1
|
Kansman JT, Hermann SL, Ali JG, Helms AM. Flipping indirect defense: Chemical cues from natural enemies mediate multitrophic interactions. CURRENT OPINION IN INSECT SCIENCE 2024:101330. [PMID: 39743205 DOI: 10.1016/j.cois.2024.101330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
Plants and invertebrates use chemical signals and cues to construct information about their environment. It is well reviewed that chemical signals play key roles in interactions between conspecific insects, such as sex pheromones for finding mates, and that plants transmit chemical signals to recruit natural enemies that kill herbivores. However, it is also known that chemicals emitted by natural enemies can influence insect herbivore physiology and behavior. The detection of chemical cues associated with the presence of natural enemies can influence herbivore movement, feeding, and reproduction which may limit the damage herbivores inflict on their host plants. Plants detect chemical cues associated with herbivores, but less is known about whether plants also detect chemical cues of natural enemies, or how this detection affects plant defense responses. In this review, we highlight what is known about how natural enemy chemical cues directly affect herbivores, how natural enemy cues indirectly affect herbivores through changes in host plant defenses, and we discuss the evolutionary ecology of plant and herbivore responses to natural enemy cues. Lastly, we consider application of these concepts for insect pest management. Improving our understanding of how natural enemy chemical cues mediate multitrophic interactions provides a great opportunity for future exploration. CONDENSED ABSTRACT: Plants and invertebrates use chemical signals and cues to construct information about their environment. Detection of chemical cues from natural enemies can influence herbivore behavior and reduce herbivory. Plants detect chemical cues associated with herbivores, but less is known about whether plants detect cues of natural enemies, or how detection affects plant defense responses. Here, we highlight what is known about how natural enemy chemical cues directly affect herbivores and how natural enemy cues indirectly affect herbivores through changes in plant defenses. We discuss the evolutionary ecology of plant and herbivore responses to natural enemy cues and consider applications for pest management.
Collapse
Affiliation(s)
- Jessica T Kansman
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA
| | - Sara L Hermann
- Center for Chemical Ecology, Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| | - Jared G Ali
- Center for Chemical Ecology, Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| | - Anjel M Helms
- Department of Entomology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
2
|
Sarkar SC, Milroy SP, Xu W. Dietary experience alters predatory behavior of two ladybird species on tomato potato psyllid. INSECT SCIENCE 2024; 31:1579-1590. [PMID: 38268118 DOI: 10.1111/1744-7917.13328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/08/2023] [Accepted: 12/18/2023] [Indexed: 01/26/2024]
Abstract
The tomato potato psyllid, Bactericera cockerelli, is an invasive pest in Australia, which can cause severe economic loss in the production of Solanaceous crops. As an invasive pest, B. cockerelli may also modify biotic interactions in Australian agricultural and native ecosystems. Resident generalist predators in an area may have the ability to utilize invasive pest species as prey but this will depend on their specific predatory behavior. The extent to which generalist predators learn from their previous dietary experience (i.e., whether they have used a particular species as prey before) and how this impacts subsequent prey choice will influence predator and prey population dynamics after invasion. In this study, one nonnative resident ladybird, Hippodamia variegata, and one native ladybird, Coccinella transversalis, were investigated. Dietary experience with B. cockerelli as a prey species significantly increased preference for the psyllid in a short term (6 h) Petri dish study where a choice of prey was given. Greater suppression of B. cockerelli populations by experienced ladybirds was also observed on glasshouse grown tomato plants. This was presumably due to altered prey recognition by experience. The result of this study suggest the potential to improve the impact of biological control agents on invasive pests by providing early life experience consuming the target species. It may prove valuable for developing improved augmentative release strategies for ladybirds to manage specific insect pest species.
Collapse
Affiliation(s)
| | - Stephen Paul Milroy
- Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Wei Xu
- Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
3
|
Lin X, Cui X, Tang J, Zhu J, Li J. Predation Risk Effects of Lady Beetle Menochilus sexmaculatus (Fabricius) on the Melon Aphid, Aphis gossypii Glover. INSECTS 2023; 15:13. [PMID: 38249019 PMCID: PMC10816753 DOI: 10.3390/insects15010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024]
Abstract
Predation risk posed by natural enemies can alter pest performance. In our previous study, we found Menochilus sexmaculatus provides risk cues to melon aphids, resulting in increased numbers of winged aphids. However, the effects of predation risk on multiple traits including behavior, physiology, growth rate, and reproductive capacity of pests are not clear. This study examined the effects of predation risk on host preference, the activities of two important defense enzymes (CAT and SOD), longevity, and offspring production. The Y-tube trial results showed that the risk of M. sexmaculatus significantly altered the host preference of the aphids, leading to avoidance behavior. When exposed to M. sexmaculatus for a long period (24 h), the reproductive period and offspring production were significantly decreased, and adult longevity was significantly shortened. The defense enzyme activities of SOD and CAT, as well as the MDA content (which is considered a marker of oxidative stress and cellular damage) in the aphids, significantly increased under M. sexmaculatus risk. The compounds of M. sexmaculatus extracted with n-hexane and volatile compounds collected with HS-SPME were analyzed by GC-MS, and when combined with the behavior response experiment, the results showed that the alkane compounds n-henicosane, n-docosane, n-tricosane, n-pentacosane, and n-hentriacontane may contribute to the impact of predation risk. The results will be helpful in the comprehensive evaluation of the ability of lady beetles to affect the aphid population, and provide new ideas for using these compounds in aphid control.
Collapse
Affiliation(s)
- Xingming Lin
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (X.L.); (X.C.); (J.Z.)
| | - Xiangxin Cui
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (X.L.); (X.C.); (J.Z.)
| | - Jihong Tang
- Key Laboratory of Integrated Pest Management on Tropical Crops of Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China;
| | - Jiawei Zhu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (X.L.); (X.C.); (J.Z.)
| | - Jinhua Li
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (X.L.); (X.C.); (J.Z.)
| |
Collapse
|
4
|
Aguiar O, Sonnega S, DiNuzzo ER, Sheriff MJ. Playing it safe; risk-induced trait responses increase survival in the face of predation. J Anim Ecol 2023; 92:690-697. [PMID: 36597705 DOI: 10.1111/1365-2656.13880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/22/2022] [Indexed: 01/05/2023]
Abstract
Predation risk effects are impacts on prey caused by predators that do not include consumption. These can include changes in prey behaviour, physiology, and morphology (i.e. risk-induced trait responses), which can have consequences to individual fitness and population dynamics (i.e. non-consumptive effects). While these risk-induced trait responses (RITRs) can lower individual fitness as compared to prey not exposed to risk, they are assumed to increase fitness in the presence of predators. While much work has been built upon this assumption, most evidence occurs in consumptive experiments where the trait values of consumed prey are unknown. We have little evidence showing individuals with a greater magnitude of RITR have greater survival. Here, we tested the hypothesis that RITRs increase survival in the presence of predators, but come at a cost to growth. We tested this hypothesis using Nucella lapillus as prey and Carcinus maenas as a predator and including mussels as a basal resource in a two-phase mesocosm experimental set-up. In phase 1, Nucella were placed into either a control or risk treatment (exposure to non-lethal Carcinus) for 28 days and their behaviour and growth measured. In phase 2, a lethal Carcinus was added to all mesocosms (non-lethal crabs were removed), and survival was recorded for 15 days. At the treatment (group) level, we found that Nucella exposed to predation risk in phase 1 had significantly greater risk aversion behaviour (summed score of risky vs. safe behaviour) and significantly lower growth. In phase 2, we found that Nucella exposed to predation risk had greater survival. At the individual level (regardless of treatment), we found that Nucella with greater risk aversion scores in phase 1 had significantly higher survival in phase 2 when exposed to a lethal predator, but this came at a cost to their growth. This study provides some of the first empirical evidence, at both the group and individual level, testing a long-held assumption that predation risk-induced behavioural responses increase survival in the face of direct predation, but that these responses come at a cost to the prey. These results add to our growing understanding of the benefits of RITRs to individual fitness and non-consumptive effects generally.
Collapse
Affiliation(s)
- Olivia Aguiar
- Biology Department, University of Massachusetts Dartmouth, Dartmouth, Massachusetts, USA
| | - Sam Sonnega
- Biology Department, University of Massachusetts Dartmouth, Dartmouth, Massachusetts, USA
| | - Eleanor R DiNuzzo
- Biology Department, University of Massachusetts Dartmouth, Dartmouth, Massachusetts, USA
| | - Michael J Sheriff
- Biology Department, University of Massachusetts Dartmouth, Dartmouth, Massachusetts, USA
| |
Collapse
|
5
|
Kim SK, Choi JY. Behavioral Avoidance Response of Daphnia to Fungal Infection Caused by Metschnikowia Species in a Temperate Reservoir. BIOLOGY 2022; 11:1409. [PMID: 36290312 PMCID: PMC9598222 DOI: 10.3390/biology11101409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Morphological or behavioral defense mechanisms are important evolutionary strategies for the survival of prey. Studies have focused on predation and competition, but infection has been overlooked, despite being a determining factor of distribution and species diversity of prey. We hypothesized that the winter migration of Daphnia pulicaria is a community defense strategy to avoid fungal infection. To test this hypothesis, environmental variables and the Cladocera community, including D. pulicaria, were monitored in three study sections of the Anri Reservoir in the Republic of Korea during September 2010-August 2015. During three winter seasons, the density of infected D. pulicaria increased in all study sections, and they migrated from the central to the littoral area. Most of the infected individuals had dormant eggs in sexually reproducing mothers. However, when the proportion of non-infected individuals was higher than that of infected individuals, winter migration was not observed. Additional microcosm experiments showed that dormant eggs of D. pulicaria obtained from ice crystals in the littoral area had lower hatching and infection rates than those obtained from mothers moving from other zones. Therefore, the migration of D. pulicaria during winter is an active response to avoid intergenerational fungal infection.
Collapse
|
6
|
Rose C, Kyneb S, Schou MF, Bechsgaard J, Bilde T. The role of inter-individual intolerance in group cohesion and the transition to sociality in spiders. J Evol Biol 2022; 35:1020-1026. [PMID: 35674385 DOI: 10.1111/jeb.14032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/21/2022] [Accepted: 05/04/2022] [Indexed: 11/29/2022]
Abstract
Conspecific tolerance is key for maintaining group cohesion in animals. Understanding shifts from conspecific tolerance to intolerance is therefore important for understanding transitions to sociality. Subsocial species disperse to a solitary lifestyle after a gregarious juvenile phase and display conspecific intolerance as adults as a mechanism to maintain a solitary living. The development of intolerance towards group members is hypothesized to play a role in dispersal decisions in subsocial species. One hypothesis posits that dispersal is triggered by factors such as food competition with the subsequent development of conspecific intolerance, rather than conspecific intolerance developing prior to and potentially driving dispersal. Consistent with this hypothesis, we show that intolerance (inferred by inter-individual distance) developed post-dispersal in the subsocial spider Stegodyphus lineatus. The development of conspecific intolerance was delayed when maintaining spiders in groups showing plasticity in this trait, which is advantageous when trade-offs are not fixed over time. However, major evolutionary transitions, such as the transition to sociality, can permanently modify trade-offs and cause derived adaptations by the evolution of new or modified traits or evolutionary loss of traits that become redundant. Sociality in spiders has evolved repeatedly from subsocial ancestors, and social life in family groups combined with a lack of interaction with competing groups suggests relaxed selection for the development of conspecific intolerance. In the social Stegodyphus sarasinorum we found no evidence for the development of conspecific intolerance, consistent with the loss of this trait. Instead, we found evidence for conspecific attraction, which is likely to govern group cohesion.
Collapse
Affiliation(s)
- Clémence Rose
- Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Sarah Kyneb
- Department of Biology, Aarhus University, Aarhus C, Denmark
| | | | | | - Trine Bilde
- Department of Biology, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
7
|
Wen J, Ueno T. Risk Odors Deriving from Predator Abdominal Gland Secretions Mediate Non-Consumptive Effects on Prey. J Chem Ecol 2021; 48:89-98. [PMID: 34779990 DOI: 10.1007/s10886-021-01331-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/20/2021] [Accepted: 10/30/2021] [Indexed: 11/26/2022]
Abstract
Prey can detect the presence of predators by predator-released cues and then flexibly alter their phenotypical traits to mitigate the risk, thus non-consumptive effects emerge. Non-consumptive effects have been widely studied in many ecosystems, however, the mechanisms underlying these effects are poorly understood, leaving questions as to the nature of the risk cues and how prey detect the predator. Here, we used a Y-tube olfactometer to examine whether small brown planthoppers, Laodelphax striatellus (Fallén), could detect the presence of rove beetles (Paederus fuscipes Curtis) via odor from rove beetle abdominal gland secretion. We further identified the chemicals of abdominal gland secretion by gas chromatography-mass spectrometry. Chemicals identified were exposed to a planthopper to test their effects on planthopper behavior. Female or male planthoppers could distinguish the predation risk odors of rove beetle or rove beetle abdominal gland secretion from odor without predation risks. Through gas chromatography-mass spectrometry, sixteen of the most abundant chemicals were found in female and male abdominal gland secretion. Five of them (n-undecane, n-pentadecane, n-hexadecane, n-eicosane, and n-heneicosane) individually or collectively reduced the activity level of planthoppers. These findings enhance our understanding of the role of abdominal gland secretion in mediating non-consumptive predator effects, with significant implications for pest management, and the evolution of chemical signals.
Collapse
Affiliation(s)
- Jian Wen
- Institute of Biological Control, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan.
| | - Takatoshi Ueno
- Institute of Biological Control, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| |
Collapse
|