1
|
Jiang H, Fang W, Feng Y, Liu X, Zhao J, Xu L, Han G, Long X. Bafilomycin A1 mitigates subchondral bone degeneration and pain in TMJOA rats. Int Immunopharmacol 2025; 147:113947. [PMID: 39756167 DOI: 10.1016/j.intimp.2024.113947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/14/2024] [Accepted: 12/22/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND Pain and disability are primary concerns for temporomandibular joint osteoarthritis (TMJOA) patients, and the efficacy of current treatments remains controversial. Overactive osteoclasts are associated with subchondral bone degeneration and pain in OA. The vacuolar H+-ATPase (V-ATPase) is crucial for differentiation and function in osteoclasts, but its role in TMJOA is not well defined. This study aims to evaluate the effects of the V-ATPase inhibitor, bafilomycin A1 (Baf A1) on the progression and pain of TMJOA. MATERIALS AND METHODS Pain behavior tests, histological staining, tartrate-resistant acid phosphatase (TRAP) staining, immunofluorescence staining, and micro-CT analysis were conducted to evaluate the therapeutic efficacy of Baf A1 in monosodium iodoacetate-induced TMJOA in rats. Additionally, TRAP staining, enzyme-linked immunosorbent assay and immunofluorescence staining were used to assess the inhibitory effects of Baf a1 on the osteoclastogenesis, secretion of netrin-1 and neurite growth of trigeminal ganglion (TG) neurons. RESULTS Baf A1 significantly mitigated subchondral bone degeneration by suppressing osteoclastogenesis and subsequently inhibited cartilage degradation in TMJOA rats. Baf A1 also effectively alleviated pain behavior by inhibiting expression of netrin-1 and innervation of sensory nerve in TMJOA rats. In vitro assays of osteoclast and TG further demonstrated the inhibitory effects of Baf A1 on osteoclastogenesis, secretion of netrin-1 and neurite outgrowth of TG. CONCLUSIONS This study demonstrates that Baf A1 inhibits V-ATPase to mitigate TMJOA degeneration and pain by suppressing osteoclastogenesis and secretion of netrin-1, thereby suggesting it as a potential clinical treatment option for degeneration and pain of TMJOA.
Collapse
Affiliation(s)
- Henghua Jiang
- Department of Orthodontic Division II, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Wei Fang
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Yaping Feng
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Xin Liu
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Jie Zhao
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Liqin Xu
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Guangli Han
- Department of Orthodontic Division II, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China.
| | - Xing Long
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Ma Z, Wan Q, Qin W, Qin W, Yan J, Zhu Y, Wang Y, Ma Y, Wan M, Han X, Zhao H, Hou Y, Tay FR, Niu L, Jiao K. Effect of regional crosstalk between sympathetic nerves and sensory nerves on temporomandibular joint osteoarthritic pain. Int J Oral Sci 2025; 17:3. [PMID: 39762209 PMCID: PMC11704193 DOI: 10.1038/s41368-024-00336-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/18/2024] [Accepted: 10/27/2024] [Indexed: 01/11/2025] Open
Abstract
Temporomandibular joint osteoarthritis (TMJ-OA) is a common disease often accompanied by pain, seriously affecting physical and mental health of patients. Abnormal innervation at the osteochondral junction has been considered as a predominant origin of arthralgia, while the specific mechanism mediating pain remains unclear. To investigate the underlying mechanism of TMJ-OA pain, an abnormal joint loading model was used to induce TMJ-OA pain. We found that during the development of TMJ-OA, the increased innervation of sympathetic nerve of subchondral bone precedes that of sensory nerves. Furthermore, these two types of nerves are spatially closely associated. Additionally, it was discovered that activation of sympathetic neural signals promotes osteoarthritic pain in mice, whereas blocking these signals effectively alleviates pain. In vitro experiments also confirmed that norepinephrine released by sympathetic neurons promotes the activation and axonal growth of sensory neurons. Moreover, we also discovered that through releasing norepinephrine, regional sympathetic nerves of subchondral bone were found to regulate growth and activation of local sensory nerves synergistically with other pain regulators. This study identified the role of regional sympathetic nerves in mediating pain in TMJ-OA. It sheds light on a new mechanism of abnormal innervation at the osteochondral junction and the regional crosstalk between peripheral nerves, providing a potential target for treating TMJ-OA pain.
Collapse
Affiliation(s)
- Zhangyu Ma
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Qianqian Wan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Wenpin Qin
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Wen Qin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Janfei Yan
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yina Zhu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yuzhu Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yuxuan Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Meichen Wan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Xiaoxiao Han
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Haoyan Zhao
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yuxuan Hou
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA, USA
| | - Lina Niu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China.
| | - Kai Jiao
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, School of Stomatology, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
3
|
Liu X, Li Y, Zhao J, Hu Z, Fang W, Ke J, Li W, Long X. Pyroptosis of chondrocytes activated by synovial inflammation accelerates TMJ osteoarthritis cartilage degeneration via ROS/NLRP3 signaling. Int Immunopharmacol 2023; 124:110781. [PMID: 37625369 DOI: 10.1016/j.intimp.2023.110781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
OBJECTIVES Synovial inflammation and chondrocyte death have been widely acknowledged as key contributors to the pathological progression of temporomandibular joint osteoarthritis (TMJ-OA), a degenerative joint disease currently lacking definitive treatments. This study aims to understand the regulatory role of chondrocyte pyroptosis in condylar cartilage degradation during TMJ-OA. METHODS The levels of cytokines, cartilage degeneration markers, and pyroptotic biomarkers in the synovium and synovial fluid of temporomandibular disorders (TMD) patients were examined. The synovitis, cartilage degradation, and chondrocyte pyroptosis in wild-type and alpha-kinase 1 (ALPK1)-deficient TMJ-OA mice were then compared following monosodium iodoacetate (MIA) induction. Subsequently, we investigated the downstream mechanisms of cytokines- or macrophage supernatants-induced metabolic disorders and pyroptosis in chondrocytes using primary TMJ chondrocytes and ATDC5 chondrocyte cultures. RESULTS We found a positive correlation between pyroptotic biomarkers and cartilage degradation mediators and cytokines in the synovial fluid of TMD patients. MIA-induced TMJ-OA mice demonstrated significant synovitis, cartilage degradation, and chondrocyte pyroptosis, which were mitigated in ALPK1-deficient TMJ-OA mice, inflammation-restrained mice. Ex-vivo study revealed the contribution of reactive oxygen species (ROS) to inflammation-irritated macrophage supernatants-induced pyroptosis and metabolic disorders in chondrocytes. Targeting NOD-like receptor protein 3 (NLRP3) alleviated cytokines- or ROS-induced pyroptosis and metabolic disorders in chondrocytes by inhibiting caspase-1 activation and interleukin-1β (IL-1β) secretion. CONCLUSION Our findings offer novel insight into the role of synovial inflammation-induced chondrocyte pyroptosis in promoting cartilage degradation during TMJ-OA via the ROS and NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Yanyan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Jie Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Zhihui Hu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Wei Fang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Jin Ke
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Wei Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China; Department of Oral Radiology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China.
| | - Xing Long
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China; Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
4
|
Zhu T, Li H, Chen Y, Jia X, Ma X, Liu X, Feng Y, Ke J. ALPK1 Expressed in IB4-Positive Neurons of Mice Trigeminal Ganglions Promotes MIA-Induced TMJ pain. Mol Neurobiol 2023; 60:6264-6274. [PMID: 37442857 DOI: 10.1007/s12035-023-03462-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 06/22/2023] [Indexed: 07/15/2023]
Abstract
Pain is one of the main reasons for patients with temporomandibular joint (TMJ) disorders seeking medical care. However, there is no effective treatment yet as its mechanism remains unclear. Herein, we found that the injection of monoiodoacetate (MIA) into mice TMJs can induce typical joint pain as early as 3 days, accompanied by an increased percentage of calcitonin gene-related peptide positive (CGRP+) neurons and isolectin B4 positive (IB4+) in the trigeminal ganglions (TGs). Our previous study has discovered that alpha-kinase 1 (ALPK1) may be involved in joint pain. Here, we detected the expression of ALPK1 in neurons of TGs in wild-type (WT) mice, and it was upregulated after intra-TMJ injection of MIA. Meanwhile, the increased percentage of neurons in TGs expressing ALPK1 and CGRP or ALPK1 and IB4 was also demonstrated by the immunofluorescent double staining. Furthermore, after the MIA injection, ALPK1-/- mice exhibited attenuated pain behavior, as well as a remarkably decreased percentage of IB4+ neurons and an unchanged percentage of CGRP+ neurons, as compared with WT mice. In vitro assay showed that the value of calcium intensity was weakened in Dil+ neurons from ALPK1-/- mice of TMJ pain induced by the MIA injection, in relation to those from WT mice, while it was significantly enhanced with the incubation of recombinant human ALPK1 (rhA). Taken together, these results suggest that ALPK1 promotes mice TMJ pain induced by MIA through upregulation of the sensitization of IB4+ neurons in TGs. This study will provide a new potential therapeutic target for the treatment of TMJ pain.
Collapse
Affiliation(s)
- Taomin Zhu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, Hubei Province, China
- Department of Oral and Maxillofacial Trauma and Temporomandibular Joint Surgery, Hubei-MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Huimin Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, Hubei Province, China
- Department of Oral and Maxillofacial Trauma and Temporomandibular Joint Surgery, Hubei-MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yuxiang Chen
- GuangDong Women and Children Hospital, Guangdong, 511400, China
| | - Xueke Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, Hubei Province, China
- Department of Oral and Maxillofacial Trauma and Temporomandibular Joint Surgery, Hubei-MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Xiaohan Ma
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, Hubei Province, China
- Department of Oral and Maxillofacial Trauma and Temporomandibular Joint Surgery, Hubei-MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Xin Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, Hubei Province, China
- Department of Oral and Maxillofacial Trauma and Temporomandibular Joint Surgery, Hubei-MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yaping Feng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, Hubei Province, China
- Department of Oral and Maxillofacial Trauma and Temporomandibular Joint Surgery, Hubei-MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Jin Ke
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, Hubei Province, China.
- Department of Oral and Maxillofacial Trauma and Temporomandibular Joint Surgery, Hubei-MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
5
|
Ma X, Zhu T, Ke J. Progress in animal models of trigeminal neuralgia. Arch Oral Biol 2023; 154:105765. [PMID: 37480619 DOI: 10.1016/j.archoralbio.2023.105765] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/24/2023]
Abstract
OBJECTIVE This review aims to systematically summarize the methods of establishing various models of trigeminal neuralgia (TN), the scope of application, and current animals used in TN research and the corresponding pain measurements, hoping to provide valuable reference for researchers to select appropriate TN animal models and make contributions to the research of pathophysiology and management of the disease. DESIGN The related literatures of TN were searched through PubMed database using different combinations of the following terms and keywords including but not limited: animal models, trigeminal neuralgia, orofacial neuropathic pain. To find the maximum number of eligible articles, no filters were used in the search. The references of eligible studies were analyzed and reviewed comprehensively. RESULTS This study summarized the current animal models of TN, categorized them into the following groups: chemical induction, photochemical induction, surgery and genetic engineering, and introduced various measurement methods to evaluate animal pain behaviors. CONCLUSIONS Although a variety of methods are used to establish disease models, there is no ideal TN model that can reflect all the characteristics of the disease. Therefore, there is still a need to develop more novel animal models in order to further study the etiology, pathological mechanism and potential treatment of TN.
Collapse
Affiliation(s)
- Xiaohan Ma
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, China; Department of Oral and Maxillofacial Trauma and Temporomandibular Joint Surgery, Hubei-MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, China
| | - Taomin Zhu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, China; Department of Oral and Maxillofacial Trauma and Temporomandibular Joint Surgery, Hubei-MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, China
| | - Jin Ke
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, China; Department of Oral and Maxillofacial Trauma and Temporomandibular Joint Surgery, Hubei-MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, China.
| |
Collapse
|
6
|
Juan Z, Xing-tong M, Xu Z, Chang-yi L. Potential pathological and molecular mechanisms of temporomandibular joint osteoarthritis. J Dent Sci 2023; 18:959-971. [PMID: 37404608 PMCID: PMC10316511 DOI: 10.1016/j.jds.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/05/2023] [Indexed: 07/06/2023] Open
Abstract
Temporomandibular joint osteoarthritis (TMJ OA) is a progressive degenerative disease of the temporomandibular joint (TMJ). The unclear etiology and mechanisms of TMJ OA bring great difficulties to early diagnosis and effective treatment, causing enormous burdens to patients' life and social economics. In this narrative review, we summarized the main pathological changes of TMJ OA, including inflammatory responses, degeneration of extracellular matrix (ECM), abnormal cell biological behaviors (apoptosis, autophagy, and differentiation) in TMJ tissue, and aberrant angiogenesis. All pathological features are closely linked to each other, forming a vicious cycle in the process of TMJ OA, which results in prolonged disease duration and makes it difficult to cure. Various molecules and signaling pathways are involved in TMJ OA pathogenesis, including nuclear factor kappa-B (NF-κB), mitogen-activated protein kinases (MAPKs), extracellular regulated protein kinases (ERKs) and transforming growth factor (TGF)-β signaling pathways et al. One molecule or pathway can contribute to several pathological changes, and the crosstalk between different molecules and pathways can further lead to a complicated condition TMJ OA. TMJ OA has miscellaneous etiology, complex clinical status, depressed treatment results, and poor prognosis. Therefore, novel in-vivo and in-vitro models, novel medicine, materials, and approaches for therapeutic procedures might be helpful for further investigation of TMJ OA. Furthermore, the role of genetic factors in TMJ OA needs to be elucidated to establish more reasonable and effective clinical strategies for diagnosing and treating TMJ OA.
Collapse
Affiliation(s)
- Zhang Juan
- Department of Prosthodontics, Hospital of Stomatology, Tianjin Medical University, Tianjin, PR China
| | - Mu Xing-tong
- Department of Prosthodontics, Hospital of Stomatology, Tianjin Medical University, Tianjin, PR China
| | - Zhang Xu
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, PR China
- Institute of Stomatology, Tianjin Medical University, Tianjin, PR China
| | - Li Chang-yi
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, PR China
| |
Collapse
|
7
|
Wang Y, Liu Z, Ma G, Xu Y, Li Y. Mouth breathing induces condylar remodelling and chondrocyte apoptosis via both the extrinsic and mitochondrial pathways in male adolescent rats. Tissue Cell 2023; 83:102146. [PMID: 37399641 DOI: 10.1016/j.tice.2023.102146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/29/2023] [Accepted: 06/16/2023] [Indexed: 07/05/2023]
Abstract
The prevalence of mouth breathing is high in children and adolescents. It causes various changes to the respiratory tract and, consequently, craniofacial growth deformities. However, the underlying mechanisms contributing to these effects are obscure. Herein, we aimed to study the effects of mouth breathing on chondrocyte proliferation and death in the condylar cartilage and morphological changes in the mandible and condyle. Additionally, we aimed to elucidate the mechanisms underlying chondrocyte apoptosis and investigate any variations in the related pathways. Subchondral bone resorption and decreased condylar cartilage thickness were observed in mouth-breathing rats; further, mRNA expression levels of Collagen II, Aggrecan, and Sox 9 were lower in the mouth breathing group, while those of matrix metalloproteinase 9 increased. TdT-mediated dUTP nick end labelling staining and immunohistochemistry analyses showed that apoptosis occurred in the proliferative and hypertrophic layers of cartilage in the mouth breathing group. TNF, BAX, cytochrome c, and cleaved-caspase-3 were highly expressed in the condylar cartilage of the mouth-breathing rats. These results suggest that mouth breathing leads to subchondral bone resorption, cartilage layer thinning, and cartilage matrix destruction, inducing chondrocyte apoptosis via both the extrinsic and mitochondrial apoptosis pathways.
Collapse
Affiliation(s)
- Y Wang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, The Affiliated Stomatology Hospital of Tongji University, Department of Orthodontics, No. 399, Yanchang Middle Road, Jing'an District, Shanghai, CN 200072, China
| | - Z Liu
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, The Affiliated Stomatology Hospital of Tongji University, Department of Orthodontics, No. 399, Yanchang Middle Road, Jing'an District, Shanghai, CN 200072, China
| | - G Ma
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, The Affiliated Stomatology Hospital of Tongji University, Department of Orthodontics, No. 399, Yanchang Middle Road, Jing'an District, Shanghai, CN 200072, China
| | - Y Xu
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, The Affiliated Stomatology Hospital of Tongji University, Department of Orthodontics, No. 399, Yanchang Middle Road, Jing'an District, Shanghai, CN 200072, China
| | - Y Li
- The Affiliated Stomatology Hospital of Tongji University, Department of Orthodontics, No. 399, Yanchang Middle Road, Jing'an District, Shanghai CN 200072, China.
| |
Collapse
|
8
|
Temporomandibular Joint Osteoarthritis: Pathogenic Mechanisms Involving the Cartilage and Subchondral Bone, and Potential Therapeutic Strategies for Joint Regeneration. Int J Mol Sci 2022; 24:ijms24010171. [PMID: 36613615 PMCID: PMC9820477 DOI: 10.3390/ijms24010171] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
The temporomandibular joint (TMJ) is a specialized synovial joint that is crucial for the movement and function of the jaw. TMJ osteoarthritis (TMJ OA) is the result of disc dislocation, trauma, functional overburden, and developmental anomalies. TMJ OA affects all joint structures, including the articular cartilage, synovium, subchondral bone, capsule, ligaments, periarticular muscles, and sensory nerves that innervate the tissues. The present review aimed to illustrate the main pathomechanisms involving cartilage and bone changes in TMJ OA and some therapeutic options that have shown potential restorative properties regarding these joint structures in vivo. Chondrocyte loss, extracellular matrix (ECM) degradation, and subchondral bone remodeling are important factors in TMJ OA. The subchondral bone actively participates in TMJ OA through an abnormal bone remodeling initially characterized by a loss of bone mass, followed by reparative mechanisms that lead to stiffness and thickening of the condylar osteochondral interface. In recent years, such therapies as intraarticular platelet-rich plasma (PRP), hyaluronic acid (HA), and mesenchymal stem cell-based treatment (MSCs) have shown promising results with respect to the regeneration of joint structures or the protection against further damage in TMJ OA. Nevertheless, PRP and MSCs are more frequently associated with cartilage and/or bone repair than HA. According to recent findings, the latter could enhance the restorative potential of other therapies (PRP, MSCs) when used in combination, rather than repair TMJ structures by itself. TMJ OA is a complex disease in which degenerative changes in the cartilage and bone develop through intricate mechanisms. The regenerative potential of such therapies as PRP, MSCs, and HA regarding the cartilage and subchondral bone (alone or in various combinations) in TMJ OA remains a matter of further research, with studies sometimes obtaining discrepant results.
Collapse
|
9
|
Akoum J, Corvol MT, Tahiri K, Anract P, Biau D, Borderie D, Étienne F, Rannou F, Nguyen C. Netrin-1 Secreted by Human Osteoarthritic Articular Chondrocytes Promotes Angiogenesis in Vitro. Cartilage 2022; 13:94-104. [PMID: 36321743 PMCID: PMC9924986 DOI: 10.1177/19476035221121791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Netrin-1 expression in articular cartilage is correlated with osteoarthritic changes. We aimed to investigate the contribution of Netrin-1 secreted by human osteoarthritic articular chondrocytes to angiogenesis process in vitro. DESIGN Human articular chondrocytes were extracted from non-osteoarthritic (n = 10) and osteoarthritic (n = 22) joints obtained from surgical specimens and incubated for 24 hours. Medium conditioned by non-osteoarthritic and osteoarthritic articular chondrocytes were collected. Human umbilical vein endothelial cells (HUVEC) were treated with control and conditioned medium and assessed using assays for cell adherence, migration, and tube formation. Netrin-1 expression and secretion was compared between non-osteoarthritic and osteoarthritic chondrocytes by qPCR, Western blot, and ELISA. The role of chondrocyte-secreted Netrin-1 on HUVEC functions was assessed by immunological neutralization using an anti-Netrin-1 monoclonal antibody. RESULTS As compared with medium conditioned by non-osteoarthritic chondrocytes, medium conditioned by osteoarthritic chondrocytes permitted tube formation by HUVEC. Both non-osteoarthritic and osteoarthritic chondrocytes expressed Netrin-1 at the RNA and protein levels. At the RNA level, Netrin-1 expression did not differ between non-osteoarthritic and osteoarthritic chondrocytes. At the protein level, Netrin-1 appeared as a full protein of 64 kDa in non-osteoarthritic chondrocytes and as two cleaved proteins of 55 kDa and 64 kDa in osteoarthritic chondrocytes. Immunological neutralization of endogenous Netrin-1 reduced the pro-angiogenic and pro-inflammatory transcriptional profile of HUVEC treated with the medium conditioned by osteoarthritic chondrocytes, as well as their capacities to form tubes. CONCLUSIONS Medium conditioned by osteoarthritic chondrocytes permits tube formation by HUVEC in vitro. This permissive effect is mediated by Netrin-1.
Collapse
Affiliation(s)
- Joulnar Akoum
- INSERM UMR-S 1124, Toxicité
Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs
(T3S), UFR Sciences Fondamentales et Biomédicales, Campus Saint-Germain-des-Prés,
Université Paris Cité, Paris, France
| | - Marie-Thérèse Corvol
- INSERM UMR-S 1124, Toxicité
Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs
(T3S), UFR Sciences Fondamentales et Biomédicales, Campus Saint-Germain-des-Prés,
Université Paris Cité, Paris, France
| | - Khadija Tahiri
- INSERM UMR-S 1124, Toxicité
Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs
(T3S), UFR Sciences Fondamentales et Biomédicales, Campus Saint-Germain-des-Prés,
Université Paris Cité, Paris, France
| | - Philippe Anract
- Faculté de Santé, UFR de Médecine,
Université Paris Cité, Paris, France,Service d’Orthopédie, Hôpital Cochin,
Assistance Publique-Hôpitaux de Paris, Centre-Université Paris Cité, Paris,
France
| | - David Biau
- Faculté de Santé, UFR de Médecine,
Université Paris Cité, Paris, France,Service d’Orthopédie, Hôpital Cochin,
Assistance Publique-Hôpitaux de Paris, Centre-Université Paris Cité, Paris,
France,INSERM UMR 1153, Centre de Recherche
Épidémiologie et Statistique Sorbonne Paris Cité, Université Paris Cité, Paris,
France
| | - Didier Borderie
- INSERM UMR-S 1124, Toxicité
Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs
(T3S), UFR Sciences Fondamentales et Biomédicales, Campus Saint-Germain-des-Prés,
Université Paris Cité, Paris, France,Faculté de Santé, UFR de Pharmacie,
Université Paris Cité, Paris, France,Service de Diagnostic Biologique
Automatisé, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Centre-Université
Paris Cité, Paris, France
| | - François Étienne
- INSERM UMR-S 1124, Toxicité
Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs
(T3S), UFR Sciences Fondamentales et Biomédicales, Campus Saint-Germain-des-Prés,
Université Paris Cité, Paris, France
| | - François Rannou
- INSERM UMR-S 1124, Toxicité
Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs
(T3S), UFR Sciences Fondamentales et Biomédicales, Campus Saint-Germain-des-Prés,
Université Paris Cité, Paris, France,Faculté de Santé, UFR de Médecine,
Université Paris Cité, Paris, France,Service de Rééducation et de
Réadaptation de l’Appareil Locomoteur et des Pathologies du Rachis, Hôpital Cochin,
Assistance Publique-Hôpitaux de Paris, Centre-Université Paris Cité, Paris,
France
| | - Christelle Nguyen
- INSERM UMR-S 1124, Toxicité
Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs
(T3S), UFR Sciences Fondamentales et Biomédicales, Campus Saint-Germain-des-Prés,
Université Paris Cité, Paris, France,Faculté de Santé, UFR de Médecine,
Université Paris Cité, Paris, France,Service de Rééducation et de
Réadaptation de l’Appareil Locomoteur et des Pathologies du Rachis, Hôpital Cochin,
Assistance Publique-Hôpitaux de Paris, Centre-Université Paris Cité, Paris,
France,Christelle Nguyen, Service de Rééducation
et de Réadaptation de l’Appareil Locomoteur et des Pathologies du Rachis,
Hôpital Cochin, Assistance Publique-Hôpitaux de Paris Centre, Université Paris
Cité, 27, Rue du Faubourg Saint-Jacques, Paris 75014, France.
| |
Collapse
|
10
|
Wang J, Duan G, Zhan T, Dong Z, Zhang Y, Chen Y, Sun H, Xu S. Upregulation of Netrin-1 in the hippocampus mediates the formation of visceral hypersensitivity induced by maternal separation. Front Mol Neurosci 2022; 15:908911. [PMID: 35966013 PMCID: PMC9366914 DOI: 10.3389/fnmol.2022.908911] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Early adverse life events (EALs), such as maternal separation (MS), can cause visceral hypersensitivity, which is thought to be a key pathophysiological mechanism of irritable bowel syndrome (IBS). Previous studies mainly focused on EALs-induced visceral hypersensitivity in adulthood but did not consider that it may have occurred in the preadult period. We previously found that rats who experienced MS suffered from visceral hypersensitivity starting from the post-weaning period. Moreover, the hippocampus is considered to be critical in regulating the formation of visceral hypersensitivity induced by MS. But the underlying mechanisms throughout different life periods are unclear. In this study, behavioral tests, RNA-seq, lentiviral interference, and molecular biology techniques were applied to investigate the molecular mechanism in the hippocampus underlying MS-induced long-lasting visceral hypersensitivity. It was found that both visceral sensitivity and anxiety-like behaviors were significantly increased in MS rats in post-weaning, prepubertal, and adult periods, especially in the prepubertal period. Subsequently, RNA-seq targeting the hippocampus identified that the expression level of Netrin-1 was significantly increased in all periods, which was further confirmed by quantitative real-time PCR and Western blot. Knocking-down hippocampal Netrin-1 in the post-weaning period by lentivirus interference alleviated visceral hypersensitivity and anxiety-like behaviors of MS rats in the later phase of life. In addition, deleted in colorectal cancer (DCC), instead of neogenin-1(Neo-1) or uncoordinated (UNC5), was proved to be the specific functional receptor of Netrin-1 in regulating visceral hypersensitivity, whose upregulation may result in the most severe symptoms in the prepubertal period. Furthermore, the activation of the Netrin-1/DCC pathway could enhance long-term potentiation (LTP) in the hippocampus, probably via recruitment of the AMPA receptor subunit GluA1, which finally resulted in the formation of visceral hypersensitivity. These novel findings suggest that long-lasting over-expression of Netrin-1 can mediate visceral hypersensitivity and anxiety disorder from the post-weaning period to adulthood by activating DCC/GluA1 pathway in the hippocampus. Moreover, early intervention of Netrin-1 in the post-weaning period could lead to significant symptom relief afterward, which provides evidence that the Netrin-1/DCC/GluA1 signaling pathway may be a potential therapeutic target for the treatment of visceral hypersensitivity in clinics.
Collapse
|
11
|
Spinal TRPA1 Contributes to the Mechanical Hypersensitivity Effect Induced by Netrin-1. Int J Mol Sci 2022; 23:ijms23126629. [PMID: 35743067 PMCID: PMC9224357 DOI: 10.3390/ijms23126629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 02/06/2023] Open
Abstract
Netrin-1, a chemoattractant expressed by floor plate cells, and one of its receptors (deleted in colorectal cancer) has been associated with pronociceptive actions in a number of pain conditions. Here, we addressed the question of whether spinal TRPC4/C5 or TRPA1 are among the downstream receptors contributing to pronociceptive actions induced by netrin-1. The experiments were performed on rats using a chronic intrathecal catheter for administration of netrin-1 and antagonists of TRPC4/C5 or TRPA1. Pain sensitivity was assessed behaviorally by using mechanical and heat stimuli. Effect on the discharge rate of rostral ventromedial medullary (RVM) pain control neurons was studied in lightly anesthetized animals. Netrin-1, in a dose-related fashion, induced mechanical hypersensitivity that lasted up to three weeks. Netrin-1 had no effect on heat nociception. Mechanical hypersensitivity induced by netrin-1 was attenuated by TRPA1 antagonist Chembridge-5861528 and by the control analgesic compound pregabalin both during the early (first two days) and late (third week) phase of hypersensitivity. TRPC4/C5 antagonist ML-204 had a weak antihypersensitivity effect that was only in the early phase, whereas TRPC4/C5 antagonist HC-070 had no effect on hypersensitivity induced by netrin-1. The discharge rate in pronociceptive ON-like RVM neurons was increased by netrin-1 during the late but not acute phase, whereas netrin-1 had no effect on the discharge rate of antinociceptive RVM OFF-like neurons. The results suggest that spinal TRPA1 receptors and pronociceptive RVM ON-like neurons are involved in the maintenance of submodality-selective pronociceptive actions induced by netrin-1 in the spinal cord.
Collapse
|
12
|
Zhao Y, An Y, Zhou L, Wu F, Wu G, Wang J, Chen L. Animal Models of Temporomandibular Joint Osteoarthritis: Classification and Selection. Front Physiol 2022; 13:859517. [PMID: 35574432 PMCID: PMC9095932 DOI: 10.3389/fphys.2022.859517] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/04/2022] [Indexed: 01/11/2023] Open
Abstract
Temporomandibular joint osteoarthritis (TMJOA) is a common degenerative joint disease that can cause severe pain and dysfunction. It has a serious impact on the quality of lives of patients. Since mechanism underlying the pathogenesis of TMJOA is not fully understood, the development of effective tools for early diagnosis and disease-modifying therapies has been hindered. Animal models play a key role in understanding the pathological process of diseases and evaluating new therapeutic interventions. Although some similarities in disease processes between animals and humans are known, no one animal model is sufficient for studying all characteristics of TMJOA, as each model has different translatability to human clinical conditions. For the past 4 decades, TMJOA animal models have been studied by numerous researchers and can be broadly divided into induced, naturally occurring, and genetically modified models. The induced models can be divided into invasive models (intra-articular injection and surgical induction) or non-invasive models (mechanical loading, high-fat diet, and sleep deprivation). Different types of animal models simulate different pathological expressions of TMJOA and have their unique characteristics. Currently, mice, rats, and rabbits are commonly used in the study of TMJOA. This review sought to provide a general description of current experimental models of TMJOA and assist researchers in selecting the most appropriate models for different kinds of research.
Collapse
Affiliation(s)
- Yuqing Zhao
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application & Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, China
| | - Yanxin An
- Department of General Surgery, The First Affiliated Hospital of Xi’an Medical University, Xi’an, China
| | - Libo Zhou
- School of Basic Medicine, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application & Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, China
| | - Fan Wu
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application & Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, China
| | - Gaoyi Wu
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application & Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, China
| | - Jing Wang
- Department of Oral Implants, School of Stomatology, National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology & Shaanxi Key Laboratory of Stomatology, The Fourth Military Medical University, Xi’an, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Lei Chen
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| |
Collapse
|
13
|
Xu M, Zhang X, He Y. An updated view on Temporomandibular Joint degeneration: insights from the cell subsets of mandibular condylar cartilage. Stem Cells Dev 2022; 31:445-459. [PMID: 35044232 DOI: 10.1089/scd.2021.0324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The high prevalence of temporomandibular joint osteoarthritis (TMJOA), which causes joint dysfunction, indicates the need for more effective methods for treatment and repair. Mandibular condylar cartilage (MCC), a typical fibrocartilage that experiences degenerative changes during the development of TMJOA, has become a research focus and therapeutic target in recent years. MCC is composed of four zones of cells at various stages of differentiation. The cell subsets in MCC exhibit different physiological and pathological characteristics during development and in TMJOA. Most studies of TMJOA are mainly concerned with gene regulation of pathological changes. The corresponding treatment targets with specific cell subsets in MCC may provide more accurate and reliable results for cartilage repair and TMJOA treatment. In this review, we summarized the current research progress on the cell subsets of MCC from the perspective of MCC development and degeneration. We hope to provide a reference for further exploration of the pathological process of TMJOA and improvement of TMJOA treatment.
Collapse
Affiliation(s)
- Minglu Xu
- Chongqing Medical University, 12550, Chongqing, Chongqing, China;
| | - Xuyang Zhang
- Chongqing Medical University, 12550, Chongqing, Chongqing, China;
| | - Yao He
- Chongqing Medical University, 12550, Chongqing, China, 400016;
| |
Collapse
|