1
|
Mattsson-Carlgren N. Disentangling genetic risks for development and progression of Alzheimer's disease. Brain 2024; 147:2604-2606. [PMID: 39018494 PMCID: PMC11292895 DOI: 10.1093/brain/awae237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024] Open
Abstract
This scientific commentary refers to ‘Towards cascading genetic risk in Alzheimer’s disease’ by Altmann et al. (https://doi.org/10.1093/brain/awae176).
Collapse
Affiliation(s)
- Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 20502 Malmö, Sweden
- Department of Neurology, Skåne University Hospital, Lund University, 22185 Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, 22184 Lund, Sweden
| |
Collapse
|
2
|
Narasimhan S, Holtzman DM, Apostolova LG, Cruchaga C, Masters CL, Hardy J, Villemagne VL, Bell J, Cho M, Hampel H. Apolipoprotein E in Alzheimer's disease trajectories and the next-generation clinical care pathway. Nat Neurosci 2024; 27:1236-1252. [PMID: 38898183 DOI: 10.1038/s41593-024-01669-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 04/18/2024] [Indexed: 06/21/2024]
Abstract
Alzheimer's disease (AD) is a complex, progressive primary neurodegenerative disease. Since pivotal genetic studies in 1993, the ε4 allele of the apolipoprotein E gene (APOE ε4) has remained the strongest single genome-wide associated risk variant in AD. Scientific advances in APOE biology, AD pathophysiology and ApoE-targeted therapies have brought APOE to the forefront of research, with potential translation into routine AD clinical care. This contemporary Review will merge APOE research with the emerging AD clinical care pathway and discuss APOE genetic risk as a conduit to genomic-based precision medicine in AD, including ApoE's influence in the ATX(N) biomarker framework of AD. We summarize the evidence for APOE as an important modifier of AD clinical-biological trajectories. We then illustrate the utility of APOE testing and the future of ApoE-targeted therapies in the next-generation AD clinical-diagnostic pathway. With the emergence of new AD therapies, understanding how APOE modulates AD pathophysiology will become critical for personalized AD patient care.
Collapse
Affiliation(s)
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight ADRC, Washington University in St. Louis, St. Louis, MO, USA
| | - Liana G Apostolova
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Radiology and Imaging Neurosciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Colin L Masters
- Florey Institute and the University of Melbourne, Parkville, Victoria, Australia
| | - John Hardy
- Department of Neurodegenerative Disease and Dementia Research Institute, Reta Lila Weston Research Laboratories, UCL Institute of Neurology, Queen Square, London, UK
| | | | | | | | | |
Collapse
|
3
|
Arrotta K, Ferguson L, Thompson N, Smuk V, Najm IM, Leu C, Lal D, Busch RM. Polygenic burden and its association with baseline cognitive function and postoperative cognitive outcome in temporal lobe epilepsy. Epilepsy Behav 2024; 153:109692. [PMID: 38394790 DOI: 10.1016/j.yebeh.2024.109692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/29/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024]
Abstract
OBJECTIVE Demographic and disease factors are associated with cognitive deficits and postoperative cognitive declines in adults with pharmacoresistant temporal lobe epilepsy (TLE), but the role of genetic factors in cognition in TLE is not well understood. Polygenic scores (PGS) for neurological and neuropsychiatric disorders and IQ have been associated with cognition in patient and healthy populations. In this exploratory study, we examined the relationship between PGS for Alzheimer's disease (AD), depression, and IQ and cognitive outcomes in adults with TLE. METHODS 202 adults with pharmacoresistant TLE had genotyping and completed neuropsychological evaluations as part of a presurgical work-up. A subset (n = 116) underwent temporal lobe resection and returned for postoperative cognitive testing. Logistic regression was used to determine if PGS for AD, depression, and IQ predicted baseline domain-specific cognitive function and cognitive phenotypes as well as postoperative language and memory decline. RESULTS No significant findings survived correction for multiple comparisons. Prior to correction, higher PGS for AD and depression (i.e., increased genetic risk for the disorder), but lower PGS for IQ (i.e., decreased genetic likelihood of high IQ) appeared possibly associated with baseline cognitive impairment in TLE. In comparison, higher PGS for AD and IQ appeared as possible risk factors for cognitive decline following temporal lobectomy, while the possible relationship between PGS for depression and post-operative cognitive outcome was mixed. SIGNIFICANCE We did not observe any relationships of large effect between PGS and cognitive function or postsurgical outcome; however, results highlight several promising trends in the data that warrant future investigation in larger samples better powered to detect small genetic effects.
Collapse
Affiliation(s)
- Kayela Arrotta
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA; Departments of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Lisa Ferguson
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Nicolas Thompson
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Victoria Smuk
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Imad M Najm
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA; Departments of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Costin Leu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK.
| | - Dennis Lal
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and M.I.T., Cambridge, MA, USA.
| | - Robyn M Busch
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA; Departments of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
4
|
Sekimitsu S, Shweikh Y, Shareef S, Zhao Y, Elze T, Segrè A, Wiggs J, Zebardast N. Association of retinal optical coherence tomography metrics and polygenic risk scores with cognitive function and future cognitive decline. Br J Ophthalmol 2024; 108:599-606. [PMID: 36990674 DOI: 10.1136/bjo-2022-322762] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/15/2023] [Indexed: 03/31/2023]
Abstract
PURPOSE To evaluate the potential of retinal optical coherence tomography (OCT) measurements and polygenic risk scores (PRS) to identify people at risk of cognitive impairment. METHODS Using OCT images from 50 342 UK Biobank participants, we examined associations between retinal layer thickness and genetic risk for neurodegenerative disease and combined these metrics with PRS to predict baseline cognitive function and future cognitive deterioration. Multivariate Cox proportional hazard models were used to predict cognitive performance. P values for retinal thickness analyses are false-discovery-rate-adjusted. RESULTS Higher Alzheimer's disease PRS was associated with a thicker inner nuclear layer (INL), chorio-scleral interface (CSI) and inner plexiform layer (IPL) (all p<0.05). Higher Parkinson's disease PRS was associated with thinner outer plexiform layer (p<0.001). Worse baseline cognitive performance was associated with thinner retinal nerve fibre layer (RNFL) (aOR=1.038, 95% CI (1.029 to 1.047), p<0.001) and photoreceptor (PR) segment (aOR=1.035, 95% CI (1.019 to 1.051), p<0.001), ganglion cell complex (aOR=1.007, 95% CI (1.002 to 1.013), p=0.004) and thicker ganglion cell layer (aOR=0.981, 95% CI (0.967 to 0.995), p=0.009), IPL (aOR=0.976, 95% CI (0.961 to 0.992), p=0.003), INL (aOR=0.923, 95% CI (0.905 to 0.941), p<0.001) and CSI (aOR=0.998, 95% CI (0.997 to 0.999), p<0.001). Worse future cognitive performance was associated with thicker IPL (aOR=0.945, 95% CI (0.915 to 0.999), p=0.045) and CSI (aOR=0.996, 95% CI (0.993 to 0.999) 95% CI, p=0.014). Prediction of cognitive decline was significantly improved with the addition of PRS and retinal measurements. CONCLUSIONS AND RELEVANCE Retinal OCT measurements are significantly associated with genetic risk of neurodegenerative disease and may serve as biomarkers predictive of future cognitive impairment.
Collapse
Affiliation(s)
| | - Yusrah Shweikh
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
- Sussex Eye Hospital, University Hospitals Sussex NHS Foundation Trust, Sussex, UK
| | - Sarah Shareef
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Yan Zhao
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Tobias Elze
- Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Ayellet Segrè
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Janey Wiggs
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Nazlee Zebardast
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Arvidsson I, Strandberg O, Palmqvist S, Stomrud E, Cullen N, Janelidze S, Tideman P, Heyden A, Åström K, Hansson O, Mattsson-Carlgren N. Comparing a pre-defined versus deep learning approach for extracting brain atrophy patterns to predict cognitive decline due to Alzheimer's disease in patients with mild cognitive symptoms. Alzheimers Res Ther 2024; 16:61. [PMID: 38504336 PMCID: PMC10949809 DOI: 10.1186/s13195-024-01428-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/10/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND Predicting future Alzheimer's disease (AD)-related cognitive decline among individuals with subjective cognitive decline (SCD) or mild cognitive impairment (MCI) is an important task for healthcare. Structural brain imaging as measured by magnetic resonance imaging (MRI) could potentially contribute when making such predictions. It is unclear if the predictive performance of MRI can be improved using entire brain images in deep learning (DL) models compared to using pre-defined brain regions. METHODS A cohort of 332 individuals with SCD/MCI were included from the Swedish BioFINDER-1 study. The goal was to predict longitudinal SCD/MCI-to-AD dementia progression and change in Mini-Mental State Examination (MMSE) over four years. Four models were evaluated using different predictors: (1) clinical data only, including demographics, cognitive tests and APOE ε4 status, (2) clinical data plus hippocampal volume, (3) clinical data plus all regional MRI gray matter volumes (N = 68) extracted using FreeSurfer software, (4) a DL model trained using multi-task learning with MRI images, Jacobian determinant images and baseline cognition as input. A double cross-validation scheme, with five test folds and for each of those ten validation folds, was used. External evaluation was performed on part of the ADNI dataset, including 108 patients. Mann-Whitney U-test was used to determine statistically significant differences in performance, with p-values less than 0.05 considered significant. RESULTS In the BioFINDER cohort, 109 patients (33%) progressed to AD dementia. The performance of the clinical data model for prediction of progression to AD dementia was area under the curve (AUC) = 0.85 and four-year cognitive decline was R2 = 0.14. The performance was improved for both outcomes when adding hippocampal volume (AUC = 0.86, R2 = 0.16). Adding FreeSurfer brain regions improved prediction of four-year cognitive decline but not progression to AD (AUC = 0.83, R2 = 0.17), while the DL model worsened the performance for both outcomes (AUC = 0.84, R2 = 0.08). A sensitivity analysis showed that the Jacobian determinant image was more informative than the MRI image, but that performance was maximized when both were included. In the external evaluation cohort from ADNI, 23 patients (21%) progressed to AD dementia. The results for predicted progression to AD dementia were similar to the results for the BioFINDER test data, while the performance for the cognitive decline was deteriorated. CONCLUSIONS The DL model did not significantly improve the prediction of clinical disease progression in AD, compared to regression models with a single pre-defined brain region.
Collapse
Affiliation(s)
- Ida Arvidsson
- Centre for Mathematical Sciences, Lund University, Lund, Sweden.
| | - Olof Strandberg
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Nicholas Cullen
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
| | - Pontus Tideman
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Anders Heyden
- Centre for Mathematical Sciences, Lund University, Lund, Sweden
| | - Karl Åström
- Centre for Mathematical Sciences, Lund University, Lund, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden.
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.
- Department of Neurology, Skåne University Hospital, Lund, Sweden.
| |
Collapse
|
6
|
Arvidsson I, Strandberg O, Palmqvist S, Stomrud E, Cullen N, Janelidze S, Tideman P, Heyden A, Åström K, Hansson O, Mattsson-Carlgren N. Comparing a pre-defined versus deep learning approach for extracting brain atrophy patterns to predict cognitive decline due to Alzheimer's disease in patients with mild cognitive symptoms. RESEARCH SQUARE 2023:rs.3.rs-3569391. [PMID: 37986841 PMCID: PMC10659533 DOI: 10.21203/rs.3.rs-3569391/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Background Predicting future Alzheimer's disease (AD)-related cognitive decline among individuals with subjective cognitive decline (SCD) or mild cognitive impairment (MCI) is an important task for healthcare. Structural brain imaging as measured by magnetic resonance imaging (MRI) could potentially contribute when making such predictions. It is unclear if the predictive performance of MRI can be improved using entire brain images in deep learning (DL) models compared to using pre-defined brain regions. Methods A cohort of 332 individuals with SCD/MCI were included from the Swedish BioFINDER-1 study. The goal was to predict longitudinal SCD/MCI-to-AD dementia progression and change in Mini-Mental State Examination (MMSE) over four years. Four models were evaluated using different predictors: 1) clinical data only, including demographics, cognitive tests and APOE e4 status, 2) clinical data plus hippocampal volume, 3) clinical data plus all regional MRI gray matter volumes (N=68) extracted using FreeSurfer software, 4) a DL model trained using multi-task learning with MRI images, Jacobian determinant images and baseline cognition as input. Models were developed on 80% of subjects (N=267) and tested on the remaining 20% (N=65). Mann-Whitney U-test was used to determine statistically significant differences in performance, with p-values less than 0.05 considered significant. Results In the test set, 21 patients (32.3%) progressed to AD dementia. The performance of the clinical data model for prediction of progression to AD dementia was area under the curve (AUC)=0.87 and four-year cognitive decline was R2=0.17. The performance was significantly improved for both outcomes when adding hippocampal volume (AUC=0.91, R2=0.26, p-values <0.05) or FreeSurfer brain regions (AUC=0.90, R2=0.27, p-values <0.05). Conversely, the DL model did not show any significant difference from the clinical data model (AUC=0.86, R2=0.13). A sensitivity analysis showed that the Jacobian determinant image was more informative than the MRI image, but that performance was maximized when both were included. Conclusions The DL model did not significantly improve the prediction of clinical disease progression in AD, compared to regression models with a single pre-defined brain region.
Collapse
|
7
|
Vasiljevic E, Koscik RL, Jonaitis E, Betthauser T, Johnson SC, Engelman CD. Cognitive trajectories diverge by genetic risk in a preclinical longitudinal cohort. Alzheimers Dement 2023; 19:3108-3118. [PMID: 36723444 PMCID: PMC10390653 DOI: 10.1002/alz.12920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 02/02/2023]
Abstract
INTRODUCTION We sought to characterize the timing of changes in cognitive trajectories related to genetic risk using the apolipoprotein E (APOE) score, a continuous measure of Alzheimer's disease (AD) risk. We also aimed to determine whether that timing was different when genetic risk was measured using an AD polygenic risk score (PRS) that contains APOE. METHODS We analyzed trajectories (N ≈1135) for four neuropsychological composite scores using mixed effects regression for longitudinal change across APOE scores and PRS of participants in the Wisconsin Registry for Alzheimer's Prevention, a longitudinal study of adults aged 40 to 70 at baseline, with a median participant follow-up time of 7.8 years. RESULTS We found a significant non-linear age-by-APOE score interaction in predicting cognitive decline. Cognitive trajectories diverged by APOE score at approximately 65 years of age. A 0.5 standard deviation difference in cognition between extreme percentiles of the PRS was predicted to occur 1 to 2 years before that of the APOE score. DISCUSSION Cognitive decline differs across time and APOE score. Estimates did not substantially shift with the AD PRS. HIGHLIGHTS The apolipoprotein E (APOE) score, a continuous measure, accounts for non-linear genetic risk of Alzheimer's disease. Non-linear age interacts with the APOE score to affect cognition. Cognitive decline starts to differ by APOE score levels at approximately age 65. Cognitive decline timing by polygenic risk (including APOE) is similar to APOE alone.
Collapse
Affiliation(s)
- Eva Vasiljevic
- Department of Population Health Sciences, University of Wisconsin School of Medicine and Public Health, 610 Walnut Dr., Madison, WI 53726, USA
- Center for Demography of Health and Aging, University of Wisconsin-Madison, 1180 Observatory Drive Madison, WI 53706, USA
| | - Rebecca Langhough Koscik
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, 610 Walnut Street, 9th Floor, Madison, WI 53726, USA
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, MC 2420, Madison, Wisconsin 53792, USA
| | - Erin Jonaitis
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, 610 Walnut Street, 9th Floor, Madison, WI 53726, USA
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, MC 2420, Madison, Wisconsin 53792, USA
| | - Tobey Betthauser
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, MC 2420, Madison, Wisconsin 53792, USA
- Department of Medicine, University of Wisconsin-Madison, 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI 53705, USA
| | - Sterling C. Johnson
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, 610 Walnut Street, 9th Floor, Madison, WI 53726, USA
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, MC 2420, Madison, Wisconsin 53792, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, 2500 Overlook Terrace, Madison, WI 53705, USA
| | - Corinne D. Engelman
- Department of Population Health Sciences, University of Wisconsin School of Medicine and Public Health, 610 Walnut Dr., Madison, WI 53726, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, 610 Walnut Street, 9th Floor, Madison, WI 53726, USA
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, MC 2420, Madison, Wisconsin 53792, USA
| |
Collapse
|
8
|
Pettigrew C, Nazarovs J, Soldan A, Singh V, Wang J, Hohman T, Dumitrescu L, Libby J, Kunkle B, Gross AL, Johnson S, Lu Q, Engelman C, Masters CL, Maruff P, Laws SM, Morris JC, Hassenstab J, Cruchaga C, Resnick SM, Kitner-Triolo MH, An Y, Albert M. Alzheimer's disease genetic risk and cognitive reserve in relationship to long-term cognitive trajectories among cognitively normal individuals. Alzheimers Res Ther 2023; 15:66. [PMID: 36978190 PMCID: PMC10045505 DOI: 10.1186/s13195-023-01206-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/12/2023] [Indexed: 03/30/2023]
Abstract
BACKGROUND Both Alzheimer's disease (AD) genetic risk factors and indices of cognitive reserve (CR) influence risk of cognitive decline, but it remains unclear whether they interact. This study examined whether a CR index score modifies the relationship between AD genetic risk factors and long-term cognitive trajectories in a large sample of individuals with normal cognition. METHODS Analyses used data from the Preclinical AD Consortium, including harmonized data from 5 longitudinal cohort studies. Participants were cognitively normal at baseline (M baseline age = 64 years, 59% female) and underwent 10 years of follow-up, on average. AD genetic risk was measured by (i) apolipoprotein-E (APOE) genetic status (APOE-ε2 and APOE-ε4 vs. APOE-ε3; N = 1819) and (ii) AD polygenic risk scores (AD-PRS; N = 1175). A CR index was calculated by combining years of education and literacy scores. Longitudinal cognitive performance was measured by harmonized factor scores for global cognition, episodic memory, and executive function. RESULTS In mixed-effects models, higher CR index scores were associated with better baseline cognitive performance for all cognitive outcomes. APOE-ε4 genotype and AD-PRS that included the APOE region (AD-PRSAPOE) were associated with declines in all cognitive domains, whereas AD-PRS that excluded the APOE region (AD-PRSw/oAPOE) was associated with declines in executive function and global cognition, but not memory. There were significant 3-way CR index score × APOE-ε4 × time interactions for the global (p = 0.04, effect size = 0.16) and memory scores (p = 0.01, effect size = 0.22), indicating the negative effect of APOE-ε4 genotype on global and episodic memory score change was attenuated among individuals with higher CR index scores. In contrast, levels of CR did not attenuate APOE-ε4-related declines in executive function or declines associated with higher AD-PRS. APOE-ε2 genotype was unrelated to cognition. CONCLUSIONS These results suggest that APOE-ε4 and non-APOE-ε4 AD polygenic risk are independently associated with global cognitive and executive function declines among individuals with normal cognition at baseline, but only APOE-ε4 is associated with declines in episodic memory. Importantly, higher levels of CR may mitigate APOE-ε4-related declines in some cognitive domains. Future research is needed to address study limitations, including generalizability due to cohort demographic characteristics.
Collapse
Affiliation(s)
- Corinne Pettigrew
- Johns Hopkins University School of Medicine, 1600 McElderry St, Baltimore, MD, 21205, USA.
| | - Jurijs Nazarovs
- University of Wisconsin-Madison School of Medicine and Public Health, 750 Highland Ave, Madison, WI, 53726, USA
| | - Anja Soldan
- Johns Hopkins University School of Medicine, 1600 McElderry St, Baltimore, MD, 21205, USA
| | - Vikas Singh
- University of Wisconsin-Madison School of Medicine and Public Health, 750 Highland Ave, Madison, WI, 53726, USA
| | - Jiangxia Wang
- Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD, 21205, USA
| | - Timothy Hohman
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, 1207 17th Ave South, Nashville, TN, 37212, USA
| | - Logan Dumitrescu
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, 1207 17th Ave South, Nashville, TN, 37212, USA
| | - Julia Libby
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, 1207 17th Ave South, Nashville, TN, 37212, USA
| | - Brian Kunkle
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alden L Gross
- Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD, 21205, USA
| | - Sterling Johnson
- University of Wisconsin-Madison School of Medicine and Public Health, 750 Highland Ave, Madison, WI, 53726, USA
| | - Qiongshi Lu
- University of Wisconsin-Madison School of Medicine and Public Health, 750 Highland Ave, Madison, WI, 53726, USA
| | - Corinne Engelman
- University of Wisconsin-Madison School of Medicine and Public Health, 750 Highland Ave, Madison, WI, 53726, USA
| | - Colin L Masters
- The Florey Institute, University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
| | - Paul Maruff
- The Florey Institute, University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
| | - Simon M Laws
- Centre for Precision Health and Collaborative Genomics and Translation Group, Edith Cowan University, 270 Jundaloop Drive, Jundaloop, WA, 6027, Australia
- Curtin Medical School, Curtin University, Kent Street, Bentley, WA, 6102, Australia
| | - John C Morris
- Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA
| | - Jason Hassenstab
- Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA
| | - Carlos Cruchaga
- Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA
| | - Susan M Resnick
- National Institute on Aging Intramural Research Program, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | - Melissa H Kitner-Triolo
- National Institute on Aging Intramural Research Program, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | - Yang An
- National Institute on Aging Intramural Research Program, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | - Marilyn Albert
- Johns Hopkins University School of Medicine, 1600 McElderry St, Baltimore, MD, 21205, USA
| |
Collapse
|