enabling the homeostasis of many cellular parameters. For all these reasons, physiologists have long been interested in the expression and functionality of ion channels and transporters, in both physiological and pathological settings and across the different domains of life. Today, thanks to the high-throughput technologies of the postgenomic era, the omics approach to the study of the transportome is becoming increasingly popular in different areas of biomedical research, allowing for a more comprehensive, integrated, and functional perspective of this complex cellular apparatus. This article represents a first effort for a systematic review of the scientific literature on this topic. Here we provide a brief overview of all those studies, both primary and meta-analyses, that looked at the transportome as a whole, regardless of the biological problem or the models they used. A subsequent section is devoted to the methodological aspect by reviewing the most important public databases annotating ion channels and transporters, along with the tools they provide to retrieve such information. Before conclusions, limitations and future perspectives are also discussed.
Collapse
Affiliation(s)
- Federico Alessandro Ruffinatti
- Turin Cell Physiology Laboratory (TCP-Lab), Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Giorgia Scarpellino
- Turin Cell Physiology Laboratory (TCP-Lab), Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Giorgia Chinigò
- Turin Cell Physiology Laboratory (TCP-Lab), Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Luca Visentin
- Turin Cell Physiology Laboratory (TCP-Lab), Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Luca Munaron
- Turin Cell Physiology Laboratory (TCP-Lab), Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| |
Collapse
|
7
|
Yan S, Xu Y, Yu XW. Role of cellulose response transporter-like protein CRT2 in cellulase induction in Trichoderma reesei. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:118. [PMID: 37488642 PMCID: PMC10364367 DOI: 10.1186/s13068-023-02371-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND Induction of cellulase in cellulolytic fungi Trichoderma reesei is strongly activated by cellulosic carbon sources. The transport of cellulosic inducer and the perception of inducing signal is generally considered as the critical process for cellulase induction, that the inducing signal would be perceived by a sugar transporter/transceptor in T. reesei. Several sugar transporters are coexpressed during the induction stage, but which function they serve and how they work collaboratively are still difficult to elucidate. RESULTS In this study, we found that the constitutive expression of the cellulose response transporter-like protein CRT2 (previously identified as putative lactose permease TRE77517) improves cellulase induction on a cellulose, cellobiose or lactose medium. Functional studies indicate that the membrane-bound CRT2 is not a transporter of cellobiose, lactose or glucose in a yeast system, and it also does not affect cellobiose and lactose utilization in T. reesei. Further study reveals that CRT2 has a slightly similar function to the cellobiose transporter CRT1 in cellulase induction. Overexpression of CRT2 led to upregulation of CRT1 and the key transcription factor XYR1. Moreover, overexpression of CRT2 could partially compensate for the function loss of CRT1 on cellulase induction. CONCLUSIONS Our study uncovers the novel function of CRT2 in cellulase induction collaborated with CRT1 and XYR1, possibly as a signal transductor. These results deepen the understanding of the influence of sugar transporters in cellulase production.
Collapse
Affiliation(s)
- Su Yan
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Xiao-Wei Yu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
8
|
Carbó R, Rodríguez E. Relevance of Sugar Transport across the Cell Membrane. Int J Mol Sci 2023; 24:ijms24076085. [PMID: 37047055 PMCID: PMC10094530 DOI: 10.3390/ijms24076085] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Sugar transport through the plasma membrane is one of the most critical events in the cellular transport of nutrients; for example, glucose has a central role in cellular metabolism and homeostasis. The way sugars enter the cell involves complex systems. Diverse protein systems participate in the membrane traffic of the sugars from the extracellular side to the cytoplasmic side. This diversity makes the phenomenon highly regulated and modulated to satisfy the different needs of each cell line. The beautiful thing about this process is how evolutionary processes have diversified a single function: to move glucose into the cell. The deregulation of these entrance systems causes some diseases. Hence, it is necessary to study them and search for a way to correct the alterations and utilize these mechanisms to promote health. This review will highlight the various mechanisms for importing the valuable sugars needed to create cellular homeostasis and survival in all kinds of cells.
Collapse
Affiliation(s)
- Roxana Carbó
- Cardiovascular Biomedicine Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano #1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
- Correspondence: ; Tel.: +52-55557-32911 (ext. 25704)
| | - Emma Rodríguez
- Cardiology Laboratory at Translational Research Unit UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano #1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico;
| |
Collapse
|
9
|
Wang Z, Yang R, Lv W, Zhang W, Meng X, Liu W. Functional Characterization of Sugar Transporter CRT1 Reveals Differential Roles of Its C-Terminal Region in Sugar Transport and Cellulase Induction in Trichoderma reesei. Microbiol Spectr 2022; 10:e0087222. [PMID: 35852347 PMCID: PMC9431493 DOI: 10.1128/spectrum.00872-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/04/2022] [Indexed: 11/28/2022] Open
Abstract
The expression of cellulase genes in lignocellulose-degrading fungus Trichoderma reesei is induced by insoluble cellulose and its soluble derivatives. Membrane-localized transporter/transceptor proteins have been thought to be involved in nutrient uptake and/or sensing to initiate the subsequent signal transduction during cellulase gene induction. Crt1 is a sugar transporter proven to be essential for cellulase gene induction although the detailed mechanism of Crt1-triggered cellulase induction remains elusive. In this study, we focused on the C-terminus region of Crt1 which is predicted to exist as an unstructured cytoplasmic tail in T. reesei. Serial C-terminal truncation of Crt1 revealed that deleting the last half of the C-terminal region of Crt1 hardly affected its transporting activity or ability to mediate the induction of cellulase gene expression. In contrast, removal of the entire C-terminus region eliminated both activities. Of note, Crt1-C5, retaining only the first five amino acids of C-terminus, was found to be capable of transporting lactose but failed to restore cellulase gene induction in the Δcrt1 strain. Analysis of the cellular localization of Crt1 showed that Crt1 existed both at the plasma membrane and at the periphery of the nucleus although the functional relevance is not clear at present. Finally, we showed that the cellulase production defect of Δcrt1 was corrected by overexpressing Xyr1, indicating that Xyr1 is a potential regulatory target of the signaling cascade initiated from Crt1. IMPORTANCE The lignocellulose-degrading fungus T. reesei has been widely used in industrial cellulases production. Understanding the precise cellulase gene regulatory network is critical for its genetic engineering to enhance the mass production of cellulases. As the key membrane protein involved in cellulase expression in T. reesei, the detailed mechanism of Crt1 in mediating cellulase induction remains to be investigated. In this study, the C-terminal region of Crt1 was found to be vital for its transport and signaling receptor functions. These two functions are, however, separable because a C-terminal truncation mutant is capable of sugar transporting but loses the ability to mediate cellulase gene expression. Furthermore, the key transcriptional activator Xyr1 represents a downstream target of the Crt1-initiated signaling cascade. Together, our research provides new insights into the function of Crt1 and further contributes to the unveiling of the intricate signal transduction process leading to efficient cellulase gene expression in T. reesei.
Collapse
Affiliation(s)
- Zhixing Wang
- State Key Laboratory of Microbial Technology, Microbiology Technology Institute, Shandong University, Qingdao, People’s Republic of China
| | - Renfei Yang
- State Key Laboratory of Microbial Technology, Microbiology Technology Institute, Shandong University, Qingdao, People’s Republic of China
| | - Wenhao Lv
- State Key Laboratory of Microbial Technology, Microbiology Technology Institute, Shandong University, Qingdao, People’s Republic of China
| | - Weixin Zhang
- State Key Laboratory of Microbial Technology, Microbiology Technology Institute, Shandong University, Qingdao, People’s Republic of China
| | - Xiangfeng Meng
- State Key Laboratory of Microbial Technology, Microbiology Technology Institute, Shandong University, Qingdao, People’s Republic of China
| | - Weifeng Liu
- State Key Laboratory of Microbial Technology, Microbiology Technology Institute, Shandong University, Qingdao, People’s Republic of China
| |
Collapse
|
10
|
Sugar Transporters in Plasmodiophora brassicae: Genome-Wide Identification and Functional Verification. Int J Mol Sci 2022; 23:ijms23095264. [PMID: 35563657 PMCID: PMC9099952 DOI: 10.3390/ijms23095264] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 01/19/2023] Open
Abstract
Plasmodiophora brassicae, an obligate intracellular pathogen, can hijack the host’s carbohydrates for survival. When the host plant is infected by P. brassicae, a large amount of soluble sugar accumulates in the roots, especially glucose, which probably facilitates the development of this pathogen. Although a complete glycolytic and tricarboxylic acid cycle (TCA) cycle existed in P. brassicae, very little information about the hexose transport system has been reported. In this study, we screened 17 putative sugar transporters based on information about their typical domains. The structure of these transporters showed a lot of variation compared with that of other organisms, especially the number of transmembrane helices (TMHs). Phylogenetic analysis indicated that these sugar transporters were far from the evolutionary relationship of other organisms and were unique in P. brassicae. The hexose transport activity assay indicated that eight transporters transported glucose or fructose and could restore the growth of yeast strain EBY.VW4000, which was deficient in hexose transport. The expression level of these glucose transporters was significantly upregulated at the late inoculation time when resting spores and galls were developing and a large amount of energy was needed. Our study provides new insights into the mechanism of P. brassicae survival in host cells by hijacking and utilizing the carbohydrates of the host.
Collapse
|
11
|
Xu W, Fang Y, Ding M, Ren Y, Meng X, Chen G, Zhang W, Liu W. Elimination of the Sugar Transporter GAT1 Increased Xylanase I Production in Trichoderma reesei. Front Microbiol 2022; 13:810066. [PMID: 35154055 PMCID: PMC8825865 DOI: 10.3389/fmicb.2022.810066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/04/2022] [Indexed: 11/17/2022] Open
Abstract
The filamentous fungus Trichoderma reesei secretes large quantities of cellulases and hemicellulases that have found wide applications in industry. Compared with extensive studies on the mechanism controlling cellulase gene expression, less is known about the regulatory mechanism behind xylanase gene expression. Herein, several putative sugar transporter encoding genes that showed significant upregulation on xylan were identified in T. reesei. Deletion of one such gene, gat1, resulted in increased xylanase production but hardly affected cellulase induction. Further analyses demonstrated that deletion of gat1 markedly increased XYNI production at the transcriptional level and only exerted a minor effect on XYNII synthesis. In contrast, overexpressing gat1 caused a continuous decrease in xyn1 expression. Deletion of gat1 also affected the expression of xyn1 and pectinase genes when T. reesei was cultivated with galacturonic acid as the sole carbon source. Transcriptome analyses of Δgat1 and its parental strain identified 255 differentially expressed genes that are enriched in categories of glycoside hydrolases, lipid metabolism, transporters, and transcriptional factors. The results thus implicate a repressive role of the sugar transporter GAT1 in xyn1 expression and reveal that distinct regulatory mechanisms may exist in controlling the expression of different xylanase genes in T. reesei.
Collapse
Affiliation(s)
- Wenqiang Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yu Fang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Mingyang Ding
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yajing Ren
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xiangfeng Meng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Guanjun Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Weixin Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Weifeng Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|