1
|
B K, Manjunatha JG, Osman SM, Ataollahi N. Electrochemical polymerized DL-phenylalanine modified carbon nanotube sensor for the selective and sensitive determination of caffeic acid with riboflavin. Sci Rep 2024; 14:30950. [PMID: 39730719 DOI: 10.1038/s41598-024-82011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 12/02/2024] [Indexed: 12/29/2024] Open
Abstract
In this study, DL-phenylalanine modified with a multiwall carbon nanotube paste electrode is used as advanced electrochemical sensor for analysing of 0.1 mM caffeic acid (CFA) with simultaneous detection of riboflavin (RFN). The developed sensors include electrochemically polymerized DL-phenylalanine (DL-PA) modified multiwall carbon nanotube paste electrode [DL-PAMMCNTPE] and bare multiwall carbon nanotube paste electrode [BMCNTPE]. The increasing stability in the developed electrochemical sensor for the quantification of CFA is highlighted in detail, along with its characterization using voltammetric techniques such as electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), differential pulse voltammetry (DPV), and linear Sweep Voltammetry (LSV). Scanning electron microscopy (SEM) technique was used to studied the structural analysis of BMCNTPE and DL-PAMMCNTPE surface. The investigation of 0.1 mM CFA in 0.2 M phosphate buffered solution (PBS) using a 7.0 pH at 0.1 V/s scan rate was highlighted using DL-PAMMCNTPE, which shows good electrochemical responses compared to BMCNTPE. This work characterizes the voltammetric responses by inspecting the pH effect, scan rate effect, and concentration difference of CFA at the DL-PAMMCNTPE surface. The CFA responses specify that the scan rate progress is adsorption controlled. The concentration of CFA detection was started from 20 μM to 600 μM using DPV method, with lower limit of detection (LOD) of 0.280 μM and limit of quantification (LOQ) of 0.936 μM. And for CV method concentration range 20 to 550 μM, with LOD of 0.198 μM and LOQ of 0.702 μM. Furthermore, the developed electrochemical sensor responses are shows good stability, repeatability, and reproducibility, for CFA. The analytical applicability of CFA in apple juice and coffee powder samples was also evaluated.
Collapse
Affiliation(s)
- Kanthappa B
- Department of Chemistry, FMKMC College, Constituent College of Mangalore University, Madikeri, Karnataka, India, 571201
| | - J G Manjunatha
- Department of Chemistry, FMKMC College, Constituent College of Mangalore University, Madikeri, Karnataka, India, 571201.
| | - Sameh Mohamed Osman
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Narges Ataollahi
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano, 77, 38123, Trento, Italy
| |
Collapse
|
2
|
Sakthivel R, Chou CC, Prasanna SB, Krishnegowda HM, Ramaraj SK, Lin LY, Liu X, Lu YC, Wen HW, Liu TY, Chung RJ. Facile synthesis of tantalum decorated on iron selenide with nitrogen-doped graphene hybrid for the sensitive detection of trolox in berries: Density functional theory interpretation. Food Chem 2024; 455:139920. [PMID: 38850994 DOI: 10.1016/j.foodchem.2024.139920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024]
Abstract
This work presents a hydrothermal method followed by a sonochemical treatment for synthesizing tantalum decorated on iron selenide (Ta/FeSe2) integrated with nitrogen-doped graphene (NGR) as a susceptible electrode material for detecting trolox (TRX) in berries samples. The surface morphology, structural characterizations, and electrochemical performances of the synthesized Ta/FeSe2/NGR composite were analyzed via spectrophotometric and voltammetry techniques. The GCE modified with Ta/FeSe2/NGR demonstrated an impressive linear range of 0.1 to 580.3 μM for TRX detection. Additionally, it achieved a remarkable limit of detection (LOD) of 0.059 μM, and it shows a high sensitivity of 2.266 μA μМ-1 cm-2. Here, we used density functional theory (DFT) to investigate the structures of TRX and TRX quinone and the locations of energy levels and electron transfer sites. The developed sensor exhibits significant selectivity, satisfactory cyclic and storage stability, and notable reproducibility. Moreover, the practicality of TRX was assessed in different types of berries, yielding satisfactory recoveries.
Collapse
Affiliation(s)
- Rajalakshmi Sakthivel
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, Taiwan.
| | - Chun-Chien Chou
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, Taiwan
| | - Sanjay Ballur Prasanna
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, Taiwan
| | | | - Sayee Kannan Ramaraj
- PG& Research Department of Chemistry, Thiagarajar College, Madurai, Tamilnadu, India
| | - Lu-Yin Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, Taiwan
| | - Xinke Liu
- College of Materials Science and Engineering, Chinese Engineering and Research Institute of Microelectronics, Shenzhen University, Shenzhen, China; Department of Electrical and Computer Engineering, National University of Singapore, Singapore
| | - Yu-Chun Lu
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, Taiwan; ZhongSun Co., LTD, New Taipei City, Taiwan
| | - Hsiao-Wei Wen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402202, Taiwan; Food and Animal Product Safety Inspection Center, National Chung Hsing University, Taichung 402202, Taiwan
| | - Ting-Yu Liu
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, Taiwan; College of Engineering & Center for Sustainability and Energy Technologies, Chang Gung University, Taoyuan 33302, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan City, Taiwan.
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, Taiwan; High-value Biomaterials Research and Commercialization Center, National Taipei University of Technology (Taipei Tech), Taipei, Taiwan.
| |
Collapse
|
3
|
Jagtap AA, Prasanna SB, Kumar GS, Lin YC, Dhawan U, Lu YC, Sakthivel R, Tung CW, Chung RJ. A Ce 2MgMoO 6 double perovskite decorated on a functionalized carbon nanofiber nanocomposite for quantification of ciprofloxacin in milk and honey samples: Density functional theory interpretation. CHEMOSPHERE 2024; 358:142237. [PMID: 38705406 DOI: 10.1016/j.chemosphere.2024.142237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/11/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
In this study, a novel Ce2MgMoO6/CNFs (cerium magnesium molybdite double perovskite decorated on carbon nanofibers) nanocomposite was developed for selective and ultra-sensitive detection of ciprofloxacin (CFX). Physical characterization and analytical techniques were used to explore the morphology, structure, and electrocatalytic characteristics of the Ce2MgMoO6/CNFs nanocomposite. The sensor has a wide linear range (0.005-7.71 μM and 9.75-77.71 μM), a low limit of detection (0.012 μM), high sensitivity (0.807 μA μM-1 cm-2 nM), remarkable repeatability, and an appreciable storage stability. Here, we used density functional theory to investigate CFX and oxidized CFX as well as the locations of the energy levels and electron transfer sites. Furthermore, the Ce2MgMoO6/CNFs-modified electrode was successfully tested in food samples (milk and honey), indicating an acceptable response with a recovery percentage and relative standard deviation of less than 4%, which is comparable to that of GC-MS. Finally, the developed sensor exhibited high selectivity and stability for CFX detection.
Collapse
Affiliation(s)
- Akash Ashokrao Jagtap
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| | - Sanjay Ballur Prasanna
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| | | | - Yu-Chien Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan; School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Udesh Dhawan
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, James Watt School of Engineering, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, G116EW, UK
| | - Yu-Chun Lu
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan; ZhongSun Co., LTD, New Taipei City, 220031, Taiwan
| | - Rajalakshmi Sakthivel
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan.
| | - Ching-Wei Tung
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan.
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan; High-value Biomaterials Research and Commercialization Center, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan.
| |
Collapse
|
4
|
Ganesh PS, Dhand V, Kim SY, Kim S. Design and synthesis of active site rich cobalt tin sulfide nano cubes: An effective electrochemical sensing interface to monitor environmentally hazardous phenolic isomers. Microchem J 2024; 200:110308. [DOI: 10.1016/j.microc.2024.110308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
|
5
|
Priyanka, Mohan B, Poonia E, Kumar S, Virender, Singh C, Xiong J, Liu X, Pombeiro AJL, Singh G. COVID-19 Virus Structural Details: Optical and Electrochemical Detection. J Fluoresc 2024; 34:479-500. [PMID: 37382834 DOI: 10.1007/s10895-023-03307-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/12/2023] [Indexed: 06/30/2023]
Abstract
The increasing viral species have ruined people's health and the world's economy. Therefore, it is urgent to design bio-responsive materials to provide a vast platform for detecting a different family's passive or active virus. One can design a reactive functional unit for that moiety based on the particular bio-active moieties in viruses. Nanomaterials as optical and electrochemical biosensors have enabled better tools and devices to develop rapid virus detection. Various material science platforms are available for real-time monitoring and detecting COVID-19 and other viral loads. In this review, we discuss the recent advances of nanomaterials in developing the tools for optical and electrochemical sensing COVID-19. In addition, nanomaterials used to detect other human viruses have been studied, providing insights for developing COVID-19 sensing materials. The basic strategies for nanomaterials develop as virus sensors, fabrications, and detection performances are studied. Moreover, the new methods to enhance the virus sensing properties are discussed to provide a gateway for virus detection in variant forms. The study will provide systematic information and working of virus sensors. In addition, the deep discussion of structural properties and signal changes will offer a new gate for researchers to develop new virus sensors for clinical applications.
Collapse
Affiliation(s)
- Priyanka
- Department of Chemistry and Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Brij Mohan
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. RoviscoPais, 1049-001, Lisbon, Portugal.
| | - Ekta Poonia
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, Sonepat, 131039, Haryana, India
| | - Sandeep Kumar
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Virender
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, Haryana, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, School of Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar, Uttarakhand, 246174, India
| | - Jichuan Xiong
- Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Xuefeng Liu
- Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. RoviscoPais, 1049-001, Lisbon, Portugal
| | - Gurjaspreet Singh
- Department of Chemistry and Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
6
|
Abebe HA, Diro A, Kitte SA. Voltammetric determination of tryptophan at graphitic carbon nitride modified carbon paste electrode. Heliyon 2023; 9:e21033. [PMID: 37867883 PMCID: PMC10587534 DOI: 10.1016/j.heliyon.2023.e21033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/30/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023] Open
Abstract
Herein, we reported carbon paste electrode modified with graphitic carbon nitride (g-C3N4-CPE) to determine of tryptophan (Trp) using voltametric techniques. Various spectroscopic and electrochemical techniques were used to characterize the as-synthesized g-C3N4 and the assembled electrodes. The transfer coefficient, rate constant and the diffusion coefficient of Trp in this system were found to be 0.28, 1.9 × 104 M-1s-1 and 3.2 × 10-5 cm2s-1, respectively. The linear range was obtained for the detection of Trp using LSV is from 0.1 μM to 120 μM at pH 5. The limit of detection (LOD) (3σ/m) was 0.085 μM. The demonstrated modified CPE was also effectively used for the detection of Trp in milk with percentage recovery of 98 %-105.2 %. Furthermore, the modified CPE exhibited good repeatability, reproducibility and appropriate selectivity.
Collapse
Affiliation(s)
- Habtamu Adefris Abebe
- Department of Chemistry, College of Natural Sciences, Jimma University, P. O. Box 378, Jimma, Ethiopia
| | - Abebe Diro
- Department of Chemistry, College of Natural Sciences, Jimma University, P. O. Box 378, Jimma, Ethiopia
| | - Shimeles Addisu Kitte
- Department of Chemistry, College of Natural Sciences, Jimma University, P. O. Box 378, Jimma, Ethiopia
| |
Collapse
|
7
|
Maurya KK, Singh K, Malviya M. Effect of palladium and its nanogeometry on the redox electrochemistry of tetracyanoquinodimethane modified electrode; application in electrochemical sensing of ascorbic acid. J APPL ELECTROCHEM 2023. [DOI: 10.1007/s10800-023-01878-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
8
|
Ganesh PS, Kim SY. A comparison of conventional and advanced electroanalytical methods to detect SARS-CoV-2 virus: A concise review. CHEMOSPHERE 2022; 307:135645. [PMID: 35817176 PMCID: PMC9270057 DOI: 10.1016/j.chemosphere.2022.135645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Respiratory viruses are a serious threat to human wellbeing that can cause pandemic disease. As a result, it is critical to identify virus in a timely, sensitive, and precise manner. The present novel coronavirus-2019 (COVID-19) disease outbreak has increased these concerns. The research of developing various methods for COVID-19 virus identification is one of the most rapidly growing research areas. This review article compares and addresses recent improvements in conventional and advanced electroanalytical approaches for detecting COVID-19 virus. The popular conventional methods such as polymerase chain reaction (PCR), loop mediated isothermal amplification (LAMP), serology test, and computed tomography (CT) scan with artificial intelligence require specialized equipment, hours of processing, and specially trained staff. Many researchers, on the other hand, focused on the invention and expansion of electrochemical and/or bio sensors to detect SARS-CoV-2, demonstrating that they could show a significant role in COVID-19 disease control. We attempted to meticulously summarize recent advancements, compare conventional and electroanalytical approaches, and ultimately discuss future prospective in the field. We hope that this review will be helpful to researchers who are interested in this interdisciplinary field and desire to develop more innovative virus detection methods.
Collapse
Affiliation(s)
- Pattan-Siddappa Ganesh
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education (KoreaTech), Cheonan-si, Chungcheongnam-do, 330-708, Republic of Korea.
| | - Sang-Youn Kim
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education (KoreaTech), Cheonan-si, Chungcheongnam-do, 330-708, Republic of Korea.
| |
Collapse
|
9
|
Jamil YMS, Awad MAH, Al‐Maydama HMA, EL‐Ghoul Y, Al‐Hakimi AN. Synthesis and study of enhanced electrochemical properties of NiO Nanoparticles Deposited on TiO
2
nanotubes. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | | | - Yassine EL‐Ghoul
- Department of Chemistry, College of Science Qassim University Buraidah Saudi Arabia
- Textile Engineering Laboratory University of Monastir Monastir Tunisia
| | - Ahmed N. Al‐Hakimi
- Department of Chemistry, College of Science Qassim University Buraidah Saudi Arabia
- Department of Chemistry, Faculty of Sciences Ibb University Ibb Yemen
| |
Collapse
|