1
|
Ognjanović I, Zoulias E, Mantas J. Progress Achieved, Landmarks, and Future Concerns in Biomedical and Health Informatics. Healthcare (Basel) 2024; 12:2041. [PMID: 39451456 PMCID: PMC11506887 DOI: 10.3390/healthcare12202041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND The biomedical and health informatics (BMHI) fields have been advancing rapidly, a trend particularly emphasised during the recent COVID-19 pandemic, introducing innovations in BMHI. Over nearly 50 years since its establishment as a scientific discipline, BMHI has encountered several challenges, such as mishaps, delays, failures, and moments of enthusiastic expectations and notable successes. This paper focuses on reviewing the progress made in the BMHI discipline, evaluating key milestones, and discussing future challenges. METHODS To, Structured, step-by-step qualitative methodology was developed and applied, centred on gathering expert opinions and analysing trends from the literature to provide a comprehensive assessment. Experts and pioneers in the BMHI field were assigned thematic tasks based on the research question, providing critical inputs for the thematic analysis. This led to the identification of five key dimensions used to present the findings in the paper: informatics in biomedicine and healthcare, health data in Informatics, nurses in informatics, education and accreditation in health informatics, and ethical, legal, social, and security issues. RESULTS Each dimension is examined through recently emerging innovations, linking them directly to the future of healthcare, like the role of artificial intelligence, innovative digital health tools, the expansion of telemedicine, and the use of mobile health apps and wearable devices. The new approach of BMHI covers newly introduced clinical needs and approaches like patient-centric, remote monitoring, and precision medicine clinical approaches. CONCLUSIONS These insights offer clear recommendations for improving education and developing experts to advance future innovations. Notably, this narrative review presents a body of knowledge essential for a deep understanding of the BMHI field from a human-centric perspective and, as such, could serve as a reference point for prospective analysis and innovation development.
Collapse
Affiliation(s)
- Ivana Ognjanović
- Faculty for Information Systems and Technologies, University of Donja Gorica, 81000 Podgorica, Montenegro
- European Federation for Medical Informatics, CH-1052 Le Mont-sur-Lausanne, Switzerland
| | - Emmanouil Zoulias
- Health Informatics Lab, Department of Nursing, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.Z.); (J.M.)
| | - John Mantas
- Health Informatics Lab, Department of Nursing, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.Z.); (J.M.)
| |
Collapse
|
2
|
Pacchiano F, Tortora M, Doneda C, Izzo G, Arrigoni F, Ugga L, Cuocolo R, Parazzini C, Righini A, Brunetti A. Radiomics and artificial intelligence applications in pediatric brain tumors. World J Pediatr 2024; 20:747-763. [PMID: 38935233 PMCID: PMC11402857 DOI: 10.1007/s12519-024-00823-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND The study of central nervous system (CNS) tumors is particularly relevant in the pediatric population because of their relatively high frequency in this demographic and the significant impact on disease- and treatment-related morbidity and mortality. While both morphological and non-morphological magnetic resonance imaging techniques can give important information concerning tumor characterization, grading, and patient prognosis, increasing evidence in recent years has highlighted the need for personalized treatment and the development of quantitative imaging parameters that can predict the nature of the lesion and its possible evolution. For this purpose, radiomics and the use of artificial intelligence software, aimed at obtaining valuable data from images beyond mere visual observation, are gaining increasing importance. This brief review illustrates the current state of the art of this new imaging approach and its contributions to understanding CNS tumors in children. DATA SOURCES We searched the PubMed, Scopus, and Web of Science databases using the following key search terms: ("radiomics" AND/OR "artificial intelligence") AND ("pediatric AND brain tumors"). Basic and clinical research literature related to the above key research terms, i.e., studies assessing the key factors, challenges, or problems of using radiomics and artificial intelligence in pediatric brain tumors management, was collected. RESULTS A total of 63 articles were included. The included ones were published between 2008 and 2024. Central nervous tumors are crucial in pediatrics due to their high frequency and impact on disease and treatment. MRI serves as the cornerstone of neuroimaging, providing cellular, vascular, and functional information in addition to morphological features for brain malignancies. Radiomics can provide a quantitative approach to medical imaging analysis, aimed at increasing the information obtainable from the pixels/voxel grey-level values and their interrelationships. The "radiomic workflow" involves a series of iterative steps for reproducible and consistent extraction of imaging data. These steps include image acquisition for tumor segmentation, feature extraction, and feature selection. Finally, the selected features, via training predictive model (CNN), are used to test the final model. CONCLUSIONS In the field of personalized medicine, the application of radiomics and artificial intelligence (AI) algorithms brings up new and significant possibilities. Neuroimaging yields enormous amounts of data that are significantly more than what can be gained from visual studies that radiologists can undertake on their own. Thus, new partnerships with other specialized experts, such as big data analysts and AI specialists, are desperately needed. We believe that radiomics and AI algorithms have the potential to move beyond their restricted use in research to clinical applications in the diagnosis, treatment, and follow-up of pediatric patients with brain tumors, despite the limitations set out.
Collapse
Affiliation(s)
- Francesco Pacchiano
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Mario Tortora
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy.
- Department of Head and Neck, Neuroradiology Unit, AORN Moscati, Avellino, Italy.
| | - Chiara Doneda
- Department of Pediatric Radiology and Neuroradiology, V. Buzzi Children's Hospital, Milan, Italy
| | - Giana Izzo
- Department of Pediatric Radiology and Neuroradiology, V. Buzzi Children's Hospital, Milan, Italy
| | - Filippo Arrigoni
- Department of Pediatric Radiology and Neuroradiology, V. Buzzi Children's Hospital, Milan, Italy
| | - Lorenzo Ugga
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Renato Cuocolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy
| | - Cecilia Parazzini
- Department of Pediatric Radiology and Neuroradiology, V. Buzzi Children's Hospital, Milan, Italy
| | - Andrea Righini
- Department of Pediatric Radiology and Neuroradiology, V. Buzzi Children's Hospital, Milan, Italy
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| |
Collapse
|
3
|
Ismail M, Um H, Salloum R, Hollnagel F, Ahmed R, de Blank P, Tiwari P. A Radiomic Approach for Evaluating Intra-Subgroup Heterogeneity in SHH and Group 4 Pediatric Medulloblastoma: A Preliminary Multi-Institutional Study. Cancers (Basel) 2024; 16:2248. [PMID: 38927953 PMCID: PMC11201623 DOI: 10.3390/cancers16122248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/15/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Medulloblastoma (MB) is the most frequent malignant brain tumor in children with extensive heterogeneity that results in varied clinical outcomes. Recently, MB was categorized into four molecular subgroups, WNT, SHH, Group 3, and Group 4. While SHH and Group 4 are known for their intermediate prognosis, studies have reported wide disparities in patient outcomes within these subgroups. This study aims to create a radiomic prognostic signature, medulloblastoma radiomics risk (mRRisk), to identify the risk levels within the SHH and Group 4 subgroups, individually, for reliable risk stratification. Our hypothesis is that this signature can comprehensively capture tumor characteristics that enable the accurate identification of the risk level. In total, 70 MB studies (48 Group 4, and 22 SHH) were retrospectively curated from three institutions. For each subgroup, 232 hand-crafted features that capture the entropy, surface changes, and contour characteristics of the tumor were extracted. Features were concatenated and fed into regression models for risk stratification. Contrasted with Chang stratification that did not yield any significant differences within subgroups, significant differences were observed between two risk groups in Group 4 (p = 0.04, Concordance Index (CI) = 0.82) on the cystic core and non-enhancing tumor, and SHH (p = 0.03, CI = 0.74) on the enhancing tumor. Our results indicate that radiomics may serve as a prognostic tool for refining MB risk stratification, towards improved patient care.
Collapse
Affiliation(s)
- Marwa Ismail
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53706, USA (P.T.)
| | - Hyemin Um
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53706, USA (P.T.)
| | - Ralph Salloum
- Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Fauzia Hollnagel
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Raheel Ahmed
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Peter de Blank
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Pallavi Tiwari
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53706, USA (P.T.)
- Departments of Medical Physics and Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53792, USA
| |
Collapse
|
4
|
Ismail M, Craig S, Ahmed R, de Blank P, Tiwari P. Opportunities and Advances in Radiomics and Radiogenomics for Pediatric Medulloblastoma Tumors. Diagnostics (Basel) 2023; 13:2727. [PMID: 37685265 PMCID: PMC10487205 DOI: 10.3390/diagnostics13172727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Recent advances in artificial intelligence have greatly impacted the field of medical imaging and vastly improved the development of computational algorithms for data analysis. In the field of pediatric neuro-oncology, radiomics, the process of obtaining high-dimensional data from radiographic images, has been recently utilized in applications including survival prognostication, molecular classification, and tumor type classification. Similarly, radiogenomics, or the integration of radiomic and genomic data, has allowed for building comprehensive computational models to better understand disease etiology. While there exist excellent review articles on radiomics and radiogenomic pipelines and their applications in adult solid tumors, in this review article, we specifically review these computational approaches in the context of pediatric medulloblastoma tumors. Based on our systematic literature research via PubMed and Google Scholar, we provide a detailed summary of a total of 15 articles that have utilized radiomic and radiogenomic analysis for survival prognostication, tumor segmentation, and molecular subgroup classification in the context of pediatric medulloblastoma. Lastly, we shed light on the current challenges with the existing approaches as well as future directions and opportunities with using these computational radiomic and radiogenomic approaches for pediatric medulloblastoma tumors.
Collapse
Affiliation(s)
- Marwa Ismail
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53706, USA; (S.C.); (P.T.)
| | - Stephen Craig
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53706, USA; (S.C.); (P.T.)
| | - Raheel Ahmed
- Department of Neurosurgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Peter de Blank
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA;
| | - Pallavi Tiwari
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53706, USA; (S.C.); (P.T.)
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
5
|
Steyaert S, Qiu YL, Zheng Y, Mukherjee P, Vogel H, Gevaert O. Multimodal deep learning to predict prognosis in adult and pediatric brain tumors. COMMUNICATIONS MEDICINE 2023; 3:44. [PMID: 36991216 PMCID: PMC10060397 DOI: 10.1038/s43856-023-00276-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND The introduction of deep learning in both imaging and genomics has significantly advanced the analysis of biomedical data. For complex diseases such as cancer, different data modalities may reveal different disease characteristics, and the integration of imaging with genomic data has the potential to unravel additional information than when using these data sources in isolation. Here, we propose a DL framework that combines these two modalities with the aim to predict brain tumor prognosis. METHODS Using two separate glioma cohorts of 783 adults and 305 pediatric patients we developed a DL framework that can fuse histopathology images with gene expression profiles. Three strategies for data fusion were implemented and compared: early, late, and joint fusion. Additional validation of the adult glioma models was done on an independent cohort of 97 adult patients. RESULTS Here we show that the developed multimodal data models achieve better prediction results compared to the single data models, but also lead to the identification of more relevant biological pathways. When testing our adult models on a third brain tumor dataset, we show our multimodal framework is able to generalize and performs better on new data from different cohorts. Leveraging the concept of transfer learning, we demonstrate how our pediatric multimodal models can be used to predict prognosis for two more rare (less available samples) pediatric brain tumors. CONCLUSIONS Our study illustrates that a multimodal data fusion approach can be successfully implemented and customized to model clinical outcome of adult and pediatric brain tumors.
Collapse
Affiliation(s)
- Sandra Steyaert
- Stanford Center for Biomedical Informatics Research (BMIR), Department of Medicine, Stanford University, Stanford, CA, USA
| | - Yeping Lina Qiu
- Stanford Center for Biomedical Informatics Research (BMIR), Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Yuanning Zheng
- Stanford Center for Biomedical Informatics Research (BMIR), Department of Medicine, Stanford University, Stanford, CA, USA
| | - Pritam Mukherjee
- Stanford Center for Biomedical Informatics Research (BMIR), Department of Medicine, Stanford University, Stanford, CA, USA
| | - Hannes Vogel
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Olivier Gevaert
- Stanford Center for Biomedical Informatics Research (BMIR), Department of Medicine, Stanford University, Stanford, CA, USA.
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA.
| |
Collapse
|
6
|
Grist JT, Bøgh N, Hansen ES, Schneider AM, Healicon R, Ball V, Miller JJJJ, Smart S, Couch Y, Buchan AM, Tyler DJ, Laustsen C. Developing a metabolic clearance rate framework as a translational analysis approach for hyperpolarized 13C magnetic resonance imaging. Sci Rep 2023; 13:1613. [PMID: 36709217 PMCID: PMC9884306 DOI: 10.1038/s41598-023-28643-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/23/2023] [Indexed: 01/29/2023] Open
Abstract
Hyperpolarized carbon-13 magnetic resonance imaging is a promising technique for in vivo metabolic interrogation of alterations between health and disease. This study introduces a formalism for quantifying the metabolic information in hyperpolarized imaging. This study investigated a novel perfusion formalism and metabolic clearance rate (MCR) model in pre-clinical stroke and in the healthy human brain. Simulations showed that the proposed model was robust to perturbations in T1, transmit B1, and kPL. A significant difference in ipsilateral vs contralateral pyruvate derived cerebral blood flow (CBF) was detected in rats (140 ± 2 vs 89 ± 6 mL/100 g/min, p < 0.01, respectively) and pigs (139 ± 12 vs 95 ± 5 mL/100 g/min, p = 0.04, respectively), along with an increase in fractional metabolism (26 ± 5 vs 4 ± 2%, p < 0.01, respectively) in the rodent brain. In addition, a significant increase in ipsilateral vs contralateral MCR (0.034 ± 0.007 vs 0.017 ± 0.02/s, p = 0.03, respectively) and a decrease in mean transit time (31 ± 8 vs 60 ± 2 s, p = 0.04, respectively) was observed in the porcine brain. In conclusion, MCR mapping is a simple and robust approach to the post-processing of hyperpolarized magnetic resonance imaging.
Collapse
Affiliation(s)
- James T Grist
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
- Division of Cardiovascular Medicine, Oxford Centre for Clinical Magnetic Resonance Research, Oxford, UK
- Department of Radiology, Oxford University Hospitals Trust, Oxford, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Nikolaj Bøgh
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Esben Søvsø Hansen
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Anna M Schneider
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Richard Healicon
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| | - Vicky Ball
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| | - Jack J J J Miller
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
- Division of Cardiovascular Medicine, Oxford Centre for Clinical Magnetic Resonance Research, Oxford, UK
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Sean Smart
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Yvonne Couch
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | | | - Damian J Tyler
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
- Division of Cardiovascular Medicine, Oxford Centre for Clinical Magnetic Resonance Research, Oxford, UK
| | - Christoffer Laustsen
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark.
- Aarhus University Hospital, MR Center, Palle Juul Jensens Boulevard 99, 8200, Aarhus N, Denmark.
| |
Collapse
|
7
|
di Noia C, Grist JT, Riemer F, Lyasheva M, Fabozzi M, Castelli M, Lodi R, Tonon C, Rundo L, Zaccagna F. Predicting Survival in Patients with Brain Tumors: Current State-of-the-Art of AI Methods Applied to MRI. Diagnostics (Basel) 2022; 12:diagnostics12092125. [PMID: 36140526 PMCID: PMC9497964 DOI: 10.3390/diagnostics12092125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/05/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022] Open
Abstract
Given growing clinical needs, in recent years Artificial Intelligence (AI) techniques have increasingly been used to define the best approaches for survival assessment and prediction in patients with brain tumors. Advances in computational resources, and the collection of (mainly) public databases, have promoted this rapid development. This narrative review of the current state-of-the-art aimed to survey current applications of AI in predicting survival in patients with brain tumors, with a focus on Magnetic Resonance Imaging (MRI). An extensive search was performed on PubMed and Google Scholar using a Boolean research query based on MeSH terms and restricting the search to the period between 2012 and 2022. Fifty studies were selected, mainly based on Machine Learning (ML), Deep Learning (DL), radiomics-based methods, and methods that exploit traditional imaging techniques for survival assessment. In addition, we focused on two distinct tasks related to survival assessment: the first on the classification of subjects into survival classes (short and long-term or eventually short, mid and long-term) to stratify patients in distinct groups. The second focused on quantification, in days or months, of the individual survival interval. Our survey showed excellent state-of-the-art methods for the first, with accuracy up to ∼98%. The latter task appears to be the most challenging, but state-of-the-art techniques showed promising results, albeit with limitations, with C-Index up to ∼0.91. In conclusion, according to the specific task, the available computational methods perform differently, and the choice of the best one to use is non-univocal and dependent on many aspects. Unequivocally, the use of features derived from quantitative imaging has been shown to be advantageous for AI applications, including survival prediction. This evidence from the literature motivates further research in the field of AI-powered methods for survival prediction in patients with brain tumors, in particular, using the wealth of information provided by quantitative MRI techniques.
Collapse
Affiliation(s)
- Christian di Noia
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum—University of Bologna, 40125 Bologna, Italy
| | - James T. Grist
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, UK
- Department of Radiology, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
- Oxford Centre for Clinical Magnetic Research Imaging, University of Oxford, Oxford OX3 9DU, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2SY, UK
| | - Frank Riemer
- Mohn Medical Imaging and Visualization Centre (MMIV), Department of Radiology, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Maria Lyasheva
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Miriana Fabozzi
- Centro Medico Polispecialistico (CMO), 80058 Torre Annunziata, Italy
| | - Mauro Castelli
- NOVA Information Management School (NOVA IMS), Universidade NOVA de Lisboa, Campus de Campolide, 1070-312 Lisboa, Portugal
| | - Raffaele Lodi
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum—University of Bologna, 40125 Bologna, Italy
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy
| | - Caterina Tonon
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum—University of Bologna, 40125 Bologna, Italy
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy
| | - Leonardo Rundo
- Department of Information and Electrical Engineering and Applied Mathematics, University of Salerno, 84084 Fisciano, Italy
| | - Fulvio Zaccagna
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum—University of Bologna, 40125 Bologna, Italy
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy
- Correspondence: ; Tel.: +39-0514969951
| |
Collapse
|
8
|
Zhu M, Li S, Kuang Y, Hill VB, Heimberger AB, Zhai L, Zhai S. Artificial intelligence in the radiomic analysis of glioblastomas: A review, taxonomy, and perspective. Front Oncol 2022; 12:924245. [PMID: 35982952 PMCID: PMC9379255 DOI: 10.3389/fonc.2022.924245] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
Radiological imaging techniques, including magnetic resonance imaging (MRI) and positron emission tomography (PET), are the standard-of-care non-invasive diagnostic approaches widely applied in neuro-oncology. Unfortunately, accurate interpretation of radiological imaging data is constantly challenged by the indistinguishable radiological image features shared by different pathological changes associated with tumor progression and/or various therapeutic interventions. In recent years, machine learning (ML)-based artificial intelligence (AI) technology has been widely applied in medical image processing and bioinformatics due to its advantages in implicit image feature extraction and integrative data analysis. Despite its recent rapid development, ML technology still faces many hurdles for its broader applications in neuro-oncological radiomic analysis, such as lack of large accessible standardized real patient radiomic brain tumor data of all kinds and reliable predictions on tumor response upon various treatments. Therefore, understanding ML-based AI technologies is critically important to help us address the skyrocketing demands of neuro-oncology clinical deployments. Here, we provide an overview on the latest advancements in ML techniques for brain tumor radiomic analysis, emphasizing proprietary and public dataset preparation and state-of-the-art ML models for brain tumor diagnosis, classifications (e.g., primary and secondary tumors), discriminations between treatment effects (pseudoprogression, radiation necrosis) and true progression, survival prediction, inflammation, and identification of brain tumor biomarkers. We also compare the key features of ML models in the realm of neuroradiology with ML models employed in other medical imaging fields and discuss open research challenges and directions for future work in this nascent precision medicine area.
Collapse
Affiliation(s)
- Ming Zhu
- Department of Electrical and Computer Engineering, University of Nevada Las Vegas, Las Vegas, NV, United States
| | - Sijia Li
- Kirk Kerkorian School of Medicine, University of Nevada Las Vegas, Las Vegas, NV, United States
| | - Yu Kuang
- Medical Physics Program, Department of Health Physics, University of Nevada Las Vegas, Las Vegas, NV, United States
| | - Virginia B. Hill
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Amy B. Heimberger
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Lijie Zhai
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- *Correspondence: Lijie Zhai, ; Shengjie Zhai,
| | - Shengjie Zhai
- Department of Electrical and Computer Engineering, University of Nevada Las Vegas, Las Vegas, NV, United States
- *Correspondence: Lijie Zhai, ; Shengjie Zhai,
| |
Collapse
|
9
|
Jian A, Liu S, Di Ieva A. Artificial Intelligence for Survival Prediction in Brain Tumors on Neuroimaging. Neurosurgery 2022; 91:8-26. [PMID: 35348129 DOI: 10.1227/neu.0000000000001938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 01/08/2022] [Indexed: 12/30/2022] Open
Abstract
Survival prediction of patients affected by brain tumors provides essential information to guide surgical planning, adjuvant treatment selection, and patient counseling. Current reliance on clinical factors, such as Karnofsky Performance Status Scale, and simplistic radiological characteristics are, however, inadequate for survival prediction in tumors such as glioma that demonstrate molecular and clinical heterogeneity with variable survival outcomes. Advances in the domain of artificial intelligence have afforded powerful tools to capture a large number of hidden high-dimensional imaging features that reflect abundant information about tumor structure and physiology. Here, we provide an overview of current literature that apply computational analysis tools such as radiomics and machine learning methods to the pipeline of image preprocessing, tumor segmentation, feature extraction, and construction of classifiers to establish survival prediction models based on neuroimaging. We also discuss challenges relating to the development and evaluation of such models and explore ethical issues surrounding the future use of machine learning predictions.
Collapse
Affiliation(s)
- Anne Jian
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
- Royal Melbourne Hospital, Melbourne, Australia
| | - Sidong Liu
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
- Centre for Health Informatics, Australian Institute of Health Innovation, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Antonio Di Ieva
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
10
|
Machine learning in neuro-oncology: toward novel development fields. J Neurooncol 2022; 159:333-346. [PMID: 35761160 DOI: 10.1007/s11060-022-04068-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/11/2022] [Indexed: 10/17/2022]
Abstract
PURPOSE Artificial Intelligence (AI) involves several and different techniques able to elaborate a large amount of data responding to a specific planned outcome. There are several possible applications of this technology in neuro-oncology. METHODS We reviewed, according to PRISMA guidelines, available studies adopting AI in different fields of neuro-oncology including neuro-radiology, pathology, surgery, radiation therapy, and systemic treatments. RESULTS Neuro-radiology presented the major number of studies assessing AI. However, this technology is being successfully tested also in other operative settings including surgery and radiation therapy. In this context, AI shows to significantly reduce resources and costs maintaining an elevated qualitative standard. Pathological diagnosis and development of novel systemic treatments are other two fields in which AI showed promising preliminary data. CONCLUSION It is likely that AI will be quickly included in some aspects of daily clinical practice. Possible applications of these techniques are impressive and cover all aspects of neuro-oncology.
Collapse
|