1
|
Dvorak NM, Domingo ND, Tapia CM, Wadsworth PA, Marosi M, Avchalumov Y, Fongsaran C, Koff L, Di Re J, Sampson CM, Baumgartner TJ, Wang P, Villarreal PP, Solomon OD, Stutz SJ, Aditi, Porter J, Gbedande K, Prideaux B, Green TA, Seeley EH, Samir P, Dineley KT, Vargas G, Zhou J, Cisneros I, Stephens R, Laezza F. TNFR1 signaling converging on FGF14 controls neuronal hyperactivity and sickness behavior in experimental cerebral malaria. J Neuroinflammation 2023; 20:306. [PMID: 38115011 PMCID: PMC10729485 DOI: 10.1186/s12974-023-02992-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Excess tumor necrosis factor (TNF) is implicated in the pathogenesis of hyperinflammatory experimental cerebral malaria (eCM), including gliosis, increased levels of fibrin(ogen) in the brain, behavioral changes, and mortality. However, the role of TNF in eCM within the brain parenchyma, particularly directly on neurons, remains underdefined. Here, we investigate electrophysiological consequences of eCM on neuronal excitability and cell signaling mechanisms that contribute to observed phenotypes. METHODS The split-luciferase complementation assay (LCA) was used to investigate cell signaling mechanisms downstream of tumor necrosis factor receptor 1 (TNFR1) that could contribute to changes in neuronal excitability in eCM. Whole-cell patch-clamp electrophysiology was performed in brain slices from eCM mice to elucidate consequences of infection on CA1 pyramidal neuron excitability and cell signaling mechanisms that contribute to observed phenotypes. Involvement of identified signaling molecules in mediating behavioral changes and sickness behavior observed in eCM were investigated in vivo using genetic silencing. RESULTS Exploring signaling mechanisms that underlie TNF-induced effects on neuronal excitability, we found that the complex assembly of fibroblast growth factor 14 (FGF14) and the voltage-gated Na+ (Nav) channel 1.6 (Nav1.6) is increased upon tumor necrosis factor receptor 1 (TNFR1) stimulation via Janus Kinase 2 (JAK2). On account of the dependency of hyperinflammatory experimental cerebral malaria (eCM) on TNF, we performed patch-clamp studies in slices from eCM mice and showed that Plasmodium chabaudi infection augments Nav1.6 channel conductance of CA1 pyramidal neurons through the TNFR1-JAK2-FGF14-Nav1.6 signaling network, which leads to hyperexcitability. Hyperexcitability of CA1 pyramidal neurons caused by infection was mitigated via an anti-TNF antibody and genetic silencing of FGF14 in CA1. Furthermore, knockdown of FGF14 in CA1 reduced sickness behavior caused by infection. CONCLUSIONS FGF14 may represent a therapeutic target for mitigating consequences of TNF-mediated neuroinflammation.
Collapse
Affiliation(s)
- Nolan M Dvorak
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Nadia D Domingo
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Cynthia M Tapia
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Paul A Wadsworth
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Mate Marosi
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Yosef Avchalumov
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Chanida Fongsaran
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Leandra Koff
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Jessica Di Re
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Catherine M Sampson
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Timothy J Baumgartner
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Pingyuan Wang
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Paula P Villarreal
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Clinical Sciences Program, The Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Olivia D Solomon
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Sonja J Stutz
- Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Aditi
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Jacob Porter
- Department of Chemistry, University of Texas, Austin, TX, 78712, USA
| | - Komi Gbedande
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Center for Immunity and Inflammation and Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, 07301, USA
| | - Brendan Prideaux
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Thomas A Green
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Erin H Seeley
- Department of Chemistry, University of Texas, Austin, TX, 78712, USA
| | - Parimal Samir
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Kelley T Dineley
- Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Gracie Vargas
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Jia Zhou
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Irma Cisneros
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Robin Stephens
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA.
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
- Center for Immunity and Inflammation and Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, 07301, USA.
| | - Fernanda Laezza
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
2
|
De Felice E, Gonçalves de Andrade E, Golia MT, González Ibáñez F, Khakpour M, Di Castro MA, Garofalo S, Di Pietro E, Benatti C, Brunello N, Tascedda F, Kaminska B, Limatola C, Ragozzino D, Tremblay ME, Alboni S, Maggi L. Microglial diversity along the hippocampal longitudinal axis impacts synaptic plasticity in adult male mice under homeostatic conditions. J Neuroinflammation 2022; 19:292. [PMID: 36482444 PMCID: PMC9730634 DOI: 10.1186/s12974-022-02655-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
The hippocampus is a plastic brain area that shows functional segregation along its longitudinal axis, reflected by a higher level of long-term potentiation (LTP) in the CA1 region of the dorsal hippocampus (DH) compared to the ventral hippocampus (VH), but the mechanisms underlying this difference remain elusive. Numerous studies have highlighted the importance of microglia-neuronal communication in modulating synaptic transmission and hippocampal plasticity, although its role in physiological contexts is still largely unknown. We characterized in depth the features of microglia in the two hippocampal poles and investigated their contribution to CA1 plasticity under physiological conditions. We unveiled the influence of microglia in differentially modulating the amplitude of LTP in the DH and VH, showing that minocycline or PLX5622 treatment reduced LTP amplitude in the DH, while increasing it in the VH. This was recapitulated in Cx3cr1 knockout mice, indicating that microglia have a key role in setting the conditions for plasticity processes in a region-specific manner, and that the CX3CL1-CX3CR1 pathway is a key element in determining the basal level of CA1 LTP in the two regions. The observed LTP differences at the two poles were associated with transcriptional changes in the expression of genes encoding for Il-1, Tnf-α, Il-6, and Bdnf, essential players of neuronal plasticity. Furthermore, microglia in the CA1 SR region showed an increase in soma and a more extensive arborization, an increased prevalence of immature lysosomes accompanied by an elevation in mRNA expression of phagocytic markers Mertk and Cd68 and a surge in the expression of microglial outward K+ currents in the VH compared to DH, suggesting a distinct basal phenotypic state of microglia across the two hippocampal poles. Overall, we characterized the molecular, morphological, ultrastructural, and functional profile of microglia at the two poles, suggesting that modifications in hippocampal subregions related to different microglial statuses can contribute to dissect the phenotypical aspects of many diseases in which microglia are known to be involved.
Collapse
Affiliation(s)
- E. De Felice
- grid.7841.aDepartment of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - E. Gonçalves de Andrade
- grid.143640.40000 0004 1936 9465Division of Medical Sciences, University of Victoria, Victoria, Canada
| | - M. T. Golia
- grid.7841.aDepartment of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - F. González Ibáñez
- grid.143640.40000 0004 1936 9465Division of Medical Sciences, University of Victoria, Victoria, Canada ,grid.411081.d0000 0000 9471 1794Faculté de Médecine and Centre de Recherche, CHU de Québec-Université Laval, Quebec, Canada
| | - M. Khakpour
- grid.143640.40000 0004 1936 9465Division of Medical Sciences, University of Victoria, Victoria, Canada
| | - M. A. Di Castro
- grid.7841.aDepartment of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - S. Garofalo
- grid.7841.aDepartment of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - E. Di Pietro
- grid.7841.aDepartment of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - C. Benatti
- grid.7548.e0000000121697570Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy ,grid.7548.e0000000121697570Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - N. Brunello
- grid.7548.e0000000121697570Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - F. Tascedda
- grid.7548.e0000000121697570Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy ,grid.7548.e0000000121697570Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - B. Kaminska
- grid.419305.a0000 0001 1943 2944Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - C. Limatola
- grid.419543.e0000 0004 1760 3561IRCCS Neuromed, Pozzilli, Italy ,grid.7841.aDepartment of Physiology and Pharmacology, Laboratory Affiliated to Istituto Pasteur, Sapienza University, Rome, Italy
| | - D. Ragozzino
- grid.7841.aDepartment of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy ,grid.417778.a0000 0001 0692 3437Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - M. E. Tremblay
- grid.143640.40000 0004 1936 9465Division of Medical Sciences, University of Victoria, Victoria, Canada ,grid.411081.d0000 0000 9471 1794Faculté de Médecine and Centre de Recherche, CHU de Québec-Université Laval, Quebec, Canada
| | - S. Alboni
- grid.7548.e0000000121697570Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy ,grid.7548.e0000000121697570Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - L. Maggi
- grid.7841.aDepartment of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| |
Collapse
|