1
|
Huang Y, Qiu F, Dziegielewska KM, Habgood MD, Saunders NR. Paracetamol, its metabolites, and their transfer between maternal circulation and fetal brain in mono- and combination therapies. Pharmacol Rep 2025; 77:474-489. [PMID: 39853479 PMCID: PMC11911254 DOI: 10.1007/s43440-024-00682-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 01/26/2025]
Abstract
BACKGROUND Due to its availability and perceived safety, paracetamol is recommended even during pregnancy and for neonates. It is used frequently alone or in combination with other drugs required for the treatment of various chronic conditions. The aim of this study was to investigate potential effects of drug interactions on paracetamol metabolism and its placental transfer and entry into the developing brain. METHODS Sprague Dawley rats at postnatal day P4, pregnant embryonic day E19 dams, and non-pregnant adult females were administered paracetamol (15 mg/kg) either as monotherapy or in combination with one of seven other drugs: cimetidine, digoxin, fluvoxamine, lamotrigine, lithium, olanzapine, valproate. Concentrations of parent paracetamol and its metabolites (paracetamol-glucuronide, paracetamol-glutathione, and paracetamol-sulfate) in plasma, cerebrospinal fluid (CSF) and brain were measured by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) and their entry into the brain, CSF and transfer across the placenta were estimated. RESULTS In monotherapy, concentration of parent paracetamol in plasma, CSF, and brain remained similar and at all ages brain entry was unrestricted. In combination therapies, CSF entry of paracetamol increased following co-treatment with olanzapine. Placental transfer of parent paracetamol remained unchanged, however, transfer of paracetamol-sulfate increased with lamotrigine co-administration. Acutely administered paracetamol was more extensively metabolized in adults compared to younger ages resulting in increased concentration of its metabolites with age. CONCLUSIONS Developmental changes in the apparent brain and CSF entry of paracetamol appear to be determined more by its metabolism, rather than by cellular control of its transfer across brain and placental barriers.
Collapse
Affiliation(s)
- Yifan Huang
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC, 3004, Australia.
| | - Fiona Qiu
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Katarzyna M Dziegielewska
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Mark D Habgood
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Norman R Saunders
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC, 3004, Australia
| |
Collapse
|
2
|
Kougias DG, Atillasoy E, Southall MD, Scialli AR, Ejaz S, Chu C, Jeminiwa BO, Massarsky A, Unice KM, Schaeffer TH, Kovochich M. A quantitative weight-of-evidence review of preclinical studies examining the potential developmental neurotoxicity of acetaminophen. Crit Rev Toxicol 2025:1-55. [PMID: 39982125 DOI: 10.1080/10408444.2024.2442344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/21/2024] [Accepted: 12/05/2024] [Indexed: 02/22/2025]
Abstract
Acetaminophen [paracetamol; N-acetyl-para-aminophenol (APAP)] is an antipyretic/analgesic commonly used in the treatment of fever and mild to moderate pain, headache, myalgia, and dysmenorrhea. Recent literature has questioned the safety of acetaminophen use during pregnancy, with an emphasis on whether exposure to the developing nervous system results in behavioral changes consistent with autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), and/or other cognitive deficits in the offspring. No previous review has used a fully detailed, quantitative weight-of-evidence (QWoE) approach to critically examine the preclinical acetaminophen data with regards to potential developmental neurotoxicity (DNT). Following regulatory guidance, a QWoE framework using prespecified scoring criteria was developed consistent with previous approaches to characterize potential adverse DNT outcomes with considerations for biological relevance of the response to adverse outcomes (outcome score) and the strength of methods and study design (methods score). Considerations for the methods score included (1) experimental design, (2) details/reliability of measurement(s), (3) data transparency, and (4) translational/methodological relevance. Considerations for the outcome score included response-related (1) statistical significance, (2) dose-response, (3) relevance/reliability/magnitude, (4) plausibility, and (5) translational relevance, including consideration of systemic toxicity/hepatotoxicity and therapeutic and/or non-systemically toxic doses and durations of use. Application of this QWoE framework to the 34 in vivo studies identified that assess the potential DNT of acetaminophen resulted in 188 QWoE entries documented across 11 DNT endpoints: social behavior, stereotypic behavior, behavioral rigidity, attention/impulsivity, hyperactivity, anxiety-like behavior, sensorimotor function, spatial learning/memory, nonspatial learning/memory, neuroanatomy, and neurotransmission. For each endpoint, the mean outcome score and methods score were calculated for total entries and for entries segregated by sex to assist in determining data quality and potential adversity. Informed by all 188 entries, the QWoE analysis demonstrated data of moderate quality showing no consistent evidence of DNT in male and female rodents following exposure to acetaminophen at therapeutic and/or nonsystemically toxic doses. Although some of the DNT endpoints (behavioral rigidity, attention/impulsivity, spatial learning/memory, neuroanatomy, and neurotransmission) generally displayed a more limited dataset and/or relatively lower data quality, similar conclusions were drawn based on results indicating a lack of biological relevance and reliability of reported adverse effects. Overall, this QWoE analysis on the preclinical in vivo data demonstrates no consistent evidence of adverse effects following developmental exposure to acetaminophen at therapeutic and/or non-systemically toxic doses on the structure and function of the nervous system, including neuroanatomical, neurotransmission, and behavioral endpoints.
Collapse
Affiliation(s)
| | - Evren Atillasoy
- Kenvue Medical Clinical and Safety Sciences, Fort Washington, PA, USA
| | | | - Anthony R Scialli
- Reproductive Toxicology Center, A Non-Profit Foundation, Washington, DC, USA
| | - Sadaff Ejaz
- Kenvue Medical Clinical and Safety Sciences, Skillman, NJ, USA
| | - Christopher Chu
- Kenvue Medical Clinical and Safety Sciences, Skillman, NJ, USA
| | | | | | | | | | | |
Collapse
|
3
|
Hercus JC, Salcedo Rubio DA, Osorio Nieto ME, Sturn MML, Keum C, Christians JK. The whole is lesser than the sum of its parts? Dissecting layer-enriched samples of rodent placenta is worth the effort. Placenta 2024; 157:76-80. [PMID: 39317518 DOI: 10.1016/j.placenta.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/14/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
Gene expression in the placenta, assessed by bulk RNA-seq, is a common method to explore placental function. Many rodent studies homogenize the entire placenta, and yet doing so may obscure differences within specific functional regions such as the labyrinth, junctional zone and decidua. Conversely, analysis of the whole placenta could generate apparent differences due to changes in composition (e.g., relative amounts of labyrinth vs junctional zone) rather than differential gene expression. We assess the value of dissecting and separately analysing the labyrinth and junctional zone/decidua by comparing RNA-seq results from the labyrinth, junctional zone/decidua combined, and whole placenta from an experiment examining effects of maternal food restriction and fetal sex in C57BL6/J mice at gestational day 17.5. The number of genes identified as differentially expressed in response to maternal food restriction was substantially higher in the labyrinth (910 genes), than in the junctional zone/decidua (50 genes), which in turn was slightly higher than in the whole placenta (3 genes). Only one gene was differentially expressed in all 3 tissue types, and 20 genes were differentially expressed in both the labyrinth and junctional zone/decidua. The larger number of differentially expressed genes in the labyrinth was due to both larger effect sizes and estimates of effect sizes having smaller standard errors. While dissection to obtain layer-enriched samples is slightly more time-consuming than collection of whole placenta and requires some practice, our results show that layer-enrichment is clearly worth the effort.
Collapse
Affiliation(s)
- Jess C Hercus
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada.
| | | | | | - Mackenzie M L Sturn
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada.
| | - Cheayeong Keum
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada.
| | - Julian K Christians
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada; Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada; British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada; Women's Health Research Institute, BC Women's Hospital and Health Centre, Vancouver, British Columbia, Canada.
| |
Collapse
|
4
|
Dai Y, He J, Chen X, Geng Y, Chen Z, Liu F, Li F, Wang Y, Mu X. Maternal administration of APAP induces angiogenesis disorders in mouse placenta via SOCS3/JAK1/STAT3 pathway. Reprod Toxicol 2024; 129:108668. [PMID: 39032760 DOI: 10.1016/j.reprotox.2024.108668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Acetaminophen (APAP, also known as paracetamol) is a commonly used antipyretic and analgesic that is considered safe to use during pregnancy. However, a growing body of research indicates that gestational administration of APAP increased the risk of neurodevelopmental, reproductive and genitourinary disorders in offspring, alongside impairments in placental development. Notably, over-dosed APAP exhibits direct toxicity to endothelial cells, but there is very limited research investigating the impact of APAP on placental angiogenesis, a gap we aim to address in this study. Pregnant mice were gavaged with APAP (15, 50 and 150 mg/kg/d) from embryonic day 11.5 (E11.5) to E13.5. Administration of 150 mg/kg/d APAP leads to low birth weight (LBW) of the offspring and disordered vascular structures within the labyrinthine (Lab) layer of the placenta. This disruption is accompanied by a significant increase in Suppressor of Cytokine Signaling 3 (SOCS3) level, a negative regulator of the Janus kinase signal transducer 1 and activator of the transcription 3 (JAK1/STAT3) signaling. Meanwhile, Human umbilical vein endothelial Cells (HUVECs) with the treatment of 3 mM APAP exhibited reduced cell viability, whereas 1 mM APAP significantly affected the proliferation, migration, invasion and angiogenic capacities of HUVECs. Further, SOCS3 was up-regulated in HUVECs, accompanied by inhibition of JAK1/STAT3 pathways. Knocking-down SOCS3 in HUVECs restored the nuclear translocation of STAT3 and efficiently promoted cellular capacity of tube formation. Overall, short-term maternal administration of overdosed APAP impairs angiogenic capacities of fetal endothelial cells via SOCS3/JAK1/STAT3 pathway in the mouse placenta. This study reveals that overdose of APAP during pregnancy may adversely affect placental angiogenesis, emphasizing the importance of adhering to the safe principles of smallest effective dose for the shortest required durations.
Collapse
Affiliation(s)
- Yuhan Dai
- College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Junlin He
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China
| | - Xuemei Chen
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China
| | - Yanqing Geng
- College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Zhuxiu Chen
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China
| | - Fangfei Liu
- College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Fangfang Li
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China
| | - Yingxiong Wang
- College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Xinyi Mu
- College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
5
|
Huang Y, Dziegielewska KM, Habgood MD, Qiu F, Leandro ACC, Callaghan PD, Curran JE, VandeBerg JL, Saunders NR. ABC Efflux Transporters and Solute Carriers in the Early Developing Brain of a Marsupial Monodelphis domestica (South American Gray Short-Tailed Opossum). J Comp Neurol 2024; 532:e25655. [PMID: 38980080 PMCID: PMC11257411 DOI: 10.1002/cne.25655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/28/2024] [Accepted: 06/19/2024] [Indexed: 07/10/2024]
Abstract
This study used a marsupial Monodelphis domestica, which is born very immature and most of its development is postnatal without placental protection. RNA-sequencing (RNA-Seq) was used to identify the expression of influx and efflux transporters (ATP-binding cassettes [ABCs] and solute carriers [SLCs]) and metabolizing enzymes in brains of newborn to juvenile Monodelphis. Results were compared to published data in the developing eutherian rat. To test the functionality of these transporters at similar ages, the entry of paracetamol (acetaminophen) into the brain and cerebrospinal fluid (CSF) was measured using liquid scintillation counting following a single administration of the drug along with its radiolabelled tracer [3H]. Drug permeability studies found that in Monodelphis, brain entry of paracetamol was already restricted at P5; it decreased further in the first week of life and then remained stable until the oldest age group tested (P110). Transcriptomic analysis of Monodelphis brain showed that expression of transporters and their metabolizing enzymes in early postnatal (P) pups (P0, P5, and P8) was relatively similar, but by P109, many more transcripts were identified. When transcriptomes of newborn Monodelphis brain and E19 rat brain and placenta were compared, several transporters present in the rat placenta were also found in the newborn Monodelphis brain. These were absent from E19 rat brain but were present in the adult rat brain. These data indicate that despite its extreme immaturity, the newborn Monodelphis brain may compensate for the lack of placental protection during early brain development by upregulating protective mechanisms, which in eutherian animals are instead present in the placenta.
Collapse
Affiliation(s)
- Yifan Huang
- Department of Neuroscience, Monash University, Melbourne, Victoria, 3004, Australia
| | | | - Mark D Habgood
- Department of Neuroscience, Monash University, Melbourne, Victoria, 3004, Australia
| | - Fiona Qiu
- Department of Neuroscience, Monash University, Melbourne, Victoria, 3004, Australia
| | - Ana CC Leandro
- Division of Human Genetics and South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, Texas 78520, USA
| | - Paul D Callaghan
- ANSTO – Australia’s Nuclear Science and Technology Organisation, New Illawarra Rd, Lucas Heights, NSW 2234, Australia
| | - Joanne E Curran
- Division of Human Genetics and South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, Texas 78520, USA
| | - John L VandeBerg
- Division of Human Genetics and South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, Texas 78520, USA
| | - Norman R Saunders
- Department of Neuroscience, Monash University, Melbourne, Victoria, 3004, Australia
| |
Collapse
|
6
|
Fitzpatrick G, Huang Y, Qiu F, Habgood MD, Medcalf RL, Ho H, Dziegielewska KM, Saunders NR. Entry of cannabidiol into the fetal, postnatal and adult rat brain. Cell Tissue Res 2024; 396:177-195. [PMID: 38366086 PMCID: PMC11055756 DOI: 10.1007/s00441-024-03867-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/22/2024] [Indexed: 02/18/2024]
Abstract
Cannabidiol is a major component of cannabis but without known psychoactive properties. A wide range of properties have been attributed to it, such as anti-inflammatory, analgesic, anti-cancer, anti-seizure and anxiolytic. However, being a fairly new compound in its purified form, little is known about cannabidiol brain entry, especially during development. Sprague Dawley rats at four developmental ages: embryonic day E19, postnatal day P4 and P12 and non-pregnant adult females were administered intraperitoneal cannabidiol at 10 mg/kg with [3H] labelled cannabidiol. To investigate the extent of placental transfer, the drug was injected intravenously into E19 pregnant dams. Levels of [3H]-cannabidiol in blood plasma, cerebrospinal fluid and brain were estimated by liquid scintillation counting. Plasma protein binding of cannabidiol was identified by polyacrylamide gel electrophoresis and its bound and unbound fractions measured by ultrafiltration. Using available RNA-sequencing datasets of E19 rat brain, choroid plexus and placenta, as well as P5 and adult brain and choroid plexus, expression of 13 main cannabidiol receptors was analysed. Results showed that cannabidiol rapidly entered both the developing and adult brains. Entry into CSF was more limited. Its transfer across the placenta was substantially restricted as only about 50% of maternal blood plasma cannabidiol concentration was detected in fetal plasma. Albumin was the main, but not exclusive, cannabidiol binding protein at all ages. Several transcripts for cannabidiol receptors were expressed in age- and tissue-specific manner indicating that cannabidiol may have different functional effects in the fetal compared to adult brain.
Collapse
Affiliation(s)
- Georgia Fitzpatrick
- Department of Neuroscience, Monash University, Melbourne, VIC, 3004, Australia
| | - Yifan Huang
- Department of Neuroscience, Monash University, Melbourne, VIC, 3004, Australia
| | - Fiona Qiu
- Department of Neuroscience, Monash University, Melbourne, VIC, 3004, Australia
| | - Mark D Habgood
- Department of Neuroscience, Monash University, Melbourne, VIC, 3004, Australia
| | - Robert L Medcalf
- Department of Neuroscience, Monash University, Melbourne, VIC, 3004, Australia
| | - Heidi Ho
- Department of Neuroscience, Monash University, Melbourne, VIC, 3004, Australia
| | | | - Norman R Saunders
- Department of Neuroscience, Monash University, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
7
|
Huang Y, Qiu F, Dziegielewska KM, Koehn LM, Habgood MD, Saunders NR. Effects of paracetamol/acetaminophen on the expression of solute carriers (SLCs) in late-gestation fetal rat brain, choroid plexus and the placenta. Exp Physiol 2024; 109:427-444. [PMID: 38059686 PMCID: PMC10988763 DOI: 10.1113/ep091442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023]
Abstract
Solute carriers (SLCs) regulate transfer of a wide range of molecules across cell membranes using facilitative or secondary active transport. In pregnancy, these transporters, expressed at the placental barrier, are important for delivery of nutrients to the fetus, whilst also limiting entry of potentially harmful substances, such as drugs. In the present study, RNA-sequencing analysis was used to investigate expression of SLCs in the fetal (embryonic day 19) rat brain, choroid plexus and placenta in untreated control animals and following maternal paracetamol treatment. In the treated group, paracetamol (15 mg/kg) was administered to dams twice daily for 5 days (from embryonic day 15 to 19). In untreated animals, overall expression of SLCs was highest in the placenta. In the paracetamol treatment group, expression of several SLCs was significantly different compared with control animals, with ion, amino acid, neurotransmitter and sugar transporters most affected. The number of SLC transcripts that changed significantly following treatment was the highest in the choroid plexus and lowest in the brain. All SLC transcripts that changed in the placenta following paracetamol treatment were downregulated. These results suggest that administration of paracetamol during pregnancy could potentially disrupt fetal nutrient homeostasis and affect brain development, resulting in major consequences for the neonate and extending into childhood.
Collapse
Affiliation(s)
- Yifan Huang
- Department of NeuroscienceMonash UniversityMelbourneVictoriaAustralia
| | - Fiona Qiu
- Department of NeuroscienceMonash UniversityMelbourneVictoriaAustralia
| | | | - Liam M. Koehn
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoriaAustralia
| | - Mark D. Habgood
- Department of NeuroscienceMonash UniversityMelbourneVictoriaAustralia
| | | |
Collapse
|
8
|
Spildrejorde M, Samara A, Sharma A, Leithaug M, Falck M, Modafferi S, Sundaram AY, Acharya G, Nordeng H, Eskeland R, Gervin K, Lyle R. Multi-omics approach reveals dysregulated genes during hESCs neuronal differentiation exposure to paracetamol. iScience 2023; 26:107755. [PMID: 37731623 PMCID: PMC10507163 DOI: 10.1016/j.isci.2023.107755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/30/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023] Open
Abstract
Prenatal paracetamol exposure has been associated with neurodevelopmental outcomes in childhood. Pharmacoepigenetic studies show differences in cord blood DNA methylation between unexposed and paracetamol-exposed neonates, however, causality and impact of long-term prenatal paracetamol exposure on brain development remain unclear. Using a multi-omics approach, we investigated the effects of paracetamol on an in vitro model of early human neurodevelopment. We exposed human embryonic stem cells undergoing neuronal differentiation with paracetamol concentrations corresponding to maternal therapeutic doses. Single-cell RNA-seq and ATAC-seq integration identified paracetamol-induced chromatin opening changes linked to gene expression. Differentially methylated and/or expressed genes were involved in neurotransmission and cell fate determination trajectories. Some genes involved in neuronal injury and development-specific pathways, such as KCNE3, overlapped with differentially methylated genes previously identified in cord blood associated with prenatal paracetamol exposure. Our data suggest that paracetamol may play a causal role in impaired neurodevelopment.
Collapse
Affiliation(s)
- Mari Spildrejorde
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Athina Samara
- Division of Clinical Paediatrics, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- Astrid Lindgren Children′s Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Ankush Sharma
- Department of Informatics, University of Oslo, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Magnus Leithaug
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Martin Falck
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Stefania Modafferi
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Arvind Y.M. Sundaram
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Ganesh Acharya
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Alfred Nobels Allé 8, SE-14152 Stockholm, Sweden
- Center for Fetal Medicine, Karolinska University Hospital, SE-14186 Stockholm, Sweden
| | - Hedvig Nordeng
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Pharmacoepidemiology and Drug Safety Research Group, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Ragnhild Eskeland
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kristina Gervin
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Pharmacoepidemiology and Drug Safety Research Group, Department of Pharmacy, University of Oslo, Oslo, Norway
- Division of Clinical Neuroscience, Department of Research and Innovation, Oslo University Hospital, Oslo, Norway
| | - Robert Lyle
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
9
|
Saunders NR, Dziegielewska KM, Fame RM, Lehtinen MK, Liddelow SA. The choroid plexus: a missing link in our understanding of brain development and function. Physiol Rev 2023; 103:919-956. [PMID: 36173801 PMCID: PMC9678431 DOI: 10.1152/physrev.00060.2021] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 09/01/2022] [Accepted: 09/17/2022] [Indexed: 11/22/2022] Open
Abstract
Studies of the choroid plexus lag behind those of the more widely known blood-brain barrier, despite a much longer history. This review has two overall aims. The first is to outline long-standing areas of research where there are unanswered questions, such as control of cerebrospinal fluid (CSF) secretion and blood flow. The second aim is to review research over the past 10 years where the focus has shifted to the idea that there are choroid plexuses located in each of the brain's ventricles that make specific contributions to brain development and function through molecules they generate for delivery via the CSF. These factors appear to be particularly important for aspects of normal brain growth. Most research carried out during the twentieth century dealt with the choroid plexus, a brain barrier interface making critical contributions to the composition and stability of the brain's internal environment throughout life. More recent research in the twenty-first century has shown the importance of choroid plexus-generated CSF in neurogenesis, influence of sex and other hormones on choroid plexus function, and choroid plexus involvement in circadian rhythms and sleep. The advancement of technologies to facilitate delivery of brain-specific therapies via the CSF to treat neurological disorders is a rapidly growing area of research. Conversely, understanding the basic mechanisms and implications of how maternal drug exposure during pregnancy impacts the developing brain represents another key area of research.
Collapse
Affiliation(s)
- Norman R Saunders
- Department of Neuroscience, The Alfred Centre, Monash University, Melbourne, Victoria, Australia
| | | | - Ryann M Fame
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, New York
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, New York
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, New York
- Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, New York
| |
Collapse
|
10
|
Huang Y, Qiu F, Habgood M, Nie S, Dziegielewska K, Saunders N. Entry of the antipsychotic drug, olanzapine, into the developing rat brain in mono- and combination therapies. F1000Res 2022; 11:1417. [PMID: 36798113 PMCID: PMC9925881 DOI: 10.12688/f1000research.128074.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Background: Olanzapine is used to treat schizophrenia and bipolar disorder in women of childbearing age. Continuation of psychotropic medications throughout pregnancy and lactation is often required as cessation could be dangerous for both mother and child. However, there is a lack of information on the transfer of these drugs into the developing brain. Methods: Sprague Dawley rats at three developmental ages: embryonic day E19, postnatal day P4 and non-pregnant adult females were administered unlabelled or radiolabelled ( 3H) olanzapine (0.15 mg/kg) either as monotherapy or in combination with each of seven other common medications. Similar injections were administered to pregnant E19 females to investigate placental transfer. Olanzapine in plasma, cerebrospinal fluid (CSF) and brain was measured by liquid scintillation counting after a single dose (acute) or following 5 days of treatment (prolonged). Results: Olanzapine entry into brain and CSF was not age-dependent. Prolonged olanzapine treatment reduced placental transfer from 53% to 46% (p<0.05). Co-administration of digoxin or lamotrigine with olanzapine increased its entry into the fetal brain, whereas paracetamol decreased its entry into the CSF. Placental transfer of olanzapine was increased by co-treatment with cimetidine and digoxin, whereas co-treatment with lamotrigine, paracetamol or valproate led to a substantial decrease. Repeated co-treatment of digoxin and olanzapine increased olanzapine transfer into the brain and CSF, but not across the placenta. Overall entry of olanzapine from maternally administered drugs into the fetal brain was higher after combination therapy with cimetidine and digoxin. Conclusions: Co-administration of olanzapine with some commonly used drugs affected its entry into the fetus and its developing brain to a greater extent than in adults. It appears that protection of the fetal brain for these drugs primarily comes from the placenta rather than from the fetal brain barriers. Results suggest that drug combinations should be used with caution particularly during pregnancy.
Collapse
Affiliation(s)
- Yifan Huang
- Department of Neuroscience, Monash University, Melbourne, Victoria, 3004, Australia.,Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Fiona Qiu
- Department of Neuroscience, Monash University, Melbourne, Victoria, 3004, Australia
| | - Mark Habgood
- Department of Neuroscience, Monash University, Melbourne, Victoria, 3004, Australia.,Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Shuai Nie
- Melbourne Mass Spectrometry and Proteomics Facility, Bio 21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Katarzyna Dziegielewska
- Department of Neuroscience, Monash University, Melbourne, Victoria, 3004, Australia.,Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Norman Saunders
- Department of Neuroscience, Monash University, Melbourne, Victoria, 3004, Australia
| |
Collapse
|