1
|
Martá-Ariza M, Leitner DF, Kanshin E, Suazo J, Giusti Pedrosa A, Thierry M, Lee EB, Devinsky O, Drummond E, Fortea J, Lleó A, Ueberheide B, Wisniewski T. Comparison of the amyloid plaque proteome in Down syndrome, early-onset Alzheimer's disease, and late-onset Alzheimer's disease. Acta Neuropathol 2025; 149:9. [PMID: 39825890 PMCID: PMC11742868 DOI: 10.1007/s00401-025-02844-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/02/2025] [Accepted: 01/04/2025] [Indexed: 01/20/2025]
Abstract
Down syndrome (DS) is strongly associated with Alzheimer's disease (AD) due to APP overexpression, exhibiting Amyloid-β (Aβ) and Tau pathology similar to early-onset (EOAD) and late-onset AD (LOAD). We evaluated the Aβ plaque proteome of DS, EOAD, and LOAD using unbiased localized proteomics on post-mortem paraffin-embedded tissues from four cohorts (n = 20/group): DS (59.8 ± 4.99 y/o), EOAD (63 ± 4.07 y/o), LOAD (82.1 ± 6.37 y/o), and controls (66.4 ± 13.04). We identified differentially abundant proteins when comparing Aβ plaques and neighboring non-plaque tissue (FDR < 5%, fold-change > 1.5) in DS (n = 132), EOAD (n = 192), and LOAD (n = 128), with 43 plaque-associated proteins shared across all groups. Positive correlations were observed between plaque-associated proteins in DS and EOAD (R2 = .77), DS and LOAD (R2 = .73), and EOAD and LOAD (R2 = .67). Top gene ontology biological processes (GOBP) included lysosomal transport (p = 1.29 × 10-5) for DS, immune system regulation (p = 4.33 × 10-5) for EOAD, and lysosome organization (p = 0.029) for LOAD. Protein networks revealed a plaque-associated protein signature involving APP metabolism, immune response, and lysosomal functions. In DS, EOAD, and LOAD non-plaque vs. control tissue, we identified 263, 269, and 301 differentially abundant proteins, with 65 altered proteins shared across all cohorts. Non-plaque proteins in DS showed modest correlations with EOAD (R2 = .59) and LOAD (R2 = .33) compared to the correlation between EOAD and LOAD (R2 = .79). Top GOBP term for all groups was chromatin remodeling (p < 0.001), with additional terms for DS including extracellular matrix, and protein-DNA complexes and gene expression regulation for EOAD and LOAD. Our study reveals key functional characteristics of the amyloid plaque proteome in DS, compared to EOAD and LOAD, highlighting shared pathways in endo/lysosomal functions and immune responses. The non-plaque proteome revealed distinct alterations in ECM and chromatin structure, underscoring unique differences between DS and AD subtypes. Our findings enhance our understanding of AD pathogenesis and identify potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Mitchell Martá-Ariza
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
- Center for Cognitive Neurology, NYU Grossman School of Medicine, New York, NY, USA
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Dominique F Leitner
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
- Center for Cognitive Neurology, NYU Grossman School of Medicine, New York, NY, USA
- Comprehensive Epilepsy Center, Department of Neurology, NYU Langone Health and Grossman School of Medicine, New York, NY, USA
| | - Evgeny Kanshin
- Proteomics Laboratory, Division of Advanced Research Technologies, NYU Grossman School of Medicine, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Jianina Suazo
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
- Center for Cognitive Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | | | - Manon Thierry
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
- Center for Cognitive Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Edward B Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Orrin Devinsky
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
- Comprehensive Epilepsy Center, Department of Neurology, NYU Langone Health and Grossman School of Medicine, New York, NY, USA
| | - Eleanor Drummond
- Center for Cognitive Neurology, NYU Grossman School of Medicine, New York, NY, USA
- Brain and Mind Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Juan Fortea
- Memory Unit, Department of Neurology, Institut de Recerca Sant Pau, Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain
| | - Alberto Lleó
- Memory Unit, Department of Neurology, Institut de Recerca Sant Pau, Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Beatrix Ueberheide
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
- Proteomics Laboratory, Division of Advanced Research Technologies, NYU Grossman School of Medicine, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Thomas Wisniewski
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA.
- Center for Cognitive Neurology, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Gao M, Kong W, Liu K, Wen G, Yu Y, Zhu Y, Jiang Z, Wei K. Exploring Brain Imaging and Genetic Risk Factors in Different Progression States of Alzheimer's Disease Through OSnetNMF-Based Methods. J Mol Neurosci 2025; 75:7. [PMID: 39815147 DOI: 10.1007/s12031-024-02274-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 09/29/2024] [Indexed: 01/18/2025]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with no effective treatment, often preceded by mild cognitive impairment (MCI). Multimodal imaging genetics integrates imaging and genetic data to gain a deeper understanding of disease progression and individual variations. This study focuses on exploring the mechanisms that drive the transition from normal cognition to MCI and ultimately to AD. As an effective joint feature extraction and dimensionality reduction method, non-negative matrix factorization (NMF) and its improved variants, particularly the network-based non-negative matrix factorization (netNMF), have been widely used in multimodal analysis to mine brain imaging and genetic data by considering the interactions between different features. However, many of these methods overlook the importance of the coefficient matrix and do not address issues related to data accuracy and feature redundancy. To address these limitations, we propose an orthogonal sparse network non-negative matrix factorization (OSnetNMF) algorithm, which introduces orthogonal and sparse constraints based on netNMF. By establishing linear relationships between structural magnetic resonance imaging (sMRI) and corresponding gene expression data, OSnetNMF reduces feature redundancy and decreases correlation between data, resulting in more accurate and reliable biomarker extraction. Experiments demonstrate that the OSnetNMF algorithm can accurately identify risk regions of interest (ROIs) and key genes that characterize AD progression, revealing significant trends in ROI pairs such as l4thVen-HIF1A, rBst-MPO, and rBst-PTK2B. Comparative experiments show that the improved algorithm outperforms traditional methods, identifying more disease-related biomarkers and achieving better reconstruction performance.
Collapse
Affiliation(s)
- Min Gao
- College of Information Engineering, Shanghai Maritime University, 1550 Haigang Ave., Shanghai, 201306, P. R. China
| | - Wei Kong
- College of Information Engineering, Shanghai Maritime University, 1550 Haigang Ave., Shanghai, 201306, P. R. China.
| | - Kun Liu
- College of Information Engineering, Shanghai Maritime University, 1550 Haigang Ave., Shanghai, 201306, P. R. China
| | - Gen Wen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yaling Yu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yuemin Zhu
- CREATIS, University of Lyon, INSA Lyon, CNRS UMR 5220, Inserm U1294, Lyon, 69621, France
| | - Zhihan Jiang
- College of Information Engineering, Shanghai Maritime University, 1550 Haigang Ave., Shanghai, 201306, P. R. China
| | - Kai Wei
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
3
|
Vargas-Rondón N, González-Giraldo Y, García Fonseca ÁY, Gonzalez J, Aristizabal-Pachon AF. MicroRNAs signatures as potential molecular markers in mild cognitive impairment: a meta-analysis. Front Aging Neurosci 2025; 16:1524622. [PMID: 39881680 PMCID: PMC11774935 DOI: 10.3389/fnagi.2024.1524622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/31/2024] [Indexed: 01/31/2025] Open
Abstract
Mild cognitive impairment (MCI) is characterized by a decline in cognitive functioning without significant interference in daily activities. Its high heterogeneity and elevated conversion rate to dementia pose challenges for accurate diagnosis and monitoring, highlighting the urgent need to identify methodologies focused on the early detection and intervention of MCI. Due to their biological characteristics, microRNAs (miRNAs) are potential candidates as non-invasive molecular markers for the identification and assessment of MCI progression. Therefore, in this study, we conducted a meta-analysis to identify the miRNAs commonly deregulated in MCI, focusing on expression profiles in plasma, serum, and extracellular vesicle samples. Our analysis identified eight upregulated miRNAs, including hsa-miR-149-3p, and four downregulated miRNAs, such as Let-7f-5p. Notably, hsa-miR-149-3p emerged as a central node in interaction networks, suggesting its crucial role in regulating cellular processes relevant to MCI. Additionally, pathway analysis revealed significant enrichment in biological processes associated with transcriptional regulation and neurodegeneration. Our results underscore the potential of circulating miRNAs as non-invasive molecular markers for MCI and open the possibility for new methodologies that enable more accurate diagnosis and monitoring of disease progression. Validating the expression of miRNAs such as hsa-miR-149-3p and Let-7f-5p, along with identifying their functional role in the specific context of MCI, is essential to establish their biological relevance. This work contributes to the understanding of the miRNA profile in mild cognitive impairment using easily accessible samples, which could be useful for the development of various strategies aimed at preventing or delaying MCI in individuals at risk of developing dementia, including Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | | | - Andrés Felipe Aristizabal-Pachon
- Experimental and Computational Biochemistry, Department of Nutrition and Biochemistry, Faculty of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
4
|
Larose A, Miller CCJ, Mórotz GM. The lemur tail kinase family in neuronal function and disfunction in neurodegenerative diseases. Cell Mol Life Sci 2024; 81:447. [PMID: 39520508 PMCID: PMC11550312 DOI: 10.1007/s00018-024-05480-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/12/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024]
Abstract
The complex neuronal architecture and the long distance of synapses from the cell body require precisely orchestrated axonal and dendritic transport processes to support key neuronal functions including synaptic signalling, learning and memory formation. Protein phosphorylation is a major regulator of both intracellular transport and synaptic functions. Some kinases and phosphatases such as cyclin dependent kinase-5 (cdk5)/p35, glycogen synthase kinase-3β (GSK3β) and protein phosphatase-1 (PP1) are strongly involved in these processes. A primary pathological hallmark of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis/frontotemporal dementia, is synaptic degeneration together with disrupted intracellular transport. One attractive possibility is that alterations to key kinases and phosphatases may underlie both synaptic and axonal transport damages. The brain enriched lemur tail kinases (LMTKs, formerly known as lemur tyrosine kinases) are involved in intracellular transport and synaptic functions, and are also centrally placed in cdk5/p35, GSK3β and PP1 signalling pathways. Loss of LMTKs is documented in major neurodegenerative diseases and thus can contribute to pathological defects in these disorders. However, whilst function of their signalling partners became clearer in modulating both synaptic signalling and axonal transport progress has only recently been made around LMTKs. In this review, we describe this progress with a special focus on intracellular transport, synaptic functions and neurodegenerative diseases.
Collapse
Affiliation(s)
- Angelique Larose
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - Christopher C J Miller
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 125 Coldharbour Lane Camberwell, London, SE5 9RX, UK.
| | - Gábor M Mórotz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary.
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
5
|
Martá-Ariza M, Leitner DF, Kanshin E, Suazo J, Pedrosa AG, Thierry M, Lee EB, Devinsky O, Drummond E, Fortea J, Lleó A, Ueberheide B, Wisniewski T. Comparison of the Amyloid Plaque Proteome in Down Syndrome, Early-Onset Alzheimer's Disease and Late-Onset Alzheimer's Disease. RESEARCH SQUARE 2024:rs.3.rs-4469045. [PMID: 39070643 PMCID: PMC11275979 DOI: 10.21203/rs.3.rs-4469045/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Background Down syndrome (DS) is strongly associated with Alzheimer's disease (AD), attributable to APP overexpression. DS exhibits Amyloid-β (Aβ) and Tau pathology similar to early-onset AD (EOAD) and late-onset AD (LOAD). The study aimed to evaluate the Aβ plaque proteome of DS, EOAD and LOAD. Methods Using unbiased localized proteomics, we analyzed amyloid plaques and adjacent plaque-devoid tissue ('non-plaque') from post-mortem paraffin-embedded tissues in four cohorts (n = 20/group): DS (59.8 ± 4.99 y/o), EOAD (63 ± 4.07 y/o), LOAD (82.1 ± 6.37 y/o) and controls (66.4 ± 13.04). We assessed functional associations using Gene Ontology (GO) enrichment and protein interaction networks. Results We identified differentially abundant Aβ plaque proteins vs. non-plaques (FDR < 5%, fold-change > 1.5) in DS (n = 132), EOAD (n = 192) and in LOAD (n = 128); there were 43 plaque-associated proteins shared between all groups. Positive correlations (p < 0.0001) were observed between plaque-associated proteins in DS and EOAD (R2 = 0.77), DS and LOAD (R2 = 0.73), and EOAD vs. LOAD (R2 = 0.67). Top Biological process (BP) GO terms (p < 0.0001) included lysosomal transport for DS, immune system regulation for EOAD, and lysosome organization for LOAD. Protein networks revealed a plaque enriched signature across all cohorts involving APP metabolism, immune response, and lysosomal functions. In DS, EOAD and LOAD non-plaque vs. control tissue, we identified 263, 269, and 301 differentially abundant proteins, including 65 altered non-plaque proteins across all cohorts. Differentially abundant non-plaque proteins in DS showed a significant (p < 0.0001) but weaker positive correlation with EOAD (R2 = 0.59) and LOAD (R2 = 0.33) compared to the stronger correlation between EOAD and LOAD (R2 = 0.79). The top BP GO term for all groups was chromatin remodeling (DS p = 0.0013, EOAD p = 5.79×10- 9, and LOAD p = 1.69×10- 10). Additional GO terms for DS included extracellular matrix (p = 0.0068), while EOAD and LOAD were associated with protein-DNA complexes and gene expression regulation (p < 0.0001). Conclusions We found strong similarities among the Aβ plaque proteomes in individuals with DS, EOAD and LOAD, and a robust association between the plaque proteomes and lysosomal and immune-related pathways. Further, non-plaque proteomes highlighted altered pathways related to chromatin structure and extracellular matrix (ECM), the latter particularly associated with DS. We identified novel Aβ plaque proteins, which may serve as biomarkers or therapeutic targets.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Edward B Lee
- University of Pennsylvania Perelman School of Medicine
| | | | | | - Juan Fortea
- Universitat Autònoma de Barcelona: Universitat Autonoma de Barcelona
| | - Alberto Lleó
- Universitat Autònoma de Barcelona: Universitat Autonoma de Barcelona
| | | | | |
Collapse
|
6
|
Lepiarz-Raba I, Hidayat T, Hannan AJ, Jawaid A. Potential Alzheimer's disease drug targets identified through microglial biology research. Expert Opin Drug Discov 2024; 19:587-602. [PMID: 38590098 DOI: 10.1080/17460441.2024.2335210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/22/2024] [Indexed: 04/10/2024]
Abstract
INTRODUCTION Microglia, the primary immune cells in the brain, play multifaceted roles in Alzheimer's disease (AD). Microglia can potentially mitigate the pathological progression of AD by clearing amyloid beta (Aβ) deposits in the brain and through neurotrophic support. In contrast, disproportionate activation of microglial pro-inflammatory pathways, as well as excessive elimination of healthy synapses, can exacerbate neurodegeneration in AD. The challenge, therefore, lies in discerning the precise regulation of the contrasting microglial properties to harness their therapeutic potential in AD. AREAS COVERED This review examines the evidence relevant to the disease-modifying effects of microglial manipulators in AD preclinical models. The deleterious pro-inflammatory effects of microglia in AD can be ameliorated via direct suppression or indirectly through metabolic manipulation, epigenetic targeting, and modulation of the gut-brain axis. Furthermore, microglial clearance of Aβ deposits in AD can be enhanced via strategically targeting microglial membrane receptors, lysosomal functions, and metabolism. EXPERT OPINION Given the intricate and diverse nature of microglial responses throughout the course of AD, therapeutic interventions directed at microglia warrant a tactical approach. This could entail employing therapeutic regimens, which concomitantly suppress pro-inflammatory microglial responses while selectively enhancing Aβ phagocytosis.
Collapse
Affiliation(s)
- Izabela Lepiarz-Raba
- Laboratory for Translational Research in Exposures and Neuropsychiatric Disorders (TREND), Braincity: Center of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Taufik Hidayat
- Laboratory for Translational Research in Exposures and Neuropsychiatric Disorders (TREND), Braincity: Center of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Ali Jawaid
- Laboratory for Translational Research in Exposures and Neuropsychiatric Disorders (TREND), Braincity: Center of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Warsaw, Poland
| |
Collapse
|
7
|
Davis E, Lloyd AF. The proteomic landscape of microglia in health and disease. Front Cell Neurosci 2024; 18:1379717. [PMID: 38560294 PMCID: PMC10978577 DOI: 10.3389/fncel.2024.1379717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/01/2024] [Indexed: 04/04/2024] Open
Abstract
Microglia are the resident immune cells of the central nervous system (CNS) and as such play crucial roles in regulating brain homeostasis. Their presence in neurodegenerative diseases is known, with neurodegeneration-associated risk genes heavily expressed in microglia, highlighting their importance in contributing to disease pathogenesis. Transcriptomics studies have uncovered the heterogeneous landscape of microglia in health and disease, identifying important disease-associated signatures such as DAM, and insight into both the regional and temporal diversity of microglia phenotypes. Quantitative mass spectrometry methods are ever increasing in the field of neurodegeneration, utilised as ways to identify disease biomarkers and to gain deeper understanding of disease pathology. Proteins are the main mechanistic indicators of cellular function, yet discordance between transcript and proteomic findings has highlighted the need for in-depth proteomic phenotypic and functional analysis to fully understand disease kinetics at the cellular and molecular level. This review details the current progress of using proteomics to define microglia biology, the relationship between gene and protein expression in microglia, and the future of proteomics and emerging methods aiming to resolve heterogeneous cell landscapes.
Collapse
Affiliation(s)
- Emma Davis
- The Francis Crick Institute, London, United Kingdom
- UK Dementia Research Institute at UCL, University College London, London, United Kingdom
| | - Amy F. Lloyd
- Cell Signalling and Immunology, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
8
|
Tang AS, Rankin KP, Cerono G, Miramontes S, Mills H, Roger J, Zeng B, Nelson C, Soman K, Woldemariam S, Li Y, Lee A, Bove R, Glymour M, Aghaeepour N, Oskotsky TT, Miller Z, Allen IE, Sanders SJ, Baranzini S, Sirota M. Leveraging electronic health records and knowledge networks for Alzheimer's disease prediction and sex-specific biological insights. NATURE AGING 2024; 4:379-395. [PMID: 38383858 PMCID: PMC10950787 DOI: 10.1038/s43587-024-00573-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024]
Abstract
Identification of Alzheimer's disease (AD) onset risk can facilitate interventions before irreversible disease progression. We demonstrate that electronic health records from the University of California, San Francisco, followed by knowledge networks (for example, SPOKE) allow for (1) prediction of AD onset and (2) prioritization of biological hypotheses, and (3) contextualization of sex dimorphism. We trained random forest models and predicted AD onset on a cohort of 749 individuals with AD and 250,545 controls with a mean area under the receiver operating characteristic of 0.72 (7 years prior) to 0.81 (1 day prior). We further harnessed matched cohort models to identify conditions with predictive power before AD onset. Knowledge networks highlight shared genes between multiple top predictors and AD (for example, APOE, ACTB, IL6 and INS). Genetic colocalization analysis supports AD association with hyperlipidemia at the APOE locus, as well as a stronger female AD association with osteoporosis at a locus near MS4A6A. We therefore show how clinical data can be utilized for early AD prediction and identification of personalized biological hypotheses.
Collapse
Affiliation(s)
- Alice S Tang
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA.
- Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, San Francisco and Berkeley, CA, USA.
| | - Katherine P Rankin
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Gabriel Cerono
- Weill Institute for Neuroscience. Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Silvia Miramontes
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Hunter Mills
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Jacquelyn Roger
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Billy Zeng
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Charlotte Nelson
- Weill Institute for Neuroscience. Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Karthik Soman
- Weill Institute for Neuroscience. Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Sarah Woldemariam
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Yaqiao Li
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Albert Lee
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Riley Bove
- Weill Institute for Neuroscience. Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Maria Glymour
- Department of Anesthesiology, Pain, and Perioperative Medicine, Stanford University, Palo Alto, CA, USA
| | - Nima Aghaeepour
- Department of Anesthesiology, Pain, and Perioperative Medicine, Stanford University, Palo Alto, CA, USA
- Department of Pediatrics, Stanford University, Palo Alto, CA, USA
- Department of Biomedical Data Science, Stanford University, Palo Alto, CA, USA
| | - Tomiko T Oskotsky
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Zachary Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Isabel E Allen
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Stephan J Sanders
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
- Institute of Developmental and Regenerative Medicine, Department of Paediatrics, University of Oxford, Oxford, UK
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Sergio Baranzini
- Weill Institute for Neuroscience. Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA.
- Department of Pediatrics, University of California, San Francisco, CA, USA.
| |
Collapse
|
9
|
Nohesara S, Abdolmaleky HM, Thiagalingam S. Potential for New Therapeutic Approaches by Targeting Lactate and pH Mediated Epigenetic Dysregulation in Major Mental Diseases. Biomedicines 2024; 12:457. [PMID: 38398057 PMCID: PMC10887322 DOI: 10.3390/biomedicines12020457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Multiple lines of evidence have shown that lactate-mediated pH alterations in the brains of patients with neuropsychiatric diseases such as schizophrenia (SCZ), Alzheimer's disease (AD) and autism may be attributed to mitochondrial dysfunction and changes in energy metabolism. While neuronal activity is associated with reduction in brain pH, astrocytes are responsible for rebalancing the pH to maintain the equilibrium. As lactate level is the main determinant of brain pH, neuronal activities are impacted by pH changes due to the binding of protons (H+) to various types of proteins, altering their structure and function in the neuronal and non-neuronal cells of the brain. Lactate and pH could affect diverse types of epigenetic modifications, including histone lactylation, which is linked to histone acetylation and DNA methylation. In this review, we discuss the importance of pH homeostasis in normal brain function, the role of lactate as an essential epigenetic regulatory molecule and its contributions to brain pH abnormalities in neuropsychiatric diseases, and shed light on lactate-based and pH-modulating therapies in neuropsychiatric diseases by targeting epigenetic modifications. In conclusion, we attempt to highlight the potentials and challenges of translating lactate-pH-modulating therapies to clinics for the treatment of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Shabnam Nohesara
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
| | - Hamid Mostafavi Abdolmaleky
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
- Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
- Department of Pathology & Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
10
|
Li X, Zhao Y, Kong H, Song C, Liu J, Xia J. Identification of region-specific splicing QTLs in human hippocampal tissue and its distinctive role in brain disorders. iScience 2023; 26:107958. [PMID: 37810239 PMCID: PMC10558811 DOI: 10.1016/j.isci.2023.107958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/28/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023] Open
Abstract
Alternative splicing (AS) regulation has an essential role in complex diseases. However, the AS profiles in the hippocampal (HIPPO) region of human brain are underexplored. Here, we investigated cis-acting sQTLs of HIPPO region in 264 samples and identified thousands of significant sQTLs. By enrichment analysis and functional characterization of these sQTLs, we found that the HIPPO sQTLs were enriched among histone-marked regions, transcription factors binding sites, RNA binding proteins sites, and brain disorders-associated loci. Comparative analyses with the dorsolateral prefrontal cortex revealed the importance of AS regulation in HIPPO (rg = 0.87). Furthermore, we performed a transcriptome-wide association study of Alzheimer's disease and identified 16 significant genes whose genetically regulated splicing levels may have a causal role in Alzheimer. Overall, our study improves our knowledge of the transcriptome gene regulation in the HIPPO region and provides novel insights into elucidating the pathogenesis of potential genes associated with brain disorders.
Collapse
Affiliation(s)
- Xiaoyan Li
- Information Materials and Intelligent Sensing Laboratory of Anhui Province and Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Yiran Zhao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province and Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Hui Kong
- Information Materials and Intelligent Sensing Laboratory of Anhui Province and Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Chengcheng Song
- Information Materials and Intelligent Sensing Laboratory of Anhui Province and Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Jie Liu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province and Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Junfeng Xia
- Information Materials and Intelligent Sensing Laboratory of Anhui Province and Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
11
|
Im E, Jiang Y, Stavrides PH, Darji S, Erdjument-Bromage H, Neubert TA, Choi JY, Wegiel J, Lee JH, Nixon RA. Lysosomal dysfunction in Down syndrome and Alzheimer mouse models is caused by v-ATPase inhibition by Tyr 682-phosphorylated APP βCTF. SCIENCE ADVANCES 2023; 9:eadg1925. [PMID: 37494443 PMCID: PMC10371027 DOI: 10.1126/sciadv.adg1925] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 06/23/2023] [Indexed: 07/28/2023]
Abstract
Lysosome dysfunction arises early and propels Alzheimer's disease (AD). Herein, we show that amyloid precursor protein (APP), linked to early-onset AD in Down syndrome (DS), acts directly via its β-C-terminal fragment (βCTF) to disrupt lysosomal vacuolar (H+)-adenosine triphosphatase (v-ATPase) and acidification. In human DS fibroblasts, the phosphorylated 682YENPTY internalization motif of APP-βCTF binds selectively within a pocket of the v-ATPase V0a1 subunit cytoplasmic domain and competitively inhibits association of the V1 subcomplex of v-ATPase, thereby reducing its activity. Lowering APP-βCTF Tyr682 phosphorylation restores v-ATPase and lysosome function in DS fibroblasts and in vivo in brains of DS model mice. Notably, lowering APP-βCTF Tyr682 phosphorylation below normal constitutive levels boosts v-ATPase assembly and activity, suggesting that v-ATPase may also be modulated tonically by phospho-APP-βCTF. Elevated APP-βCTF Tyr682 phosphorylation in two mouse AD models similarly disrupts v-ATPase function. These findings offer previously unknown insight into the pathogenic mechanism underlying faulty lysosomes in all forms of AD.
Collapse
Affiliation(s)
- Eunju Im
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ying Jiang
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Philip H. Stavrides
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
| | - Sandipkumar Darji
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
| | - Hediye Erdjument-Bromage
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Thomas A. Neubert
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Jun Yong Choi
- Department of Chemistry and Biochemistry, Queens College, Queens, NY 11367, USA
- Ph.D. Programs in Chemistry and Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Jerzy Wegiel
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Ju-Hyun Lee
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ralph A. Nixon
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA
- NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
12
|
Tsujimoto K, Takamatsu H, Kumanogoh A. The Ragulator complex: delving its multifunctional impact on metabolism and beyond. Inflamm Regen 2023; 43:28. [PMID: 37173755 PMCID: PMC10175929 DOI: 10.1186/s41232-023-00278-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Our understanding of lysosomes has undergone a significant transformation in recent years, from the view that they are static organelles primarily responsible for the disposal and recycling of cellular waste to their recognition as highly dynamic structures. Current research posits that lysosomes function as a signaling hub that integrates both extracellular and intracellular stimuli, thereby regulating cellular homeostasis. The dysregulation of lysosomal function has been linked to a wide range of diseases. Of note, lysosomes contribute to the activation of mammalian target of rapamycin complex 1 (mTORC1), a key regulator of cellular metabolism. The Ragulator complex, a protein complex anchored on the lysosomal membrane, was initially shown to tether the mTORC1 complex to lysosomes. Recent research has substantially expanded our understanding of the roles of the Ragulator complex in lysosomes, including roles in the regulation of metabolism, inflammation, cell death, cell migration, and the maintenance of homeostasis, via interactions with various proteins. This review summarizes our current knowledge on the diverse functions of the Ragulator complex, highlighting important protein interactions.
Collapse
Affiliation(s)
- Kohei Tsujimoto
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Immunopathology, Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
| | - Hyota Takamatsu
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
- Department of Immunopathology, Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan.
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Immunopathology, Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
- Center for Infectious Diseases Education and Research (CiDER), Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
- Japan Agency for Medical Research and Development - Core Research for Evolutional Science and Technology (AMED-CREST), Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS (CAMaD), Osaka University, Osaka, Japan
| |
Collapse
|
13
|
Iannucci J, Grammas P. Thrombin, a Key Driver of Pathological Inflammation in the Brain. Cells 2023; 12:cells12091222. [PMID: 37174621 PMCID: PMC10177239 DOI: 10.3390/cells12091222] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/21/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Neurodegenerative diseases, including Alzheimer's disease (AD), are major contributors to death and disability worldwide. A multitude of evidence suggests that neuroinflammation is critical in neurodegenerative disease processes. Exploring the key mediators of neuroinflammation in AD, a prototypical neurodegenerative disease, could help identify pathologic inflammatory mediators and mechanisms in other neurodegenerative diseases. Elevated levels of the multifunctional inflammatory protein thrombin are commonly found in conditions that increase AD risk, including diabetes, atherosclerosis, and traumatic brain injury. Thrombin, a main driver of the coagulation cascade, has been identified as important to pathological events in AD and other neurodegenerative diseases. Furthermore, recent evidence suggests that coagulation cascade-associated proteins act as drivers of inflammation in the AD brain, and studies in both human populations and animal models support the view that abnormalities in thrombin generation promote AD pathology. Thrombin drives neuroinflammation through its pro-inflammatory activation of microglia, astrocytes, and endothelial cells. Due to the wide-ranging pro-inflammatory effects of thrombin in the brain, inhibiting thrombin could be an effective strategy for interrupting the inflammatory cascade which contributes to neurodegenerative disease progression and, as such, may be a potential therapeutic target for AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Jaclyn Iannucci
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University, Bryan, TX 77807, USA
| | | |
Collapse
|
14
|
St-Pierre MK, Carrier M, González Ibáñez F, Khakpour M, Wallman MJ, Parent M, Tremblay MÈ. Astrocytes display ultrastructural alterations and heterogeneity in the hippocampus of aged APP-PS1 mice and human post-mortem brain samples. J Neuroinflammation 2023; 20:73. [PMID: 36918925 PMCID: PMC10015698 DOI: 10.1186/s12974-023-02752-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
The past decade has witnessed increasing evidence for a crucial role played by glial cells, notably astrocytes, in Alzheimer's disease (AD). To provide novel insights into the roles of astrocytes in the pathophysiology of AD, we performed a quantitative ultrastructural characterization of their intracellular contents and parenchymal interactions in an aged mouse model of AD pathology, as aging is considered the main risk factor for developing AD. We compared 20-month-old APP-PS1 and age-matched C57BL/6J male mice, among the ventral hippocampus CA1 strata lacunosum-moleculare and radiatum, two hippocampal layers severely affected by AD pathology. Astrocytes in both layers interacted more with synaptic elements and displayed more ultrastructural markers of increased phagolysosomal activity in APP-PS1 versus C57BL6/J mice. In addition, we investigated the ultrastructural heterogeneity of astrocytes, describing in the two examined layers a dark astrocytic state that we characterized in terms of distribution, interactions with AD hallmarks, and intracellular contents. This electron-dense astrocytic state, termed dark astrocytes, was observed throughout the hippocampal parenchyma, closely associated with the vasculature, and possessed several ultrastructural markers of cellular stress. A case study exploring the hippocampal head of an aged human post-mortem brain sample also revealed the presence of a similar electron-dense, dark astrocytic state. Overall, our study provides the first ultrastructural quantitative analysis of astrocytes among the hippocampus in aged AD pathology, as well as a thorough characterization of a dark astrocytic state conserved from mouse to human.
Collapse
Affiliation(s)
- Marie-Kim St-Pierre
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Départment de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, QC, Canada.,Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada
| | - Micaël Carrier
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada
| | - Fernando González Ibáñez
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Départment de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, QC, Canada.,Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada
| | - Mohammadparsa Khakpour
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada
| | - Marie-Josée Wallman
- Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Québec, QC, Canada.,CERVO Brain Research Center, Quebec City, QC, Canada
| | - Martin Parent
- Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Québec, QC, Canada.,CERVO Brain Research Center, Quebec City, QC, Canada
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada. .,Départment de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, QC, Canada. .,Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada. .,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada. .,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada. .,Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada. .,Institute on Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
15
|
Histone Modifications in Alzheimer's Disease. Genes (Basel) 2023; 14:genes14020347. [PMID: 36833274 PMCID: PMC9956192 DOI: 10.3390/genes14020347] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/11/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Since Late-onset Alzheimer's disease (LOAD) derives from a combination of genetic variants and environmental factors, epigenetic modifications have been predicted to play a role in the etiopathology of LOAD. Along with DNA methylation, histone modifications have been proposed as the main epigenetic modifications that contribute to the pathologic mechanisms of LOAD; however, little is known about how these mechanisms contribute to the disease's onset or progression. In this review, we highlighted the main histone modifications and their functional role, including histone acetylation, histone methylation, and histone phosphorylation, as well as changes in such histone modifications that occur in the aging process and mainly in Alzheimer's disease (AD). Furthermore, we pointed out the main epigenetic drugs tested for AD treatment, such as those based on histone deacetylase (HDAC) inhibitors. Finally, we remarked on the perspectives around the use of such epigenetics drugs for treating AD.
Collapse
|
16
|
Toledano-Díaz A, Álvarez MI, Toledano A. The relationships between neuroglial and neuronal changes in Alzheimer's disease, and the related controversies II: gliotherapies and multimodal therapy. J Cent Nerv Syst Dis 2022; 14:11795735221123896. [PMID: 36407561 PMCID: PMC9666878 DOI: 10.1177/11795735221123896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 08/05/2022] [Indexed: 08/30/2023] Open
Abstract
Since the original description of Alzheimer´s disease (AD), research into this condition has mainly focused on assessing the alterations to neurons associated with dementia, and those to the circuits in which they are involved. In most of the studies on human brains and in many models of AD, the glial cells accompanying these neurons undergo concomitant alterations that aggravate the course of neurodegeneration. As a result, these changes to neuroglial cells are now included in all the "pathogenic cascades" described in AD. Accordingly, astrogliosis and microgliosis, the main components of neuroinflammation, have been integrated into all the pathogenic theories of this disease, as discussed in this part of the two-part monograph that follows an accompanying article on gliopathogenesis and glioprotection. This initial reflection verified the implication of alterations to the neuroglia in AD, suggesting that these cells may also represent therapeutic targets to prevent neurodegeneration. In this second part of the monograph, we will analyze the possibilities of acting on glial cells to prevent or treat the neurodegeneration that is the hallmark of AD and other pathologies. Evidence of the potential of different pharmacological, non-pharmacological, cell and gene therapies (widely treated) to prevent or treat this disease is now forthcoming, in most cases as adjuncts to other therapies. A comprehensive AD multimodal therapy is proposed in which neuronal and neuroglial pharmacological treatments are jointly considered, as well as the use of new cell and gene therapies and non-pharmacological therapies that tend to slow down the progress of dementia.
Collapse
|
17
|
McNicholas K, François M, Liu JW, Doecke JD, Hecker J, Faunt J, Maddison J, Johns S, Pukala TL, Rush RA, Leifert WR. Salivary inflammatory biomarkers are predictive of mild cognitive impairment and Alzheimer's disease in a feasibility study. Front Aging Neurosci 2022; 14:1019296. [PMID: 36438010 PMCID: PMC9685799 DOI: 10.3389/fnagi.2022.1019296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/26/2022] [Indexed: 09/10/2023] Open
Abstract
Alzheimer's disease (AD) is an insidious disease. Its distinctive pathology forms over a considerable length of time without symptoms. There is a need to detect this disease, before even subtle changes occur in cognition. Hallmark AD biomarkers, tau and amyloid-β, have shown promising results in CSF and blood. However, detecting early changes in these biomarkers and others will involve screening a wide group of healthy, asymptomatic individuals. Saliva is a feasible alternative. Sample collection is economical, non-invasive and saliva is an abundant source of proteins including tau and amyloid-β. This work sought to extend an earlier promising untargeted mass spectrometry study in saliva from individuals with mild cognitive impairment (MCI) or AD with age- and gender-matched cognitively normal from the South Australian Neurodegenerative Disease cohort. Five proteins, with key roles in inflammation, were chosen from this study and measured by ELISA from individuals with AD (n = 16), MCI (n = 15) and cognitively normal (n = 29). The concentrations of Cystatin-C, Interleukin-1 receptor antagonist, Stratifin, Matrix metalloproteinase 9 and Haptoglobin proteins had altered abundance in saliva from AD and MCI, consistent with the earlier study. Receiver operating characteristic analysis showed that combinations of these proteins demonstrated excellent diagnostic accuracy for distinguishing both MCI (area under curve = 0.97) and AD (area under curve = 0.97) from cognitively normal. These results provide evidence for saliva being a valuable source of biomarkers for early detection of cognitive impairment in individuals on the AD continuum and potentially other neurodegenerative diseases.
Collapse
Affiliation(s)
- Kym McNicholas
- Molecular Diagnostic Solutions Group, Human Health Program, CSIRO Health and Biosecurity, Adelaide, SA, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Maxime François
- Molecular Diagnostic Solutions Group, Human Health Program, CSIRO Health and Biosecurity, Adelaide, SA, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Jian-Wei Liu
- CSIRO Land and Water, Black Mountain Research and Innovation Park, Canberra, ACT, Australia
| | - James D. Doecke
- Australian e-Health Research Centre, CSIRO, Herston, QLD, Australia
| | - Jane Hecker
- Department of Internal Medicine, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Jeff Faunt
- Department of General Medicine, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - John Maddison
- Aged Care Rehabilitation and Palliative Care, SA Health, Modbury Hospital, Modbury, SA, Australia
| | - Sally Johns
- Aged Care Rehabilitation and Palliative Care, SA Health, Modbury Hospital, Modbury, SA, Australia
| | - Tara L. Pukala
- School of Physical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | | | - Wayne R. Leifert
- Molecular Diagnostic Solutions Group, Human Health Program, CSIRO Health and Biosecurity, Adelaide, SA, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
18
|
Fahmideh F, Marchesi N, Campagnoli LIM, Landini L, Caramella C, Barbieri A, Govoni S, Pascale A. Effect of troxerutin in counteracting hyperglycemia-induced VEGF upregulation in endothelial cells: a new option to target early stages of diabetic retinopathy? Front Pharmacol 2022; 13:951833. [PMID: 36046820 PMCID: PMC9420903 DOI: 10.3389/fphar.2022.951833] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/25/2022] [Indexed: 12/21/2022] Open
Abstract
Diabetic retinopathy (DR), one of the most common complications of diabetes mellitus, is characterized by degeneration of retinal neurons and neoangiogenesis. Until today, the pharmacological approaches for DR are limited and focused on counteracting the end-stage of this neurodegenerative disease, therefore efforts should be carried out to discover novel pharmacological targets useful to prevent DR development. Hyperglycemia is a major risk factor for endothelial dysfunction and vascular complication, which subsequently may trigger neurodegeneration. We previously demonstrated that, in the rat retina, hyperglycemia activates a new molecular cascade implicating, up-stream, protein kinase C βII (PKC βII), which in turn leads to a higher expression of vascular endothelial growth factor (VEGF), via the mRNA-binding Hu-antigen R (HuR) protein. VEGF is a pivotal mediator of neovascularization and a well-known vasopermeability factor. Blocking the increase of VEGF via modulation of this cascade can thus represent a new pharmacological option to prevent DR progression. To this aim, proper in vitro models are crucial for drug discovery, as they allow to better identify promising effective molecules. Considering that endothelial cells are key elements in DR and that hyperglycemia triggers the PKCβII/HuR/VEGF pathway, we set up two distinct in vitro models applying two different stimuli. Namely, human umbilical vein endothelial cells were exposed to phorbol 12-myristate 13-acetate, which mimics diacylglycerol whose synthesis is triggered by diabetic hyperglycemia, while human retinal endothelial cells were treated with high glucose for different times. After selecting the optimal experimental conditions able to determine an increased VEGF production, in search of molecules useful to prevent DR development, we investigated the capability of troxerutin, an antioxidant flavonoid, to counteract not only the rise of VEGF but also the activation of the PKCβII/HuR cascade in both in vitro models. The results show the capability of troxerutin to hinder the hyperglycemia-induced increase in VEGF in both models through PKCβII/HuR pathway modulation. Further, these data confirm the key engagement of this cascade as an early event triggered by hyperglycemia to promote VEGF expression. Finally, the present findings also suggest the potential use of troxerutin as a preventive treatment during the early phases of DR.
Collapse
Affiliation(s)
- F. Fahmideh
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Pavia, Italy
| | - N. Marchesi
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Pavia, Italy
- *Correspondence: N. Marchesi, ; A. Pascale,
| | - L. I. M. Campagnoli
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Pavia, Italy
| | - L. Landini
- Bausch & Lomb—Iom S.p.A, Vimodrone (Milan), Italy
| | - C. Caramella
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Pavia, Italy
| | - A. Barbieri
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Pavia, Italy
| | - S. Govoni
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Pavia, Italy
| | - A. Pascale
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Pavia, Italy
- *Correspondence: N. Marchesi, ; A. Pascale,
| |
Collapse
|
19
|
Deyssenroth MA, Peng S, Hao K, Marsit CJ, Chen J. Placental Gene Transcript Proportions are Altered in the Presence of In Utero Arsenic and Cadmium Exposures, Genetic Variants, and Birth Weight Differences. Front Genet 2022; 13:865449. [PMID: 35646058 PMCID: PMC9136297 DOI: 10.3389/fgene.2022.865449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/07/2022] [Indexed: 11/26/2022] Open
Abstract
Background: In utero arsenic and cadmium exposures are linked with reduced birth weight as well as alterations in placental molecular features. However, studies thus far have focused on summarizing transcriptional activity at the gene level and do not capture transcript specification, an important resource during fetal development to enable adaptive responses to the rapidly changing in utero physiological conditions. In this study, we conducted a genome-wide analysis of the placental transcriptome to evaluate the role of differential transcript usage (DTU) as a potential marker of in utero arsenic and cadmium exposure and fetal growth restriction. Methods: Transcriptome-wide RNA sequencing was performed in placenta samples from the Rhode Island Child Health Study (RICHS, n = 199). Arsenic and cadmium levels were measured in maternal toenails using ICP-MS. Differential transcript usage (DTU) contrasting small (SGA) and appropriate (AGA) for gestational age infants as well as above vs. below median exposure to arsenic and cadmium were assessed using the DRIMSeq R package. Genetic variants that influence transcript usage were determined using the sQTLseeker R package. Results: We identified 82 genes demonstrating DTU in association with SGA status at an FDR <0.05. Among these, one gene, ORMDL1, also demonstrated DTU in association with arsenic exposure, and fifteen genes (CSNK1E, GBA, LAMTOR4, MORF4L1, PIGO, PSG1, PSG3, PTMA, RBMS1, SLC38A2, SMAD4, SPCS2, TUBA1B, UBE2A, YIPF5) demonstrated DTU in association with cadmium exposure. In addition to cadmium exposure and SGA status, proportions of the LAMTOR4 transcript ENST00000474141.5 also differed by genetic variants (rs10231604, rs12878, and rs3736591), suggesting a pathway by which an in utero exposure and genetic variants converge to impact fetal growth through perturbations of placental processes. Discussion: We report the first genome-wide characterization of placental transcript usage and associations with intrauterine metal exposure and fetal growth restriction. These results highlight the utility of interrogating the transcriptome at finer-scale transcript-level resolution to identify novel placental biomarkers of exposure-induced outcomes.
Collapse
Affiliation(s)
- Maya A. Deyssenroth
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Shouneng Peng
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Carmen J. Marsit
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
20
|
Fisher RA, Miners JS, Love S. Pathological changes within the cerebral vasculature in Alzheimer's disease: New perspectives. Brain Pathol 2022; 32:e13061. [PMID: 35289012 PMCID: PMC9616094 DOI: 10.1111/bpa.13061] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/11/2022] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
Cerebrovascular disease underpins vascular dementia (VaD), but structural and functional changes to the cerebral vasculature contribute to disease pathology and cognitive decline in Alzheimer's disease (AD). In this review, we discuss the contribution of cerebral amyloid angiopathy and non‐amyloid small vessel disease in AD, and the accompanying changes to the density, maintenance and remodelling of vessels (including alterations to the composition and function of the cerebrovascular basement membrane). We consider how abnormalities of the constituent cells of the neurovascular unit – particularly of endothelial cells and pericytes – and impairment of the blood‐brain barrier (BBB) impact on the pathogenesis of AD. We also discuss how changes to the cerebral vasculature are likely to impair Aβ clearance – both intra‐periarteriolar drainage (IPAD) and transport of Aβ peptides across the BBB, and how impaired neurovascular coupling and reduced blood flow in relation to metabolic demand increase amyloidogenic processing of APP and the production of Aβ. We review the vasoactive properties of Aβ peptides themselves, and the probable bi‐directional relationship between vascular dysfunction and Aβ accumulation in AD. Lastly, we discuss recent methodological advances in transcriptomics and imaging that have provided novel insights into vascular changes in AD, and recent advances in assessment of the retina that allow in vivo detection of vascular changes in the early stages of AD.
Collapse
Affiliation(s)
- Robert A Fisher
- Dementia Research Group, University of Bristol Medical School, Bristol, UK
| | - J Scott Miners
- Dementia Research Group, University of Bristol Medical School, Bristol, UK
| | - Seth Love
- Dementia Research Group, University of Bristol Medical School, Bristol, UK
| |
Collapse
|