1
|
Du M, Liu X, Ji X, Wang Y, Liu X, Zhao C, Jin E, Gu Y, Wang H, Zhang F. Berberine alleviates enterotoxigenic Escherichia coli-induced intestinal mucosal barrier function damage in a piglet model by modulation of the intestinal microbiome. Front Nutr 2025; 11:1494348. [PMID: 39877539 PMCID: PMC11772193 DOI: 10.3389/fnut.2024.1494348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/13/2024] [Indexed: 01/31/2025] Open
Abstract
Introduction Enterotoxic Escherichia coli (ETEC) is the main pathogen that causes diarrhea, especially in young children. This disease can lead to substantial morbidity and mortality and is a major global health concern. Managing ETEC infections is challenging owing to the increasing prevalence of antibiotic resistance. Berberine, categorized as a substance with similarities in "medicine and food," has been used in China for hundreds of years to treat gastrointestinal disorders and bacteria-induced diarrhea. This study investigated the preventive effect of dietary berberine on the intestinal mucosal barrier induced by ETEC and the microbial community within the intestines of weaned piglets. Methods Twenty-four piglets were randomly divided into four groups. Piglets were administered either a standard diet or a standard diet supplemented with berberine at concentrations of 0.05 and 0.1%. and orally administered ETEC or saline. Results Dietary supplementation with berberine reduced diamine oxidase, d-lactate, and endotoxin levels in piglets infected with ETEC (P < 0.05). Berberine increased jejunal villus height, villus/crypt ratio, mucosal thickness (P < 0.05), and goblet cell numbers in the villi and crypts (P < 0.05). Furthermore, berberine increased the optical density of mucin 2 and the mucin 2, P-glycoprotein, and CYP3A4 mRNA expression levels (P < 0.05). Berberine increased the expressions of zonula occludins-1 (ZO-1), zonula occludins-2 (ZO-2), Claudin-1, Occludin, and E-cadherin in the ileum (P < 0.05). Moreover, berberine increased the expression of BCL2, reduced intestinal epithelial cell apoptosis (P < 0.05) and decreased the expression of BAX and BAK in the duodenum and jejunum, as well as that of CASP3 and CASP9 in the duodenum and ileum (P < 0.05). Berberine decreased the expression of IL-1β, IL-6, IL-8, TNF-α, and IFN-γ (P < 0.05) and elevated total volatile fatty acids, acetic acid, propionic acid, valeric acid, and isovaleric acid concentrations (P < 0.05). Notably, berberine enhanced the abundance of beneficial bacteria including Enterococcus, Holdemanella, Weissella, Pediococcus, Muribaculum, Colidextribacter, Agathobacter, Roseburia, Clostridium, Fusicatenibacter, and Bifidobacterium. Simultaneously, the relative abundance of harmful and pathogenic bacteria, such as Prevotella, Paraprevotella, Corynebacterium, Catenisphaera, Streptococcus, Enterobacter, and Collinsella, decreased (P < 0.05). Discussion Berberine alleviated ETEC-induced intestinal mucosal barrier damage in weaned piglets models. This is associated with enhancement of the physical, chemical, and immune barrier functions of piglets by enhancing intestinal microbiota homeostasis.
Collapse
Affiliation(s)
- Min Du
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Xinran Liu
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Xu Ji
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yue Wang
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Xiaodan Liu
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Chunfang Zhao
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou, China
| | - Erhui Jin
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou, China
| | - Youfang Gu
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou, China
| | - Hongyu Wang
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Feng Zhang
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou, China
| |
Collapse
|
2
|
Xiong Y, Xia L, Zhang Y, Zhao G, Zhang S, Ma J, Cheng Y, Wang H, Sun J, Yan Y, Wang Z. Pharmacodynamic Evaluation of Phage Therapy in Ameliorating ETEC-Induced Diarrhea in Mice Models. Microorganisms 2024; 12:2532. [PMID: 39770735 PMCID: PMC11678793 DOI: 10.3390/microorganisms12122532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a major pathogen causing diarrhea in humans and animals, with increasing antimicrobial resistance posing a growing challenge in recent years. Lytic bacteriophages (phages) offer a targeted and environmentally sustainable approach to combating bacterial infections, particularly in eliminating drug-resistant strains. In this study, ETEC strains were utilized as indicators, and a stable, high-efficiency phage, designated vB_EcoM_JE01 (JE01), was isolated from pig farm manure. The genome of JE01 was a dsDNA molecule, measuring 168.9 kb, and a transmission electron microscope revealed its characteristic T4-like Myoviridae morphology. JE01 effectively lysed multi-drug-resistant ETEC isolates. Stability assays demonstrated that JE01 retained its activity across a temperature range of 20 °C to 50 °C and a pH range of 3-11, showing resilience to ultraviolet radiation and chloroform exposure. Furthermore, JE01 effectively suppressed ETEC adhesion to porcine intestinal epithelial cells (IPEC-J2), mitigating the inflammatory response triggered by ETEC. To investigate the in vivo antibacterial efficacy of phage JE01 preparations, a diarrhea model was established using germ-free mice infected with a drug-resistant ETEC strain. The findings indicated that 12 h post-ETEC inoculation, intragastric administration of phage JE01 significantly reduced mortality, alleviated gastrointestinal lesions, decreased ETEC colonization in the jejunum, and suppressed the expression of the cytokines IL-6 and IL-8. These results demonstrate a therapeutic benefit of JE01 in treating ETEC-induced diarrhea in mice. Additionally, a fluorescent phage incorporating red fluorescent protein (RFP) was engineered, and the pharmacokinetics of phage therapy were preliminarily assessed through intestinal fluorescence imaging in mice. The results showed that the phage localized to ETEC in the jejunum rapidly, within 45 min. Moreover, the pharmacokinetics of the phage were markedly slowed in the presence of its bacterial target in the gut, suggesting sustained bacteriolytic activity in the ETEC-infected intestine. In conclusion, this study establishes a foundation for the development of phage-based therapies against ETEC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Zhaofei Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201100, China
| |
Collapse
|
3
|
Xie H, Yu T, Zhou Q, Na K, Lu S, Zhang L, Guo X. Comparative Evaluation of Spores and Vegetative Forms of Bacillus subtilis and Bacillus licheniformis on Probiotic Functionality In Vitro and In Vivo. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10407-z. [PMID: 39607632 DOI: 10.1007/s12602-024-10407-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
The probiotic effects of Bacillus are strain-specific and dependent on both spore and vegetative forms, but the distinct contributions of these forms to probiotic functionality are not well understood. This study aimed to evaluate and compare the impacts of vegetative forms and spores of Bacillus subtilis and Bacillus licheniformis on probiotic functions in vitro and in vivo. We systematically assessed the anaerobic metabolic capabilities and the potential to enhance the intestinal barrier function of four Bacillus strains, leading to the selection of Bacillus subtilis X22 and Bacillus licheniformis N-3 for detailed investigation. Utilizing in vitro fermentation with murine fecal microbiota, we observed that the spores form of Bacillus licheniformis N-3 noticeably positively regulated the gut microbiota under anaerobic conditions. Concurrently, both spore and vegetative forms of Bacillus licheniformis N-3 and Bacillus subtilis X22 demonstrated the ability to prevent pathogen adhesion, reduce inflammation, combat oxidative stress, and promote cellular autophagy to reduce apoptosis in response to enterotoxigenic Escherichia coli (ETEC) infection in the IPEC-J2 cell model. As a facultative anaerobe, Bacillus licheniformis N-3 exhibited a tendency toward superior regulatory capacity in enhancing the anti-infective activity of IPEC-J2 cells in vitro. In the pathogens challenge mouse model, B. licheniformis N-3 effectively preserved the integrity of jejunal tissue and enhanced the expression of glycoproteins in goblet cells. Moreover, B. licheniformis N-3 strengthened the epithelial barrier by increasing the levels of Occludin and Claudin-1 in the jejunum, thus promoting overall intestinal health. This research offers new insights into strain selection and the life cycle utilization of Bacillus probiotics.
Collapse
Affiliation(s)
- Hua Xie
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, 430074, China
| | - Tianfei Yu
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, 430074, China
| | - Qiwen Zhou
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, 430074, China
| | - Kai Na
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, 430074, China
| | - Shuang Lu
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, 430074, China
| | - Li Zhang
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, 430074, China
| | - Xiaohua Guo
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, 430074, China.
| |
Collapse
|
4
|
Dong C, Chen Y, Ding M, Liu Y, Chen X, He Y, Zou T, Chen J, You J. Dietary Bacteriophage Administration Alleviates Enterotoxigenic Escherichia coli-Induced Diarrhea and Intestinal Impairment through Regulating Intestinal Inflammation and Gut Microbiota in a Newly Weaned Mouse Model. Int J Mol Sci 2024; 25:10736. [PMID: 39409065 PMCID: PMC11477028 DOI: 10.3390/ijms251910736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/23/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
This study aimed to investigate the effects of dietary bacteriophage administration on diarrhea and intestinal impairment induced by enterotoxigenic Escherichia coli (ETEC) in a newly weaned mouse model. Forty-four newly weaned C57BL/6 mice were divided into four treatment groups, where they were provided either the control diet or the bacteriophage-supplemented diet, with or without ETEC infection. The results show that the bacteriophage administration resulted in increased body weight, decreased diarrhea score, and improved jejunal histopathology in ETEC-infected mice. The bacteriophage administration enhanced the intestinal barrier function of the ETEC-infected mice, as indicated by the reduced serum DAO level and the increased expression of Claudin-1, Occludin, and ZO-1 at both the mRNA and protein levels in the jejunum. Also, the bacteriophage administration resulted in a decrease in serum TNF-α and IL-1β levels, a down-regulation of TNF-α and IL-6 mRNA levels in the jejunum, and the inhibition of jejunal TLR-4/NF-κB pathway activation induced by ETEC infection. Moreover, the bacteriophage administration increased the levels of acetic acid, propionic acid, butyric acid, and total short-chain fatty acids in the caecum content. The bacteriophage administration increased the Shannon index, increased the abundance of Bacteroidota and Muribaculaceae, and decreased the abundance of Verrucomicrobiota and Akkermansiaceae in the colon contents of the ETEC-infected mice. Spearman's correlation analysis indicates that the protective effects of bacteriophage on ETEC-induced intestinal impairment, inflammation, and intestinal barrier function are associated with regulating the abundance of Bacteroidota and Muribaculaceae in the colon contents of mice. Collectively, bacteriophage administration alleviates ETEC-induced diarrhea and intestinal impairment through regulating intestinal inflammation and gut microbiota in newly weaned mice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jun Chen
- Jiangxi Province Key Laboratory of Animal Nutrition and Feed, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jinming You
- Jiangxi Province Key Laboratory of Animal Nutrition and Feed, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
5
|
Li Y, Li YJ, Fang X, Chen DQ, Yu WQ, Zhu ZQ. Peripheral inflammation as a potential mechanism and preventive strategy for perioperative neurocognitive disorder under general anesthesia and surgery. Front Cell Neurosci 2024; 18:1365448. [PMID: 39022312 PMCID: PMC11252726 DOI: 10.3389/fncel.2024.1365448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
General anesthesia, as a commonly used medical intervention, has been widely applied during surgical procedures to ensure rapid loss of consciousness and pain relief for patients. However, recent research suggests that general anesthesia may be associated with the occurrence of perioperative neurocognitive disorder (PND). PND is characterized by a decline in cognitive function after surgery, including impairments in attention, memory, learning, and executive functions. With the increasing trend of population aging, the burden of PND on patients and society's health and economy is becoming more evident. Currently, the clinical consensus tends to believe that peripheral inflammation is involved in the pathogenesis of PND, providing strong support for further investigating the mechanisms and prevention of PND.
Collapse
Affiliation(s)
- Yuan Li
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Anesthesiology, Mianyang Hospital of Traditional Chinese Medicine, Mianyang, China
| | - Ying-Jie Li
- Department of General Surgery, Mianyang Hospital of Traditional Chinese Medicine, Mianyang, China
| | - Xu Fang
- Department of Anesthesiology, Nanchong Central Hospital, The Second Clinical Medical School of North Sichuan Medical College, Zunyi, China
| | - Dong-Qin Chen
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wan-Qiu Yu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhao-Qiong Zhu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Early Clinical Research Ward of Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
6
|
Kovács D, Palkovicsné Pézsa N, Móritz AV, Jerzsele Á, Farkas O. Effects of Luteolin in an In Vitro Model of Porcine Intestinal Infections. Animals (Basel) 2024; 14:1952. [PMID: 38998064 PMCID: PMC11240391 DOI: 10.3390/ani14131952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/15/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
Intestinal infections caused by Escherichia coli and Salmonella enterica pose a huge economic burden on the swine industry that is exacerbated by the development of antimicrobial resistance in these pathogens, thus raising the need for alternative prevention and treatment methods. Our aim was to test the beneficial effects of the flavonoid luteolin in an in vitro model of porcine intestinal infections. We infected the porcine intestinal epithelial cell line IPEC-J2 with E. coli and S. enterica subsp. enterica serovar Typhimurium (106 CFU/mL) with or without previous, concurrent, or subsequent treatment with luteolin (25 or 50 µg/mL), and measured the changes in the reactive oxygen species and interleukin-6 and -8 levels of cells. We also tested the ability of luteolin to inhibit the adhesion of bacteria to the cell layer, and to counteract the barrier integrity damage caused by the pathogens. Luteolin was able to alleviate oxidative stress, inflammation, and barrier integrity damage, but it could not inhibit the adhesion of bacteria to IPEC-J2 cells. Luteolin is a promising candidate to be used in intestinal infections of pigs, however, further studies are needed to confirm its efficacy. The use of luteolin in the future could ultimately lead to a reduced need for antibiotics in pig production.
Collapse
Affiliation(s)
- Dóra Kovács
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, 1078 Budapest, Hungary; (N.P.P.); (A.V.M.); (Á.J.); (O.F.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, 1078 Budapest, Hungary
| | - Nikolett Palkovicsné Pézsa
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, 1078 Budapest, Hungary; (N.P.P.); (A.V.M.); (Á.J.); (O.F.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, 1078 Budapest, Hungary
| | - Alma Virág Móritz
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, 1078 Budapest, Hungary; (N.P.P.); (A.V.M.); (Á.J.); (O.F.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, 1078 Budapest, Hungary
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, 1078 Budapest, Hungary; (N.P.P.); (A.V.M.); (Á.J.); (O.F.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, 1078 Budapest, Hungary
| | - Orsolya Farkas
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, 1078 Budapest, Hungary; (N.P.P.); (A.V.M.); (Á.J.); (O.F.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, 1078 Budapest, Hungary
| |
Collapse
|
7
|
Zhao X, Pang J, Zhang W, Peng X, Yang Z, Bai G, Xia Y. Tryptophan metabolism and piglet diarrhea: Where we stand and the challenges ahead. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:123-133. [PMID: 38766516 PMCID: PMC11101943 DOI: 10.1016/j.aninu.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/13/2024] [Accepted: 03/20/2024] [Indexed: 05/22/2024]
Abstract
The intestinal architecture of piglets is vulnerable to disruption during weaning transition and leads to diarrhea, frequently accompanied by inflammation and metabolic disturbances (including amino acid metabolism). Tryptophan (Trp) plays an essential role in orchestrating intestinal immune tolerance through its metabolism via the kynurenine, 5-hydroxytryptamine, or indole pathways, which could be dictated by the gut microbiota either directly or indirectly. Emerging evidence suggests a strong association between piglet diarrhea and Trp metabolism. Here we aim to summarize the intricate balance of microbiota-host crosstalk by analyzing alterations in both the host and microbial pathways of Trp and discuss how Trp metabolism may affect piglet diarrhea. Overall, this review could provide valuable insights to explore effective strategies for managing piglet diarrhea and the related challenges.
Collapse
Affiliation(s)
- Xuan Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Jiaman Pang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Wanghong Zhang
- Yunnan Vocational College of Agriculture, Kunming 650211, China
| | - Xie Peng
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhenguo Yang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Guangdong Bai
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yaoyao Xia
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| |
Collapse
|
8
|
Li Y, Sun R, Lai C, Liu K, Yang H, Peng Z, Xu D, Huang F, Tang K, Peng Y, Liu X. Hyperbaric oxygen therapy ameliorates intestinal and systematic inflammation by modulating dysbiosis of the gut microbiota in Crohn's disease. J Transl Med 2024; 22:518. [PMID: 38816750 PMCID: PMC11137967 DOI: 10.1186/s12967-024-05317-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/19/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Dysbiosis of the gut microbiota is pivotal in Crohn's disease (CD) and modulated by host physiological conditions. Hyperbaric oxygen therapy (HBOT) is a promising treatment for CD that can regulate gut microbiota. The relationship between HBOT and the gut microbiota in CD remains unknown. METHODS CD patients were divided into an HBOT group (n = 10) and a control group (n = 10) in this open-label prospective interventional study. The fecal samples before and after HBOT were used for 16 S rRNA gene sequencing and fecal microbiota transplantation (FMT). A colitis mouse model was constructed using dextran sulfate sodium, and intestinal and systematic inflammation was evaluated. The safety and long-term effect of HBOT were observed. RESULTS HBOT significantly reduced the level of C-reactive protein (CRP) (80.79 ± 42.05 mg/L vs. 33.32 ± 18.31 mg/L, P = 0.004) and the Crohn's Disease Activity Index (CDAI) (274.87 ± 65.54 vs. 221.54 ± 41.89, P = 0.044). HBOT elevated the declined microbial diversity and ameliorated the altered composition of gut microbiota in patients with CD. The relative abundance of Escherichia decreased, and that of Bifidobacterium and Clostridium XIVa increased after HBOT. Mice receiving FMT from donors after HBOT had significantly less intestinal inflammation and serum CRP than the group before HBOT. HBOT was safe and well-tolerated by patients with CD. Combined with ustekinumab, more patients treated with HBOT achieved clinical response (30%vs.70%, P = 0.089) and remission (20%vs.50%, P = 0.160) at week 4. CONCLUSIONS HBOT modulates the dysbiosis of gut microbiota in CD and ameliorates intestinal and systematic inflammation. HBOT is a safe option for CD and exhibits a promising auxiliary effect to ustekinumab. TRIAL REGISTRATION Chinese Clinical Trial Registry, ChiCTR2200061193. Registered 15 June 2022, https://www.chictr.org.cn/showproj.html?proj=171605 .
Collapse
Affiliation(s)
- Yong Li
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Xiangya Hospital, Changsha, Hunan, 410008, China
| | - Ruizheng Sun
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Chen Lai
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Kezhen Liu
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, USA
| | - Huixiang Yang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Xiangya Hospital, Changsha, Hunan, 410008, China
| | - Ziheng Peng
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Xiangya Hospital, Changsha, Hunan, 410008, China
| | - Duo Xu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Xiangya Hospital, Changsha, Hunan, 410008, China
| | - Fangling Huang
- Department of Hyperbaric oxygen, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Keke Tang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Xiangya Hospital, Changsha, Hunan, 410008, China
| | - Yu Peng
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Xiangya Hospital, Changsha, Hunan, 410008, China.
- Research Center for Geriatric Disorder, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Xiaowei Liu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Xiangya Hospital, Changsha, Hunan, 410008, China.
- Research Center for Geriatric Disorder, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
9
|
Liu Y, Lin Y, Zhu W. Systemic Effects of a Phage Cocktail on Healthy Weaned Piglets. BIOLOGY 2024; 13:271. [PMID: 38666883 PMCID: PMC11048100 DOI: 10.3390/biology13040271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024]
Abstract
Numerous studies have demonstrated that bacteriophages (phages) can effectively treat intestinal bacterial infections. However, research on the impact of phages on overall body health once they enter the intestine is limited. This study utilized weaned piglets as subjects to evaluate the systemic effects of an orally administered phage cocktail on their health. Twelve 21-day-old weaned piglets were divided into control (CON) and phage gavage (Phages) groups. The phage cocktail consisted of five lytic phages, targeting Salmonella enterica serovar Choleraesuis (S. choleraesuis), Enteropathogenic Escherichia coli (EPEC), and Shiga tox-in-producing Escherichia coli (STEC). The phages group received 10 mL of phage cocktail orally for 20 consecutive days. The results show that the phage gavage did not affect the piglets' growth performance, serum biochemical indices, or most organ indices, except for the pancreas. However, the impact on the intestine was complex. Firstly, although the pancreatic index decreased, it did not affect the secretion of digestive enzymes in the intestine. Secondly, phages increased the pH of jejunum chyme and relative weight of the ileum, and enhanced intestinal barrier function without affecting the morphology of the intestine. Thirdly, phages did not proliferate in the intestine, but altered the intestinal microbiota structure and increased concentrations of microbial metabolites isobutyric acid and isovaleric acid in the colonic chyme. In addition, phages impacted the immune status, significantly increasing serum IgA, IgG, and IgM, as well as serum and intestinal mucosal IFN-γ, IL-1β, IL-17, and TGF-β, and decreasing IL-4 and IL-10. They also activated toll-like receptors TLR-4 and TLR-9. Apart from an increase in basophil numbers, the counts of other immune cells in the blood did not change. This study indicates that the impact of phages on body health is complex, especially regarding immune status, warranting further attention. Short-term phage gavage did not have significant negative effects on health but could enhance intestinal barrier function.
Collapse
Affiliation(s)
- Yankun Liu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (W.Z.)
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Lin
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (W.Z.)
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
- National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (W.Z.)
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
- National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
10
|
Feng H, Xiong J, Liang S, Wang Y, Zhu Y, Hou Q, Yang X, Yang X. Fecal virus transplantation has more moderate effect than fecal microbiota transplantation on changing gut microbial structure in broiler chickens. Poult Sci 2024; 103:103282. [PMID: 38147728 PMCID: PMC10874774 DOI: 10.1016/j.psj.2023.103282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/07/2023] [Accepted: 11/12/2023] [Indexed: 12/28/2023] Open
Abstract
Growing evidence of fecal microbiota transplantation (FMT) and fecal virus transplantation (FVT) provides a possibility to regulate animal health, whereas little is known about the impact of the 2 methods. This study aimed to investigate the effects of gut microbes on jejunal function in healthy broiler chickens, with the objective of establishing a theoretical basis for the application of FMT and FVT. Cecal feces from 28-day-old AA broilers were collected to prepare gavage juice for FMT and FVT. FMT for Group FM, FVT for group FV and PBS gavage for group CON, continuously treated for 6 days start at 5-day-old chicks. Samples were collected at d 11 and d 21. The results showed that the treatment d 2 and the overall fecal score in treatment groups were significantly lower than CON group (P < 0.05). The jejunum morphology showed that FMT increased crypt depth, decreased villus height, V/C (P < 0.05) and FVT increased villus height (P < 0.05) at d 11. At d 21, villus height and crypt depth significantly higher (P < 0.05) in group FM and group FV. The expression of Claudin1, Occludin, ZO2, and Muc2 in the FV group was significantly increased (P < 0.05) at 11-day-old. FMT increased the secretion of sIgA at 11-day-old, and this influence lasted up to 21-day-old (P < 0.05). At 11-day-old, the expression of b0+AT of basic amino acid transport carrier and chymotrypsin activity (P < 0.05) had a significant correlation. At 21 d of age, FVT significantly increased the expression of PepT1 and SGLT1 (P < 0.05). At 11-day-old, FM group showed significantly higher faith pd index (P = 0.004) and Shannon index (P = 0.037), and separated from FV and CON according to PCoA. Among differentiating bacteria, Bacteroides significantly enriched (P < 0.05) in group FM, which positively correlated with the expression of ZO2, Muc2, Occludin, and Claudin1; R_Ruminococcus, L_Ruminococcus, Butyricicoccuss significantly enriched (P < 0.05) in group CON, which significantly higher than processing groups, R_Ruminococcus and L_Ruminococcus negatively correlated with the expression of Occludin (P < 0.05), and R_Ruminococcus, Butyricicoccus negatively correlated with the expression of Claudin1 (P < 0.05). At 21-day-old, PCoA based on Bray-Curtis shows that microbes taxa of 3 groups are isolated with each other and treatment groups were significant different with CON group based on Unweighted UniFrac and weighted UniFrac. The expression of PepT1 was significantly negatively (P < 0.05) correlated with Ruminococcus, and the expression of sIgA was significantly negatively (P < 0.05) correlated with Parabacteroides. In conclusion, FMT regulated intestinal flora rapidly, while it had little effect on intestinal function and a higher potential damaging risk on jejunal. FVT regulated intestinal flora structure softer, improved tight junction expression, but the mechanism of action needs further exploration.
Collapse
Affiliation(s)
- Hongyu Feng
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, PR China
| | - Jiaying Xiong
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, PR China
| | - Saisai Liang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, PR China
| | - Yinlong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, PR China
| | - Yufei Zhu
- DAYU Bioengeineering (Xi' an) Industrial Development Research Institute. Shaanxi, China; Shanxi Dayu Biological Functions Co., Ltd. Shanxi, China
| | - Qihang Hou
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, PR China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, PR China; DAYU Bioengeineering (Xi' an) Industrial Development Research Institute. Shaanxi, China
| | - Xin Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, PR China; DAYU Bioengeineering (Xi' an) Industrial Development Research Institute. Shaanxi, China.
| |
Collapse
|
11
|
Xu C, Fu F, She Y, Yang D, Peng K, Lin Y, Xu C. Development of a new candidate vaccine against piglet diarrhea caused by Escherichia coli. Open Life Sci 2023; 18:20220804. [PMID: 38196514 PMCID: PMC10775170 DOI: 10.1515/biol-2022-0804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/02/2023] [Accepted: 11/14/2023] [Indexed: 01/11/2024] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is an important type of pathogenic bacteria that causes diarrhea in humans and young livestock. The pathogen has a high morbidity and mortality rate, resulting in significant economic losses in the pig industry. To effectively prevent piglet diarrhea, we developed a new tetravalent genetically engineered vaccine that specifically targets ETEC. To eliminate the natural toxin activity of ST1 enterotoxin and enhance the preventive effect of the vaccine, the mutated ST 1, K88ac, K99, and LT B genes were amplified by PCR and site-specific mutation techniques. The recombinant strain BL21(DE3)(pXKK3SL) was constructed and achieved high expression. Animal experiments showed that the inactivated vaccine had eliminated the natural toxin activity of ST1. The immune protection test demonstrated that the inclusion body and inactivated vaccine exhibited a positive immune effect. The protection rates of the inclusion body group and inactivated vaccine group were 96 and 98%, respectively, when challenged with 1 minimum lethal dose, indicating that the constructed K88ac-K99-3ST1-LTB vaccine achieved a strong immune effect. Additionally, the minimum immune doses for mice and pregnant sows were determined to be 0.2 and 2 mL, respectively. This study suggests that the novel K88ac-K99-3ST1-LTB vaccine has a wide immune spectrum and can prevent diarrhea caused by ETEC through enterotoxin and fimbrial pathways. The aforementioned research demonstrates that the K88ac-K99-3ST1-LTB vaccine offers a new genetically engineered vaccine that shows potential for preventing diarrhea in newborn piglets.
Collapse
Affiliation(s)
- Chongli Xu
- College of Medical Technology, Chongqing Medical and Pharmaceutical College, 82 Daxuecheng Road, Chongqing401331, PR China
| | - Fengyang Fu
- College of Medical Technology, Chongqing Medical and Pharmaceutical College, 82 Daxuecheng Road, Chongqing401331, PR China
| | - Yuhan She
- College of Medical Technology, Chongqing Medical and Pharmaceutical College, 82 Daxuecheng Road, Chongqing401331, PR China
| | - Danni Yang
- College of Medical Technology, Chongqing Medical and Pharmaceutical College, 82 Daxuecheng Road, Chongqing401331, PR China
| | - Kun Peng
- College of Medical Technology, Chongqing Medical and Pharmaceutical College, 82 Daxuecheng Road, Chongqing401331, PR China
| | - Yimin Lin
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing400030, PR China
| | - ChongBo Xu
- School of Biology and Agriculture, Shaoguan University, Shaoguan512005, PR China
| |
Collapse
|
12
|
Zou G, He L, Rao J, Song Z, Du H, Li R, Wang W, Zhou Y, Liang L, Chen H, Li J. Improving the safety and efficacy of phage therapy from the perspective of phage-mammal interactions. FEMS Microbiol Rev 2023; 47:fuad042. [PMID: 37442611 DOI: 10.1093/femsre/fuad042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/30/2023] [Accepted: 07/12/2023] [Indexed: 07/15/2023] Open
Abstract
Phage therapy has re-emerged as a promising solution for combating antimicrobial-resistant bacterial infections. Increasingly, studies have revealed that phages possess therapeutic potential beyond their antimicrobial properties, including regulating the gut microbiome and maintain intestinal homeostasis, as a novel nanocarrier for targeted drug delivery. However, the complexity and unpredictability of phage behavior during treatment pose a significant challenge in clinical practice. The intricate interactions established between phages, humans, and bacteria throughout their long coexistence in the natural ecosystem contribute to the complexity of phage behavior in therapy, raising concerns about their efficacy and safety as therapeutic agents. Revealing the mechanisms by which phages interact with the human body will provide a theoretical basis for increased application of promising phage therapy. In this review, we provide a comprehensive summary of phage-mammal interactions, including signaling pathways, adaptive immunity responses, and phage-mediated anti-inflammatory responses. Then, from the perspective of phage-mammalian immune system interactions, we present the first systematic overview of the factors affecting phage therapy, such as the mode of administration, the physiological status of the patient, and the biological properties of the phage, to offer new insights into phage therapy for various human diseases.
Collapse
Affiliation(s)
- Geng Zou
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Lijun He
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Rao
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiyong Song
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Hu Du
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Runze Li
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenjing Wang
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Zhou
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu Liang
- School of Bioscience, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinquan Li
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| |
Collapse
|
13
|
Sciascia QL, Metges CC. Review: Methods and biomarkers to investigate intestinal function and health in pigs. Animal 2023; 17 Suppl 3:100860. [PMID: 37316380 DOI: 10.1016/j.animal.2023.100860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 06/16/2023] Open
Abstract
Society is becoming increasingly critical of animal husbandry due to its environmental impact and issues involving animal health and welfare including scientific experiments conducted on farm animals. This opens up two new fields of scientific research, the development of non- or minimally invasive (1) methods and techniques using faeces, urine, breath or saliva sampling to replace existing invasive models, and (2) biomarkers reflecting a disease or malfunction of an organ that may predict the future outcome of a pig's health, performance or sustainability. To date, there is a paucity of non- or minimally invasive methods and biomarkers investigating gastrointestinal function and health in pigs. This review describes recent literature pertaining to parameters that assess gastrointestinal functionality and health, tools currently used to investigate them, and the development or the potential to develop new non- and minimally invasive methods and/or biomarkers in pigs. Methods described within this review are those that characterise gastrointestinal mass such as the citrulline generation test, intestinal protein synthesis rate, first pass splanchnic nutrient uptake and techniques describing intestinal proliferation, barrier function and transit rate, and microbial composition and metabolism. An important consideration is gut health, and several molecules with the potential to act as biomarkers of compromised gut health in pigs are reported. Many of these methods to investigate gut functionality and health are considered 'gold standards' but are invasive. Thus, in pigs, there is a need to develop and validate non-invasive methods and biomarkers that meet the principles of the 3 R guidelines, which aim to reduce and refine animal experimentation and replace animals where possible.
Collapse
Affiliation(s)
- Q L Sciascia
- Research Institute for Farm Animal Biology, Institute of Nutritional Physiology "Oskar Kellner", Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - C C Metges
- Research Institute for Farm Animal Biology, Institute of Nutritional Physiology "Oskar Kellner", Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| |
Collapse
|
14
|
Tang W, Zhang Z, Nie D, Li Y, Liu S, Li Y. Protective Effect of Citrus Medica limonum Essential Oil against Escherichia coli K99-Induced Intestinal Barrier Injury in Mice. Nutrients 2023; 15:2697. [PMID: 37375600 DOI: 10.3390/nu15122697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Citrus Medica limonum essential oil (LEO) has been reported to have antibacterial and anti-inflammatory activities, but its protective effect in the intestine remains unknown. In this study, we researched the protective effects of LEO in relation to intestinal inflammation induced by E. coli K99. The mice were pretreated with 300, 600, and 1200 mg/kg LEO and then stimulated with E. coli K99. The results showed that E. coli K99 caused immune organ responses, intestinal tissue injury, and inflammation. LEO pretreatment dose-dependently alleviated these changes by maintaining a low index in the thymus and spleen and producing a high content of immunoglobulin A, G, and M (IgA, IgG, and IgM) and low content of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6). Intestinal integrity as a consequence of the LEO pretreatment may be related to the high mRNA expression of intestinal trefoil factor (ITF) and the low mRNA expression of transforming growth factor-β1 (TGF-β1). Conclusively, an LEO pretreatment can alleviate E. coli K99-induced diarrhea, immune organ response, and body inflammation in mice by reducing the levels of inflammatory cytokines and improving the levels of immunoglobulin, and the intestinal integrity remained highest when maintaining the high mRNA expression of ITF and keeping the mRNA expression of TGF-β1 low in the intestinal tissue.
Collapse
Affiliation(s)
- Weixuan Tang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Zhuo Zhang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Dechao Nie
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yan Li
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Shutian Liu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yanling Li
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|
15
|
Navez M, Antoine C, Laforêt F, Goya-Jorge E, Douny C, Scippo ML, Vermeersch M, Duprez JN, Daube G, Mainil J, Taminiau B, Delcenserie V, Thiry D. In Vitro Effect on Piglet Gut Microbiota and In Vivo Assessment of Newly Isolated Bacteriophages against F18 Enterotoxigenic Escherichia coli (ETEC). Viruses 2023; 15:v15051053. [PMID: 37243139 DOI: 10.3390/v15051053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) causing post-weaning diarrhea (PWD) in piglets have a detrimental impact on animal health and economy in pig production. ETEC strains can adhere to the host's small intestinal epithelial cells using fimbriae such as F4 and F18. Phage therapy could represent an interesting alternative to antimicrobial resistance against ETEC infections. In this study, four bacteriophages, named vB_EcoS_ULIM2, vB_EcoM_ULIM3, vB_EcoM_ULIM8 and vB_EcoM_ULIM9, were isolated against an O8:F18 E. coli strain (A-I-210) and selected based on their host range. These phages were characterized in vitro, showing a lytic activity over a pH (4-10) and temperature (25-45 °C) range. According to genomic analysis, these bacteriophages belong to the Caudoviricetes class. No gene related to lysogeny was identified. The in vivo Galleria mellonella larvae model suggested the therapeutic potential of one selected phage, vB_EcoS_ULIM2, with a statistically significant increase in survival compared to non-treated larvae. To assess the effect of this phage on the piglet gut microbiota, vB_EcoS_ULIM2 was inoculated in a static model simulating the piglet intestinal microbial ecosystem for 72 h. This study shows that this phage replicates efficiently both in vitro and in vivo in a Galleria mellonella model and reveals the safety of the phage-based treatment on the piglet microbiota.
Collapse
Affiliation(s)
- Margaux Navez
- Laboratory of Bacteriology, Department of Infectious and Parasitic Diseases, FARAH and Faculty of Veterinary Medicine, University of Liege, 4000 Liege, Belgium
- Unit of Cardiovascular Sciences, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), University of Liege, 4000 Liege, Belgium
| | - Céline Antoine
- Laboratory of Bacteriology, Department of Infectious and Parasitic Diseases, FARAH and Faculty of Veterinary Medicine, University of Liege, 4000 Liege, Belgium
- Laboratory of Food Quality Management, Food Science Department, FARAH and Faculty of Veterinary Medicine, University of Liège, 4000 Liege, Belgium
| | - Fanny Laforêt
- Laboratory of Bacteriology, Department of Infectious and Parasitic Diseases, FARAH and Faculty of Veterinary Medicine, University of Liege, 4000 Liege, Belgium
- Laboratory of Food Quality Management, Food Science Department, FARAH and Faculty of Veterinary Medicine, University of Liège, 4000 Liege, Belgium
| | - Elizabeth Goya-Jorge
- Laboratory of Food Quality Management, Food Science Department, FARAH and Faculty of Veterinary Medicine, University of Liège, 4000 Liege, Belgium
| | - Caroline Douny
- Laboratory of Food Analysis, Department of Food Sciences, FARAH and Faculty of Veterinary Medicine, University of Liège, 4000 Liege, Belgium
| | - Marie-Louise Scippo
- Laboratory of Food Analysis, Department of Food Sciences, FARAH and Faculty of Veterinary Medicine, University of Liège, 4000 Liege, Belgium
| | - Marjorie Vermeersch
- Center for Microscopy and Molecular Imaging, Electron Microscopy Laboratory, ULB, 6041 Gosselies, Belgium
| | - Jean-Noël Duprez
- Laboratory of Bacteriology, Department of Infectious and Parasitic Diseases, FARAH and Faculty of Veterinary Medicine, University of Liege, 4000 Liege, Belgium
| | - Georges Daube
- Laboratory of Food Microbiology, Fundamental and Applied Research for Animals & Health (FARAH), Department of Food Sciences, Faculty of Veterinary Medicine, University of Liege, 4000 Liege, Belgium
| | - Jacques Mainil
- Laboratory of Bacteriology, Department of Infectious and Parasitic Diseases, FARAH and Faculty of Veterinary Medicine, University of Liege, 4000 Liege, Belgium
| | - Bernard Taminiau
- Laboratory of Food Microbiology, Fundamental and Applied Research for Animals & Health (FARAH), Department of Food Sciences, Faculty of Veterinary Medicine, University of Liege, 4000 Liege, Belgium
| | - Véronique Delcenserie
- Laboratory of Food Quality Management, Food Science Department, FARAH and Faculty of Veterinary Medicine, University of Liège, 4000 Liege, Belgium
| | - Damien Thiry
- Laboratory of Bacteriology, Department of Infectious and Parasitic Diseases, FARAH and Faculty of Veterinary Medicine, University of Liege, 4000 Liege, Belgium
| |
Collapse
|
16
|
Ferreira A, Silva D, Almeida C, Rodrigues ME, Silva S, Castro J, Mil-Homens D, García-Meniño I, Mora A, Henriques M, Oliveira A. Effect of phage vB_EcoM_FJ1 on the reduction of ETEC O9:H9 infection in a neonatal pig cell line. Vet Res 2023; 54:26. [PMID: 36949480 PMCID: PMC10035155 DOI: 10.1186/s13567-023-01157-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/02/2023] [Indexed: 03/24/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) colonizes the intestine of young pigs causing severe diarrhoea and consequently bringing high production costs. The rise of antibiotic selective pressure together with ongoing limitations on their use, demands new strategies to tackle this pathology. The pertinence of using bacteriophages as an alternative is being explored, and in this work, the efficacy of phage vB_EcoM_FJ1 (FJ1) in reducing the load of ETEC EC43-Ph (serotype O9:H9 expressing the enterotoxin STa and two adhesins F5 and F41) was assessed. Foreseeing the oral application on piglets, FJ1 was encapsulated on calcium carbonate and alginate microparticles, thus preventing phage release under adverse conditions of the simulated gastric fluid (pH 3.0) and allowing phage availability in simulated intestinal fluid (pH 6.5). A single dose of encapsulated FJ1, provided to IPEC-1 cultured cells (from intestinal epithelium of piglets) previously infected by EC43, provided bacterial reductions of about 99.9% after 6 h. Although bacteriophage-insensitive mutants (BIMs) have emerged from treatment, the consequent fitness costs associated with this new phenotype were demonstrated, comparatively to the originating strain. The higher competence of the pig complement system to decrease BIMs' viability, the lower level of colonization of IPEC-1 cells observed with these mutants, and the increased survival rates and health index recorded in infected Galleria mellonella larvae supported this observation. Most of all, FJ1 established a proof-of-concept of the efficiency of phages to fight against ETEC in piglet intestinal cells.
Collapse
Affiliation(s)
- Alice Ferreira
- ALS ControlVet, Zona Industrial de Tondela ZIMII, Lote 6, 3460-605, Tondela, Portugal
| | - Daniela Silva
- ALS ControlVet, Zona Industrial de Tondela ZIMII, Lote 6, 3460-605, Tondela, Portugal
| | - Carina Almeida
- ALS ControlVet, Zona Industrial de Tondela ZIMII, Lote 6, 3460-605, Tondela, Portugal
| | - Maria Elisa Rodrigues
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
- LABBELS- Associate Laboratory, 4800-122, Guimarães, Portugal
| | - Sónia Silva
- I.P - National Institute for Agrarian and Veterinarian Research (INIAV), Rua Dos Lagidos, 4485-655, Vila Do Conde, Portugal
| | - Joana Castro
- I.P - National Institute for Agrarian and Veterinarian Research (INIAV), Rua Dos Lagidos, 4485-655, Vila Do Conde, Portugal
| | - Dalila Mil-Homens
- Institute for Bioengineering and Biosciences (IBB), Instituto Superior Técnico, 1049-001, Lisbon, Portugal
| | - Isidro García-Meniño
- Laboratorio de Referencia de Escherichia Coli (LREC), Departamento de Microbioloxía E Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), 27002, Lugo, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
- Department for Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Azucena Mora
- Laboratorio de Referencia de Escherichia Coli (LREC), Departamento de Microbioloxía E Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), 27002, Lugo, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
| | - Mariana Henriques
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
- LABBELS- Associate Laboratory, 4800-122, Guimarães, Portugal
| | - Ana Oliveira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.
- LABBELS- Associate Laboratory, 4800-122, Guimarães, Portugal.
| |
Collapse
|
17
|
Castro J, Barros MM, Araújo D, Campos AM, Oliveira R, Silva S, Almeida C. Swine enteric colibacillosis: Current treatment avenues and future directions. Front Vet Sci 2022; 9:981207. [PMID: 36387374 PMCID: PMC9650617 DOI: 10.3389/fvets.2022.981207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/10/2022] [Indexed: 09/10/2023] Open
Abstract
Enteric colibacillosis is a common disease in nursing and weanling pigs. It is caused by the colonization of the small intestine by enterotoxigenic strains of Escherichia coli (ETEC) that make use of specific fimbria or pili to adhere to the absorptive epithelial cells of the jejunum and ileum. Once attached, and when both the immunological systems and the gut microbiota are poorly developed, ETEC produce one or more enterotoxins that can have local and, further on, systemic effects. These enterotoxins cause fluid and electrolytes to be secreted into the intestinal lumen of animals, which results in diarrhea, dehydration, and acidosis. From the diversity of control strategies, antibiotics and zinc oxide are the ones that have contributed more significantly to mitigating post-weaning diarrhea (PWD) economic losses. However, concerns about antibiotic resistance determined the restriction on the use of critically important antimicrobials in food-producing animals and the prohibition of their use as growth promoters. As such, it is important now to begin the transition from these preventive/control measures to other, more sustainable, approaches. This review provides a quick synopsis of the currently approved and available therapies for PWD treatment while presenting an overview of novel antimicrobial strategies that are being explored for the control and treatment of this infection, including, prebiotics, probiotics, synbiotics, organic acids, bacteriophages, spray-dried plasma, antibodies, phytogenic substances, antisense oligonucleotides, and aptamers.
Collapse
Affiliation(s)
- Joana Castro
- National Institute for Agrarian and Veterinarian Research (INIAV), Vila do Conde, Portugal
| | - Maria Margarida Barros
- National Institute for Agrarian and Veterinarian Research (INIAV), Vila do Conde, Portugal
| | - Daniela Araújo
- National Institute for Agrarian and Veterinarian Research (INIAV), Vila do Conde, Portugal
| | - Ana Maria Campos
- National Institute for Agrarian and Veterinarian Research (INIAV), Vila do Conde, Portugal
| | - Ricardo Oliveira
- National Institute for Agrarian and Veterinarian Research (INIAV), Vila do Conde, Portugal
- LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE – Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Sónia Silva
- National Institute for Agrarian and Veterinarian Research (INIAV), Vila do Conde, Portugal
- Centre of Biological Engineering, Braga, Portugal
- LABBELS – Associate Laboratory, Braga/Guimarães, Portugal
| | - Carina Almeida
- National Institute for Agrarian and Veterinarian Research (INIAV), Vila do Conde, Portugal
- LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE – Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- Centre of Biological Engineering, Braga, Portugal
- LABBELS – Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
18
|
Whole Genome Sequencing and CRISPR/Cas9 Gene Editing of Enterotoxigenic Escherichia coli BE311 for Fluorescence Labeling and Enterotoxin Analyses. Int J Mol Sci 2022; 23:ijms23147502. [PMID: 35886856 PMCID: PMC9321511 DOI: 10.3390/ijms23147502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 01/07/2023] Open
Abstract
Some prevention strategies, including vaccines and antibiotic alternatives, have been developed to reduce enterotoxigenic Escherichia coli proliferation in animal production. In this study, a wild-type strain of BE311 with a virulent heat-stable enterotoxin gene identical to E. coli K99 was isolated for its high potential for gene expression ability. The whole genome of E. coli BE311 was sequenced for gene analyses and editing. Subsequently, the fluorescent gene mCherry was successfully knocked into the genome of E. coli BE311 by CRISPR/Cas9. The E. coli BE311−mCherry strain was precisely quantified through the fluorescence intensity and red colony counting. The inflammatory factors in different intestinal tissues all increased significantly after an E. coli BE311−mCherry challenge in Sprague−Dawley rats (p < 0.05). The heat-stable enterotoxin gene of E. coli BE311 was knocked out, and an attenuated vaccine host E. coli BE311-STKO was constructed. Flow cytometry showed apoptotic cell numbers were lower following a challenge of IPEC-J2 cells with E. coli BE311-STKO than with E. coli BE311. Therefore, the E. coli BE311−mCherry and E. coli BE311-STKO strains that were successfully constructed based on the gene knock-in and knock-out technology could be used as ideal candidates in ETEC challenge models and for the development of attenuated vaccines.
Collapse
|
19
|
Sauvaitre T, Van Herreweghen F, Delbaere K, Durif C, Van Landuyt J, Fadhlaoui K, Huille S, Chaucheyras-Durand F, Etienne-Mesmin L, Blanquet-Diot S, Van de Wiele T. Lentils and Yeast Fibers: A New Strategy to Mitigate Enterotoxigenic Escherichia coli (ETEC) Strain H10407 Virulence? Nutrients 2022; 14:nu14102146. [PMID: 35631287 PMCID: PMC9144138 DOI: 10.3390/nu14102146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 01/10/2023] Open
Abstract
Dietary fibers exhibit well-known beneficial effects on human health, but their anti-infectious properties against enteric pathogens have been poorly investigated. Enterotoxigenic Escherichia coli (ETEC) is a major food-borne pathogen that causes acute traveler’s diarrhea. Its virulence traits mainly rely on adhesion to an epithelial surface, mucus degradation, and the secretion of two enterotoxins associated with intestinal inflammation. With the increasing burden of antibiotic resistance worldwide, there is an imperious need to develop novel alternative strategies to control ETEC infections. This study aimed to investigate, using complementary in vitro approaches, the inhibitory potential of two dietary-fiber-containing products (a lentil extract and yeast cell walls) against the human ETEC reference strain H10407. We showed that the lentil extract decreased toxin production in a dose-dependent manner, reduced pro-inflammatory interleukin-8 production, and modulated mucus-related gene induction in ETEC-infected mucus-secreting intestinal cells. We also report that the yeast product reduced ETEC adhesion to mucin and Caco-2/HT29-MTX cells. Both fiber-containing products strengthened intestinal barrier function and modulated toxin-related gene expression. In a complex human gut microbial background, both products did not elicit a significant effect on ETEC colonization. These pioneering data demonstrate the promising role of dietary fibers in controlling different stages of the ETEC infection process.
Collapse
Affiliation(s)
- Thomas Sauvaitre
- UMR 454 INRAE, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France; (T.S.); (C.D.); (K.F.); (F.C.-D.); (L.E.-M.)
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; (F.V.H.); (K.D.); (J.V.L.); (T.V.d.W.)
| | - Florence Van Herreweghen
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; (F.V.H.); (K.D.); (J.V.L.); (T.V.d.W.)
| | - Karen Delbaere
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; (F.V.H.); (K.D.); (J.V.L.); (T.V.d.W.)
| | - Claude Durif
- UMR 454 INRAE, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France; (T.S.); (C.D.); (K.F.); (F.C.-D.); (L.E.-M.)
| | - Josefien Van Landuyt
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; (F.V.H.); (K.D.); (J.V.L.); (T.V.d.W.)
| | - Khaled Fadhlaoui
- UMR 454 INRAE, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France; (T.S.); (C.D.); (K.F.); (F.C.-D.); (L.E.-M.)
| | | | - Frédérique Chaucheyras-Durand
- UMR 454 INRAE, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France; (T.S.); (C.D.); (K.F.); (F.C.-D.); (L.E.-M.)
- Lallemand SAS, 19 Rue des Briquetiers, BP 59, CEDEX, F-31702 Blagnac, France
| | - Lucie Etienne-Mesmin
- UMR 454 INRAE, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France; (T.S.); (C.D.); (K.F.); (F.C.-D.); (L.E.-M.)
| | - Stéphanie Blanquet-Diot
- UMR 454 INRAE, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France; (T.S.); (C.D.); (K.F.); (F.C.-D.); (L.E.-M.)
- Correspondence: ; Tel.: +33-(0)4-73-17-83-90
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; (F.V.H.); (K.D.); (J.V.L.); (T.V.d.W.)
| |
Collapse
|
20
|
Potential Probiotic Lacticaseibacillus paracasei MJM60396 Prevents Hyperuricemia in a Multiple Way by Absorbing Purine, Suppressing Xanthine Oxidase and Regulating Urate Excretion in Mice. Microorganisms 2022; 10:microorganisms10050851. [PMID: 35630296 PMCID: PMC9146106 DOI: 10.3390/microorganisms10050851] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023] Open
Abstract
Hyperuricemia is a metabolic disorder caused by increased uric acid (UA) synthesis or decreased UA excretion. Changes in eating habits have led to an increase in the consumption of purine-rich foods, which is closely related to hyperuricemia. Therefore, decreased purine absorption, increased UA excretion, and decreased UA synthesis are the main strategies to ameliorate hyperuricemia. This study aimed to screen the lactic acid bacteria (LAB) with purine degrading ability and examine the serum UA-lowering effect in a hyperuricemia mouse model. As a result, Lacticaseibacillus paracasei MJM60396 was selected from 22 LAB isolated from fermented foods for 100% assimilation of inosine and guanosine. MJM60396 showed probiotic characteristics and safety properties. In the animal study, the serum uric acid was significantly reduced to a normal level after oral administration of MJM60396 for 3 weeks. The amount of xanthine oxidase, which catalyzes the formation of uric acid, decreased by 81%, and the transporters for excretion of urate were upregulated. Histopathological analysis showed that the damaged glomerulus, Bowman’s capsule, and tubules of the kidney caused by hyperuricemia was relieved. In addition, the impaired intestinal barrier was recovered and the expression of tight junction proteins, ZO-1 and occludin, was increased. Analysis of the microbiome showed that the relative abundance of Muribaculaceae and Lachnospiraceae bacteria, which were related to the intestinal barrier integrity, was increased in the MJM60396 group. Therefore, these results demonstrated that L. paracasei MJM60396 can prevent hyperuricemia in multiple ways by absorbing purines, decreasing UA synthesis by suppressing xanthine oxidase, and increasing UA excretion by regulating urate transporters.
Collapse
|