1
|
Laumann M, Palombo P, Fieres J, Thomas M, Saretzki G, Bürkle A, Moreno-Villanueva M. Senescence-like Phenotype After Chronic Exposure to Isoproterenol in Primary Quiescent Immune Cells. Biomolecules 2024; 14:1528. [PMID: 39766235 PMCID: PMC11673961 DOI: 10.3390/biom14121528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
Chronic stress is associated with a higher risk for carcinogenesis as well as age-related diseases and immune dysfunction. There is evidence showing that psychological stress can contribute to premature immunosenescence. Therefore, the question arose whether chronic exposure to catecholamine could drive immune cells into senescence. Peripheral blood mononuclear cells were isolated from whole blood. After repeated ex vivo treatment with isoproterenol, an epinephrine analog, well-established senescence biomarkers were assessed. We found (i) DNA double-strand break induction, (ii) telomere shortening, (iii) failure to proliferate, (iv) higher senescence-associated β-galactosidase activity, (v) decreases in caspases 3 and 7 activity, and (vi) strong upregulation of the proteoglycan versican accompanied by increased cellular adhesion suggesting the induction of a senescence-like phenotype. These results emphasize the complexity of the effect of isoproterenol on multiple cellular processes and provide insights into the molecular mechanisms of stress leading to immunosenescence.
Collapse
Affiliation(s)
- Michael Laumann
- Electron Microscopy Center, University of Konstanz, 78457 Konstanz, Germany;
| | - Philipp Palombo
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany; (P.P.); (J.F.); (M.T.); (A.B.)
| | - Judy Fieres
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany; (P.P.); (J.F.); (M.T.); (A.B.)
| | - Mara Thomas
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany; (P.P.); (J.F.); (M.T.); (A.B.)
| | - Gabriele Saretzki
- Biosciences Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne NE4 5PL, UK;
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany; (P.P.); (J.F.); (M.T.); (A.B.)
| | - Maria Moreno-Villanueva
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany; (P.P.); (J.F.); (M.T.); (A.B.)
- Human Performance Research Centre, Department of Sport Science, Box 30, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
2
|
Alsereidi FR, Khashim Z, Marzook H, Al-Rawi AM, Salomon T, Almansoori MK, Madkour MM, Hamam AM, Ramadan MM, Peterson QP, Saleh MA. Dapagliflozin mitigates cellular stress and inflammation through PI3K/AKT pathway modulation in cardiomyocytes, aortic endothelial cells, and stem cell-derived β cells. Cardiovasc Diabetol 2024; 23:388. [PMID: 39472869 PMCID: PMC11520772 DOI: 10.1186/s12933-024-02481-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
Dapagliflozin (DAPA), a sodium-glucose cotransporter 2 (SGLT2) inhibitor, is well-recognized for its therapeutic benefits in type 2 diabetes (T2D) and cardiovascular diseases. In this comprehensive in vitro study, we investigated DAPA's effects on cardiomyocytes, aortic endothelial cells (AECs), and stem cell-derived beta cells (SC-β), focusing on its impact on hypertrophy, inflammation, and cellular stress. Our results demonstrate that DAPA effectively attenuates isoproterenol (ISO)-induced hypertrophy in cardiomyocytes, reducing cell size and improving cellular structure. Mechanistically, DAPA mitigates reactive oxygen species (ROS) production and inflammation by activating the AKT pathway, which influences downstream markers of fibrosis, hypertrophy, and inflammation. Additionally, DAPA's modulation of SGLT2, the Na+/H + exchanger 1 (NHE1), and glucose transporter (GLUT 1) type 1 highlights its critical role in maintaining cellular ion balance and glucose metabolism, providing insights into its cardioprotective mechanisms. In aortic endothelial cells (AECs), DAPA exhibited notable anti-inflammatory properties by restoring AKT and phosphoinositide 3-kinase (PI3K) expression, enhancing mitogen-activated protein kinase (MAPK) activation, and downregulating inflammatory cytokines at both the gene and protein levels. Furthermore, DAPA alleviated tumor necrosis factor (TNFα)-induced inflammation and stress responses while enhancing endothelial nitric oxide synthase (eNOS) expression, suggesting its potential to preserve vascular function and improve endothelial health. Investigating SC-β cells, we found that DAPA enhances insulin functionality without altering cell identity, indicating potential benefits for diabetes management. DAPA also upregulated MAFA, PI3K, and NRF2 expression, positively influencing β-cell function and stress response. Additionally, it attenuated NLRP3 activation in inflammation and reduced NHE1 and glucose-regulated protein GRP78 expression, offering novel insights into its anti-inflammatory and stress-modulating effects. Overall, our findings elucidate the multifaceted therapeutic potential of DAPA across various cellular models, emphasizing its role in mitigating hypertrophy, inflammation, and cellular stress through the activation of the AKT pathway and other signaling cascades. These mechanisms may not only contribute to enhanced cardiac and endothelial function but also underscore DAPA's potential to address metabolic dysregulation in T2D.
Collapse
Affiliation(s)
- Fatmah R Alsereidi
- Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Emirates Health Services (EHS), Dubai, United Arab Emirates
| | - Zenith Khashim
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Hezlin Marzook
- Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Ahmed M Al-Rawi
- Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Tiana Salomon
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Mahra K Almansoori
- College of Medicine and Health Sciences, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | - Moustafa M Madkour
- Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Ahmed Mohamed Hamam
- Endocrinology and Metabolism Department, Armed Forces College of Medicine, Cairo, Egypt
| | - Mahmoud M Ramadan
- Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Cardiology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Quinn P Peterson
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Mohamed A Saleh
- Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates.
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
3
|
Perez-Bonilla P, LaViolette B, Bhandary B, Ullas S, Chen X, Hirenallur-Shanthappa D. Isoproterenol induced cardiac hypertrophy: A comparison of three doses and two delivery methods in C57BL/6J mice. PLoS One 2024; 19:e0307467. [PMID: 39038017 PMCID: PMC11262646 DOI: 10.1371/journal.pone.0307467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024] Open
Abstract
Heart Failure (HF) continues to be a complex public health issue with increasing world population prevalence. Although overall mortality has decreased for HF and hypertrophic cardiomyopathy (HCM), a precursor for HF, their prevalence continues to increase annually. Because the etiology of HF and HCM is heterogeneous, it has been difficult to identify novel therapies to combat these diseases. Isoproterenol (ISP), a non-selective β-adrenoreceptor agonist, is commonly used to induce cardiotoxicity and cause acute and chronic HCM and HF in mice. However, the variability in dose and duration of ISP treatment used in studies has made it difficult to determine the optimal combination of ISP dose and delivery method to develop a reliable ISP-induced mouse model for disease. Here we examined cardiac effects induced by ISP via subcutaneous (SQ) and SQ-minipump (SMP) infusions across 3 doses (2, 4, and 10mg/kg/day) over 2 weeks to determine whether SQ and SMP ISP delivery induced comparable disease severity in C57BL/6J mice. To assess disease, we measured body and heart weight, surface electrocardiogram (ECG), and echocardiography recordings. We found all 3 ISP doses comparably increase heart weight, but these increases are more pronounced when ISP was administered via SMP. We also found that the combination of ISP treatment and delivery method induces contrasting heart rate, RR interval, and R and S amplitudes that may place SMP treated mice at higher risk for sustained disease burden. Mice treated via SMP also had increased heart wall thickness and LV Mass, but mice treated via SQ showed greater increase in gene markers for hypertrophy and fibrosis. Overall, these data suggest that at 2 weeks, mice treated with 2, 4, or 10mg/kg/day ISP via SQ and SMP routes cause similar pathological heart phenotypes but highlight the importance of drug delivery method to induce differing disease pathways.
Collapse
Affiliation(s)
- Patricia Perez-Bonilla
- Global Discovery, Investigative & Translational Sciences–Animal Models and Imaging, Pfizer Inc, Cambridge, Massachusetts, United States of America
| | - Brianna LaViolette
- Global Discovery, Investigative & Translational Sciences–Animal Models and Imaging, Pfizer Inc, Cambridge, Massachusetts, United States of America
| | - Bidur Bhandary
- Rare Diseases Research Unit, Pfizer Inc, Cambridge, Massachusetts, United States of America
| | - Soumya Ullas
- Global Discovery, Investigative & Translational Sciences–Animal Models and Imaging, Pfizer Inc, Cambridge, Massachusetts, United States of America
| | - Xian Chen
- Global Discovery, Investigative & Translational Sciences–Animal Models and Imaging, Pfizer Inc, Cambridge, Massachusetts, United States of America
| | - Dinesh Hirenallur-Shanthappa
- Global Discovery, Investigative & Translational Sciences–Animal Models and Imaging, Pfizer Inc, Cambridge, Massachusetts, United States of America
| |
Collapse
|
4
|
Xu K, Lu G, Feng Q, Chen S, Wang Y. Hepatoprotective effect of protocatechuic acid against type 2 diabetes-induced liver injury. PHARMACEUTICAL BIOLOGY 2023; 61:737-745. [PMID: 37129023 PMCID: PMC10155631 DOI: 10.1080/13880209.2023.2181359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
CONTEXT Protocatechuic acid (PCA) has a protective effect on alcoholic liver injury, but the role of PCA in type 2 diabetes-induced liver injury is not well known. OBJECTIVES This study explores the therapeutic effect and potential mechanism of PCA on type 2 diabetes-induced liver injury. MATERIALS AND METHODS An insulin resistance/type 2 diabetic (IR/D) model was established by high-fat diet for 4 weeks + streptozotocin (35 mg/kg; i.p) in male Wistar rats pretreated with or without PCA (15 or 30 mg/kg for 6 d). RESULTS PCA at 15 and 30 mg/kg significantly upregulated the levels of body weight (BW; 230.2, 257.8 g), high density lipids (22.68, 34.78 mg/dL), glutathione (10.24, 16.21 nmol/mg), superoxide dismutase (21.62, 29.34 U/mg), glucagon-like peptide-1, glucose transporter-4, Wnt1, and β-catenin, while downregulating those of liver weight (LW; 9.4, 6.7 g), BW/LW (4.1, 2.6%), serum glucose (165, 120 mg/dL), serum insulin (13.46, 8.67 μIU/mL), homeostatic model assessment of insulin resistance (5.48, 2.57), total cholesterol (68.52, 54.31 mg/dL), triglycerides (72.15, 59.64 mg/dL), low density lipids (42.18, 30.71), aspartate aminotransferase (54.34 and 38.68 U/L), alanine aminotransferase (42.87, 29.98 U/L), alkaline phosphatase (210.16, 126.47 U/L), malondialdehyde (16.52, 10.35), pro-inflammatory markers (tumor necrosis factor α (TNF-α (149.67, 120.33 pg/mg)) , IL-6 (89.79, 73.69 pg/mg) and IL-1β (49.67, 38.73 pg/mg)), nuclear factor kappa B (NF-κB), and interleukin-1β, and ameliorated the abnormal pathological changes in IR/D rats. DISCUSSION AND CONCLUSION PCA mitigates the IR, lipid accumulation, oxidative stress, and inflammation in liver tissues of IR/D rats by modulating the NF-κB and Wnt1/β-catenin pathways.
Collapse
Affiliation(s)
- Kaixia Xu
- Basic Medical School, Shanxi University of Chinese Medicine, Shanxi Province, China
| | - Guang Lu
- Basic Medical School, Shanxi University of Chinese Medicine, Shanxi Province, China
| | - Qianjin Feng
- Basic Medical School, Shanxi University of Chinese Medicine, Shanxi Province, China
| | - Shuangchao Chen
- Basic Medical School, Shanxi University of Chinese Medicine, Shanxi Province, China
| | - Yonghui Wang
- Basic Medical School, Shanxi University of Chinese Medicine, Shanxi Province, China
| |
Collapse
|
5
|
Zhou Z, Liang S, Zou X, Teng Y, Wang W, Fu L. Determination of Phenolic Acids Using Ultra-High-Performance Liquid Chromatography Coupled with Triple Quadrupole (UHPLC-QqQ) in Fruiting Bodies of Sanghuangporus baumii (Pilát) L.W. Zhou and Y.C. Dai. PLANTS (BASEL, SWITZERLAND) 2023; 12:3565. [PMID: 37896027 PMCID: PMC10609702 DOI: 10.3390/plants12203565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023]
Abstract
Sanghuangporus, a medicinal mushroom, has gained significant attention due to its beneficial properties. Phenolic acids are among the major bioactive compounds in Sanghuangporus, known for their antioxidant and anti-inflammatory activities. To precisely quantify the phenolic acid content, we developed a method utilizing ultra-high-performance liquid chromatography with triple quadrupole (UHPLC-QqQ). This study optimized the UHPLC-QqQ conditions to simultaneously separate and detect eight phenolic acids in Sanghuangporus baumii (Pilát) L.W. Zhou and Y.C. Dai, including chlorogenic acid, p-coumaric acid, caffeic acid, cryptochlorogenic acid, protocatechuic acid, ferulic acid, sinapic acid, and syringic acid. The separation process utilized a ZORBAX Eclipse Plus C18 column using 0.01% formic acid and 2 mmol/L ammonium formate in water as the aqueous phase and methanol containing 0.01% formic acid and 2 mmol/L ammonium formate as the organic phase. Calibration curves were constructed using standard solutions to quantitatively determine the phenolic acid content. The results showed significant variation in phenolic acid content among S. baumii fruiting bodies, with Protocatechuic acid, p-coumaric acid, and caffeic acid being the most abundant. This method is valuable for quantifying phenolic acid compounds under different cultivation conditions. It provides excellent sensitivity, selectivity, and reproducibility for the quantification of phenolic acids in Sanghuangporus, contributing to a better understanding of its chemical composition and potential health benefits. This approach represents a novel technical means for the simultaneous analysis of compound phenolic acids in Sanghuangporus fruiting bodies.
Collapse
Affiliation(s)
- Zhongjing Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Z.Z.); (S.L.); (Y.T.)
| | - Shuang Liang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Z.Z.); (S.L.); (Y.T.)
| | - Xiaowei Zou
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 311402, China;
| | - Yi Teng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Z.Z.); (S.L.); (Y.T.)
| | - Weike Wang
- Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Lizhong Fu
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 311402, China;
| |
Collapse
|
6
|
Bai L, Han X, Kee HJ, He X, Kim SH, Jeon MJ, Zhou H, Jeong SM, Kee SJ, Jeong MH. Protocatechuic acid prevents isoproterenol-induced heart failure in mice by downregulating kynurenine-3-monooxygenase. J Cell Mol Med 2023; 27:2290-2307. [PMID: 37482908 PMCID: PMC10424289 DOI: 10.1111/jcmm.17869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/12/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023] Open
Abstract
Protocatechuic acid (3,4-dihydroxybenzoic acid) prevents oxidative stress, inflammation and cardiac hypertrophy. This study aimed to investigate the therapeutic effects of protocatechuic acid in an isoproterenol-induced heart failure mouse model and to identify the underlying mechanisms. To establish the heart failure model, C57BL/6NTac mice were given high-dose isoproterenol (80 mg/kg body weight) for 14 days. Echocardiography revealed that protocatechuic acid reversed the isoproterenol-induced downregulation of fractional shortening and ejection fraction. Protocatechuic acid attenuated cardiac hypertrophy as evidenced by the decreased heart-weight-to-body-weight ratio and the expression of Nppb. RNA sequencing analysis identified kynurenine-3-monooxygenase (Kmo) as a potential target of protocatechuic acid. Protocatechuic acid treatment or transfection with short-interfering RNA against Kmo ameliorated transforming growth factor β1-induced upregulation of Kmo, Col1a1, Col1a2 and Fn1 in vivo or in neonatal rat cardiac fibroblasts. Kmo knockdown attenuated the isoproterenol-induced increase in cardiomyocyte size, as well as Nppb and Col1a1 expression in H9c2 cells or primary neonatal rat cardiomyocytes. Moreover, protocatechuic acid attenuated Kmo overexpression-induced increases in Nppb mRNA levels. Protocatechuic acid or Kmo knockdown decreased isoproterenol-induced ROS generation in vivo and in vitro. Thus, protocatechuic acid prevents heart failure by downregulating Kmo. Therefore, protocatechuic acid and Kmo constitute a potential novel therapeutic agent and target, respectively, against heart failure.
Collapse
Affiliation(s)
- Liyan Bai
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea
- Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
- Emergency Critical Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xiongyi Han
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea
- Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
- Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, People's Republic of China
| | - Hae Jin Kee
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea
- Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Xiaonan He
- Emergency Critical Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Seong Hoon Kim
- Department of Parasitology and Tropical Medicine, Chonnam National University Medical School, Hwasun, Republic of Korea
| | - Mi Jin Jeon
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea
- Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Hongyan Zhou
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea
- Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Seong Min Jeong
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea
- Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Seung-Jung Kee
- Department of Laboratory Medicine, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Myung Ho Jeong
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea
- Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
- Department of Cardiology, Chonnam National University Medical School, Gwangju, Republic of Korea
| |
Collapse
|
7
|
Shafiee F, Safaeian L, Gorbani F. Protective effects of protocatechuic acid against doxorubicin- and arsenic trioxide-induced toxicity in cardiomyocytes. Res Pharm Sci 2023; 18:149-158. [PMID: 36873272 PMCID: PMC9976056 DOI: 10.4103/1735-5362.367794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/31/2022] [Accepted: 10/23/2022] [Indexed: 01/21/2023] Open
Abstract
Background and purpose Some chemotherapeutic drugs are associated with an increased risk of cardiotoxicity in patients. Protocatechuic acid (PCA) is a phenolic acid with valuable cardiovascular, chemo-preventive, and anticancer activities. Recent studies have shown the cardioprotective effects of PCA in several pathological conditions. This investigation aimed to assess the possible protective effects of PCA on cardiomyocytes against toxicities caused by anti-neoplastic agents, doxorubicin (DOX), and arsenic trioxide (ATO). Experimental approach H9C2 cells were exposed to DOX (1 μM) or ATO (35 μM) after 24 h pretreatment with PCA (1-100 μM). MTT and lactate dehydrogenase (LDH) tests were used to define cell viability or cytotoxicity. Total oxidant and antioxidant capacities were evaluated by measuring hydroperoxides and ferric-reducing antioxidant power (FRAP) levels. Expression of the TLR4 gene was also quantitatively estimated by real-time polymerase chain reaction. Findings/Results PCA showed a proliferative effect on cardiomyocytes and significantly enhanced cell viability and reduced cytotoxicity of DOX and ATO during MTT and LDH assays. Pretreatment of cardiomyocytes with PCA significantly decreased hydroperoxide levels and elevated FRAP value. Moreover, PCA meaningfully decreased TLR4 expression in DOX-and ATO-treated cardiomyocytes. Conclusions and implications In conclusion, antioxidant and cytoprotective activities were found for PCA versus toxicities caused by DOX and ATO in cardiomyocytes. However, further in vivo investigations are recommended to assess its clinical value for the prevention and treatment of cardiotoxicity induced by chemotherapeutic agents.
Collapse
Affiliation(s)
- Fatemeh Shafiee
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Leila Safaeian
- Department of Pharmacology and Toxicology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Fatemeh Gorbani
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
8
|
The role of SMAD signaling in hypertrophic obstructive cardiomyopathy: an immunohistopathological study in pediatric and adult patients. Sci Rep 2023; 13:3706. [PMID: 36878974 PMCID: PMC9988847 DOI: 10.1038/s41598-023-30776-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Hypertrophic obstructive cardiomyopathy (HOCM) can bring a high risk of sudden cardiac death in young people. It is particularly urgent to understand the development and mechanism of HOCM to prevent unsafe incidents. Here, the comparison between pediatric and adult patients with HOCM has been performed to uncover the signaling mechanism regulating pathological process through histopathological analysis and immunohistochemical analysis. We found SMAD proteins played an important role during myocardial fibrosis for HOCM patients. In patients with HOCM, Masson and HE staining showed that myocardial cells were diffusely hypertrophied with obvious disorganized myocardial fiber alignment, and myocardial tissue was more damaged and collagen fibers increased significantly, which come early in childhood. Increased expressions of SMAD2 and SMAD3 contributed to myocardial fibrosis in patients with HOCM, which happened early in childhood and continued through adulthood. In addition, decreased expression of SMAD7 was closely related to collagen deposition, which negatively expedited fibrotic responses in patients with HOCM. Our study indicated that the abnormal regulation of SMAD signaling pathway can lead to severe myocardial fibrosis in childhood and its fibrogenic effects persist into adulthood, which is a crucial factor in causing sudden cardiac death and heart failure in HOCM patients.
Collapse
|
9
|
Perrelli A, Ferraris C, Berni E, Glading AJ, Retta SF. KRIT1: A Traffic Warden at the Busy Crossroads Between Redox Signaling and the Pathogenesis of Cerebral Cavernous Malformation Disease. Antioxid Redox Signal 2023; 38:496-528. [PMID: 36047808 PMCID: PMC10039281 DOI: 10.1089/ars.2021.0263] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 12/18/2022]
Abstract
Significance: KRIT1 (Krev interaction trapped 1) is a scaffolding protein that plays a critical role in vascular morphogenesis and homeostasis. Its loss-of-function has been unequivocally associated with the pathogenesis of Cerebral Cavernous Malformation (CCM), a major cerebrovascular disease of genetic origin characterized by defective endothelial cell-cell adhesion and ensuing structural alterations and hyperpermeability in brain capillaries. KRIT1 contributes to the maintenance of endothelial barrier function by stabilizing the integrity of adherens junctions and inhibiting the formation of actin stress fibers. Recent Advances: Among the multiple regulatory mechanisms proposed so far, significant evidence accumulated over the past decade has clearly shown that the role of KRIT1 in the stability of endothelial barriers, including the blood-brain barrier, is largely based on its involvement in the complex machinery governing cellular redox homeostasis and responses to oxidative stress and inflammation. KRIT1 loss-of-function has, indeed, been demonstrated to cause an impairment of major redox-sensitive mechanisms involved in spatiotemporal regulation of cell adhesion and signaling, which ultimately leads to decreased cell-cell junction stability and enhanced sensitivity to oxidative stress and inflammation. Critical Issues: This review explores the redox mechanisms that influence endothelial cell adhesion and barrier function, focusing on the role of KRIT1 in such mechanisms. We propose that this supports a novel model wherein redox signaling forms the common link between the various pathogenetic mechanisms and therapeutic approaches hitherto associated with CCM disease. Future Directions: A comprehensive characterization of the role of KRIT1 in redox control of endothelial barrier physiology and defense against oxy-inflammatory insults will provide valuable insights into the development of precision medicine strategies. Antioxid. Redox Signal. 38, 496-528.
Collapse
Affiliation(s)
- Andrea Perrelli
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA
| | - Chiara Ferraris
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Elisa Berni
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Angela J. Glading
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA
| | - Saverio Francesco Retta
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| |
Collapse
|
10
|
Xiang Y, Huang R, Wang Y, Han S, Qin X, Li Z, Wang X, Han Y, Wang T, Xia B, Wu J, Yang G. Protocatechuic Acid Ameliorates High Fat Diet-Induced Obesity and Insulin Resistance in Mice. Mol Nutr Food Res 2023; 67:e2200244. [PMID: 36285395 DOI: 10.1002/mnfr.202200244] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/05/2022] [Indexed: 11/09/2022]
Abstract
SCOPE Insulin resistance is a common feature of obesity and type 2 diabetes and partly results from an imbalance between food intake and energy expenditure. Therefore, efficient and safe insulin resistance treatment therapies are warranted. This work is aim to access the impact of protocatechuic acid (PCA), a catechol-type O-diphenol phenolic acid, in high fat diet (HFD)-induced glucose, and lipid dysregulation. METHODS AND RESULTS Five-week-old male C57BL/6 mice are fed with HFD for 4 weeks and then are randomly divided into two cohorts: one cohort feed with HFD is free access to sterile water for 4 weeks, another cohort is free access to PCA-containing water (2.7 mM) for 4 weeks with HFD. In this study, using a hyperinsulinemic-euglycemic mouse clamp, it is showed that PCA-treated mice display improved systemic insulin resistance via enhanced fatty acid mobilization and utilization, thereby reducing ectopic lipid accumulation and promoting hepatic and peripheral insulin action. CONCLUSIONS This study provides insights on the potent pharmacological effects of PCA from food sources on improving high fat diet (HFD)-induced whole-body insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- Yuyao Xiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Ruolan Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Yongliang Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Shanshan Han
- Bio-Agriculture Institute of Shaanxi, Shaanxi Academy of Sciences, Xi'an, Shaanxi, 710000, P. R. China
| | - Xiaochen Qin
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Zhenzhen Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Xu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Yuqing Han
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Tao Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Bo Xia
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China.,Bio-Agriculture Institute of Shaanxi, Shaanxi Academy of Sciences, Xi'an, Shaanxi, 710000, P. R. China
| | - Jiangwei Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China.,Bio-Agriculture Institute of Shaanxi, Shaanxi Academy of Sciences, Xi'an, Shaanxi, 710000, P. R. China
| | - Gongshe Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| |
Collapse
|
11
|
Liu M, Li Z, Ouyang Y, Chen M, Guo X, Mazhar M, Kang J, Zhou H, Wu Q, Yang S. Material basis and integrative pharmacology of danshen decoction in the treatment of cardiovascular diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154503. [PMID: 36332387 DOI: 10.1016/j.phymed.2022.154503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Cardiovascular diseases (CVDs) are among the primary and predominant threats to human health with increasing incidence. Danshen Decoction (DSD) as an adjuvant therapy can benefit CVDs patients by improving clinical efficacy. PURPOSE The purpose of this study was to identify the active components and potential pharmacological mechanisms of DSD by combining mass spectrometry with a network pharmacology strategy and to review the use of DSD in the treatment of CVDs. METHOD First, the composition of DSD was analyzed by ultrahigh-performance liquid chromatography/tandem mass spectrometry (UHPLC-MS/MS). Second, the network pharmacology method was used to elucidate the underlying material basis and possible pharmacological mechanism of DSD for the treatment of CVDs. Finally, clinical and experimental studies on DSD in the past ten years were retrieved from the PubMed and CNKI database, and the content of these studies was used to summarize the latest progress in DSD treatment of CVDs. OUTCOME A total of 35 compounds were found in DSD by manual identification from the analysis of MS, which may be the material basis for the therapeutic effect of DSD. After taking the intersection of 2086 targets related to CVDs, these 35 compounds are considered to play a role in the treatment of CVDs through 210 targets including signal transducer and activator of transcription 3 (STAT3), sarcoma (SRC) and phosphoinositide-3-kinase regulatory subunit (PIK3R), and a total of 168 signaling pathways were involved in the regulation of CVDs by DSD, including PI3K-AKT signaling pathway, Alzheimer disease, and Rap1 signaling pathway. A total of 29 clinical studies using DSD in the treatment of CVDs were included in the literature review, and these studies showed the positive significance of DSD as adjuvant therapy, while 14 experimental studies included in the literature review also demonstrated the effectiveness of DSD in the treatment of CVDs. CONCLUSION DSD plays a role in the treatment of CVDs through a variety of active ingredients. Large-scale clinical research and more in-depth experimental research will help to further reveal the mechanism of DSD in the treatment of CVDs.
Collapse
Affiliation(s)
- Mengnan Liu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, PR China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, PR China; National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular Medicine, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, PR China
| | - Ziyi Li
- School of Clinical Medicine, Southwest Medical University, Luzhou 646000, PR China
| | - Yue Ouyang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, PR China
| | - Mingtai Chen
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, PR China; Department of Cardiovascular Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518000, PR China
| | - Xin Guo
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, PR China
| | - Maryam Mazhar
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, PR China
| | - Junli Kang
- School of Clinical Medicine, Southwest Medical University, Luzhou 646000, PR China
| | - Hua Zhou
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou 510000, PR China.
| | - Qibiao Wu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, PR China.
| | - Sijin Yang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, PR China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, PR China; National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular Medicine, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, PR China.
| |
Collapse
|
12
|
Wang J, Liu YM, Hu J, Chen C. Trained immunity in monocyte/macrophage: Novel mechanism of phytochemicals in the treatment of atherosclerotic cardiovascular disease. Front Pharmacol 2023; 14:1109576. [PMID: 36895942 PMCID: PMC9989041 DOI: 10.3389/fphar.2023.1109576] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/27/2023] [Indexed: 02/23/2023] Open
Abstract
Atherosclerosis (AS) is the pathology of atherosclerotic cardiovascular diseases (ASCVD), characterized by persistent chronic inflammation in the vessel wall, in which monocytes/macrophages play a key role. It has been reported that innate immune system cells can assume a persistent proinflammatory state after short stimulation with endogenous atherogenic stimuli. The pathogenesis of AS can be influenced by this persistent hyperactivation of the innate immune system, which is termed trained immunity. Trained immunity has also been implicated as a key pathological mechanism, leading to persistent chronic inflammation in AS. Trained immunity is mediated via epigenetic and metabolic reprogramming and occurs in mature innate immune cells and their bone marrow progenitors. Natural products are promising candidates for novel pharmacological agents that can be used to prevent or treat cardiovascular diseases (CVD). A variety of natural products and agents exhibiting antiatherosclerotic abilities have been reported to potentially interfere with the pharmacological targets of trained immunity. This review describes in as much detail as possible the mechanisms involved in trained immunity and how phytochemicals of this process inhibit AS by affecting trained monocytes/macrophages.
Collapse
Affiliation(s)
- Jie Wang
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, China
| | - Yong-Mei Liu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, China
| | - Jun Hu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, China
| | - Cong Chen
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, China
| |
Collapse
|
13
|
Farag MA, Hariri MLM, Ehab A, Homsi MN, Zhao C, von Bergen M. Cocoa seeds and chocolate products interaction with gut microbiota; mining microbial and functional biomarkers from mechanistic studies, clinical trials and 16S rRNA amplicon sequencing. Crit Rev Food Sci Nutr 2022; 64:3122-3138. [PMID: 36190306 DOI: 10.1080/10408398.2022.2130159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In recent years, gut microbiome has evolved as a focal point of interest with growing recognition that a well-balanced gut microbiota is highly relevant to an individual's health status. The present review provides a mechanistic insight on the effects of cocoa chemicals on the gut microbiome and further reveals in silico biomarkers, taxonomic and functional features that distinguish gut microbiome of cocoa consumers and controls by using 16S rRNA gene sequencing data. The polyphenols in cocoa can change the gut microbiota either by inhibiting the growth of pathogenic bacteria in the gut such as Clostridium perfringens or by increasing the growth of beneficial microbiota in the gut such as Lactobacillus and Bifidobacterium. This paper demonstrates the holistic effect of gut microbiota on cocoa chemicals and how it impacts human health. We present herein the first comprehensive review and analysis of how raw and roasted cocoa and its products can specifically influence gut homeostasis, and likewise, how microbiota metabolizes cocoa chemicals. In addition to that, our 16S rRNA amplicon sequencing analysis revealed that the flavone and flavonols metabolism, aminobenzoate degradation and fatty acid elongation pathways represent the three most important signatures of microbial functions associated with cocoa consumption.
Collapse
Affiliation(s)
- Mohamed A Farag
- Department of Pharmacognosy, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamad Louai M Hariri
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, New Cairo, Egypt
| | - Aya Ehab
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, New Cairo, Egypt
| | - Masun Nabhan Homsi
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Chao Zhao
- College of Marine Sciences, Fujian Agricultural and Forestry University, Fuzhou, China
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, China
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research, Leipzig, Germany
- Institute of Biochemistry, Life Science Faculty, University of Leipzig, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
14
|
Han X, Bai L, Kee HJ, Jeong MH. Syringic acid mitigates isoproterenol-induced cardiac hypertrophy and fibrosis by downregulating Ereg. J Cell Mol Med 2022; 26:4076-4086. [PMID: 35719043 PMCID: PMC9279583 DOI: 10.1111/jcmm.17449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/22/2022] [Accepted: 05/11/2022] [Indexed: 12/01/2022] Open
Abstract
Gallic acid has been reported to mitigate cardiac hypertrophy, fibrosis and arterial hypertension. The effects of syringic acid, a derivative of gallic acid, on cardiac hypertrophy and fibrosis have not been previously investigated. This study aimed to examine the effects of syringic acid on isoproterenol‐treated mice and cells. Syringic acid mitigated the isoproterenol‐induced upregulation of heart weight to bodyweight ratio, pathological cardiac remodelling and fibrosis in mice. Picrosirius red staining, quantitative real‐time polymerase chain reaction (qRT‐PCR) and Western blotting analyses revealed that syringic acid markedly downregulated collagen accumulation and fibrosis‐related factors, including Fn1. The results of RNA sequencing analysis of Ereg expression were verified using qRT‐PCR. Syringic acid or transfection with si‐Ereg mitigated the isoproterenol‐induced upregulation of Ereg, Myc and Ngfr. Ereg knockdown mitigated the isoproterenol‐induced upregulation of Nppb and Fn1 and enhancement of cell size. Mechanistically, syringic acid alleviated cardiac hypertrophy and fibrosis by downregulating Ereg. These results suggest that syringic acid is a potential therapeutic agent for cardiac hypertrophy and fibrosis.
Collapse
Affiliation(s)
- Xiongyi Han
- Heart Research Center of Chonnam National University Hospital, Gwangju, Korea.,Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Liyan Bai
- Heart Research Center of Chonnam National University Hospital, Gwangju, Korea.,Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Hae Jin Kee
- Heart Research Center of Chonnam National University Hospital, Gwangju, Korea.,Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Myung Ho Jeong
- Heart Research Center of Chonnam National University Hospital, Gwangju, Korea.,Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Korea.,Department of Cardiology, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
15
|
Li D, Long Y, Yu S, Shi A, Wan J, Wen J, Li X, Liu S, Zhang Y, Li N, Zheng C, Yang M, Shen L. Research Advances in Cardio-Cerebrovascular Diseases of Ligusticum chuanxiong Hort. Front Pharmacol 2022; 12:832673. [PMID: 35173614 PMCID: PMC8841966 DOI: 10.3389/fphar.2021.832673] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/28/2021] [Indexed: 12/22/2022] Open
Abstract
Cardio-cerebrovascular diseases (CVDs) are a serious threat to human health and account for 31% of global mortality. Ligusticum chuanxiong Hort. (CX) is derived from umbellifer plants. Its rhizome, leaves, and fibrous roots are similar in composition but have different contents. It has been used in Japanese, Korean, and other traditional medicine for over 2000 years. Currently, it is mostly cultivated and has high safety and low side effects. Due to the lack of a systematic summary of the efficacy of CX in the treatment of CVDs, this article describes the material basis, molecular mechanism, and clinical efficacy of CX, as well as its combined application in the treatment of CVDs, and has been summarized from the perspective of safety. In particular, the pharmacological effect of CX in the treatment of CVDs is highlighted from the point of view of its mechanism, and the complex mechanism network has been determined to improve the understanding of CX's multi-link and multi-target therapeutic effects, including anti-inflammatory, antioxidant, and endothelial cells. This article offers a new and modern perspective on the impact of CX on CVDs.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Long
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuang Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ai Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinyan Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoqiu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Songyu Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yulu Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuan Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ming Yang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Lin Shen
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|