1
|
Caffè A, Scarica V, Animati FM, Manzato M, Bonanni A, Montone RA. Air pollution and coronary atherosclerosis. Future Cardiol 2025:1-14. [PMID: 39786972 DOI: 10.1080/14796678.2025.2451545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 01/07/2025] [Indexed: 01/12/2025] Open
Abstract
The recently introduced concept of 'exposome' emphasizes the impact of non-traditional threats onto cardiovascular health. Among these, air pollutants - particularly fine particulate matter < 2.5 μm (PM2.5) - have emerged as significant environmental risk factors for cardiovascular disease and mortality. PM2.5 exposure has been shown to induce endothelial dysfunction, chronic low-grade inflammation, and cardiometabolic impairment, contributing to the development and destabilization of atherosclerotic plaques. Both short- and long-term exposure to air pollution considerably increase the incidence of ischemic heart disease (IHD)-related events, with clinical evidence linking pollution to higher mortality and adverse prognosis, especially in vulnerable populations. In this review, we explore the mechanistic pathways through which air pollutants exacerbate atherosclerotic cardiovascular disease (ASCVD) and discuss their clinical impact.Furthermore, special attention will be directed to the outcomes and prognosis of patients with pollution-aggravated coronary atherosclerosis, as well as the potential role of targeted public health interventions.
Collapse
Affiliation(s)
- Andrea Caffè
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Vincenzo Scarica
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Francesco Maria Animati
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Matteo Manzato
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Alice Bonanni
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Rocco Antonio Montone
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
2
|
Bi F, Gao C, Guo H. Epigenetic regulation of cardiovascular diseases induced by behavioral and environmental risk factors: Mechanistic, diagnostic, and therapeutic insights. FASEB Bioadv 2024; 6:477-502. [PMID: 39512842 PMCID: PMC11539034 DOI: 10.1096/fba.2024-00080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 11/15/2024] Open
Abstract
Behavioral and environmental risk factors are critical in the development and progression of cardiovascular disease (CVD). Understanding the molecular mechanisms underlying these risk factors will offer valuable insights for targeted preventive and therapeutic strategies. Epigenetic modifications, including DNA methylation, histone modifications, chromatin remodeling, noncoding RNA (ncRNA) expression, and epitranscriptomic modifications, have emerged as key mediators connecting behavioral and environmental risk factors to CVD risk and progression. These epigenetic alterations can profoundly impact on cardiovascular health and susceptibility to CVD by influencing cellular processes, development, and disease risk over an individual's lifetime and potentially across generations. This review examines how behavioral and environmental risk factors affect CVD risk and health outcomes through epigenetic regulation. We review the epigenetic effects of major behavioral risk factors (such as smoking, alcohol consumption, physical inactivity, unhealthy diet, and obesity) and environmental risk factors (including air and noise pollution) in the context of CVD pathogenesis. Additionally, we explore epigenetic biomarkers, considering their role as causal or surrogate indicators, and discuss epigenetic therapeutics targeting the mechanisms through which these risk factors contribute to CVD. We also address future research directions and challenges in leveraging epigenetic insights to reduce the burden of CVD related to behavioral and environmental factors and improve public health outcomes. This review aims to provide a comprehensive understanding of behavioral and environmental epigenetics in CVD and offer valuable strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Feifei Bi
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of UtahSalt Lake CityUtahUSA
- Division of Cardiothoracic Surgery, Department of SurgerySchool of Medicine, University of UtahSalt Lake CityUtahUSA
| | - Chen Gao
- Department of Pharmacology and Systems PhysiologyUniversity of CincinnatiCincinnatiOhioUSA
| | - Hongchao Guo
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of UtahSalt Lake CityUtahUSA
- Division of Cardiothoracic Surgery, Department of SurgerySchool of Medicine, University of UtahSalt Lake CityUtahUSA
| |
Collapse
|
3
|
Singh S, Goel I, Tripathi S, Ahirwar A, Kumar M, Rana A, Dhar R, Karmakar S. Effect of environmental air pollutants on placental function and pregnancy outcomes: a molecular insight. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59819-59851. [PMID: 39388084 DOI: 10.1007/s11356-024-35016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024]
Abstract
Air pollution has become a major health concern, particularly for vulnerable populations such as the elderly, children, and pregnant women. Studies have reported a strong association between prenatal exposure to air pollutants and adverse pregnancy outcomes, including lower birth weight, reduced fetal growth, and an increased frequency of preterm births. This review summarizes the harmful effects of air pollutants, such as particulate matter, on pregnancy and outlines the mechanistic details associated with these adverse outcomes. Particulate pollutant matter may be able to cross the placenta barrier, and alterations in placental functions are central to the detrimental effects of these pollutants. In addition to associations with preeclampsia and gestational hypertension, air pollutants also induce oxidative stress, inflammation, and epigenetic alteration in the placenta. These pollutants can also affect placental homeostasis and endocrine function, contributing to pregnancy complications and possible transgenerational effects. Prenatal air pollution exposure has been linked to reduced cognitive and motor function in infants and newborns, increasing the predisposition to autism spectrum disorders and other neuropsychiatric disorders. This review also summarizes the use of various animal models to study the harmful effects of air pollution on pregnancy and postnatal outcomes. These findings provide valuable insight into the molecular events associated with the process and can aid in risk mitigation and adopting safety measures. Implementing effective environmental protocols and taking appropriate steps may reduce the global disease burden, particularly for developing nations with poor regulatory compliance and large populations of pregnant women.
Collapse
Affiliation(s)
- Sunil Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Room 3020, New Delhi, 110029, India
| | - Isha Goel
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India
| | - Smita Tripathi
- Department of Biochemistry, Lady Harding Medical College, New Delhi, India
| | - Ashok Ahirwar
- Department of Lab Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Megha Kumar
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Habsiguda, Hyderabad, India
| | - Anubhuti Rana
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi, India
| | - Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences, Room 3020, New Delhi, 110029, India
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, Room 3020, New Delhi, 110029, India.
| |
Collapse
|
4
|
Jin J, Nguyen TV, Jiang Y, Yu ZN, Song CH, Lee SY, Shin HS, Chai OH. Hydrangea serrata extract attenuates PM-exacerbated airway inflammation in the CARAS model by modulating the IL-33/ST2/NF-κB signaling pathway. Biomed Pharmacother 2024; 174:116596. [PMID: 38631146 DOI: 10.1016/j.biopha.2024.116596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
Particulate matter (PM) significantly contributes to the global health crisis of respiratory diseases. It is known to induce and exacerbate conditions such as asthma and respiratory infections. Long exposure to PM can increase the risk of combined allergic rhinitis and asthma syndrome (CARAS). Although therapeutic drugs can be used to improve symptoms of respiratory diseases caused by PM, their usage is often accompanied by side effects. Therefore, many studies are being conducted to discover functional food materials that can more effectively treat respiratory diseases while minimizing the side effects of these therapeutic drugs. This study was conducted to investigate the efficacy of Hydrangea serrata extract (HSE) in airway inflammation in a mouse model of CARAS exacerbated by PM. In the CARAS mouse model worsened by PM, the airway inflammation improvement effect of HSE was evaluated by analyzing allergic nasal symptoms, changes in inflammatory cells, OVA-specific immunoglobulin (Ig) levels, cytokines, mast cell activation, and histopathological findings of both nasal mucosa and lung tissue. HSE effectively reduced OVA-specific IgE and IgG1 and inhibited the production of T helper type 2 (Th2)-related cytokines such as IL-4 and IL-5. Importantly, HSE reduced IL-33 and ST2 expression and inhibited the activation of the NF-κB signaling pathway. In addition, HSE inhibited airway hypersensitivity, mucus production, and inflammatory cell infiltration. These results suggest that HSE may inhibit airway inflammation in CARAS/PM mice by regulating the IL-33/ST2/NF-κB signaling pathway, opening avenues for considering HSE as a potential material for treating allergic airway inflammation diseases in the future.
Collapse
Affiliation(s)
- Juan Jin
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54896, South Korea
| | - Thi Van Nguyen
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54896, South Korea
| | - Yuna Jiang
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54896, South Korea
| | - Zhen Nan Yu
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54896, South Korea
| | - Chang Ho Song
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54896, South Korea; Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54896, South Korea
| | - So-Young Lee
- Department of Food Biotechnology, University of Science and Technology (UST), Daejeon 34113, South Korea; Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, South Korea
| | - Hee Soon Shin
- Department of Food Biotechnology, University of Science and Technology (UST), Daejeon 34113, South Korea; Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, South Korea
| | - Ok Hee Chai
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54896, South Korea; Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54896, South Korea.
| |
Collapse
|
5
|
Gavito-Covarrubias D, Ramírez-Díaz I, Guzmán-Linares J, Limón ID, Manuel-Sánchez DM, Molina-Herrera A, Coral-García MÁ, Anastasio E, Anaya-Hernández A, López-Salazar P, Juárez-Díaz G, Martínez-Juárez J, Torres-Jácome J, Albarado-Ibáñez A, Martínez-Laguna Y, Morán C, Rubio K. Epigenetic mechanisms of particulate matter exposure: air pollution and hazards on human health. Front Genet 2024; 14:1306600. [PMID: 38299096 PMCID: PMC10829887 DOI: 10.3389/fgene.2023.1306600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/20/2023] [Indexed: 02/02/2024] Open
Abstract
Environmental pollution nowadays has not only a direct correlation with human health changes but a direct social impact. Epidemiological studies have evidenced the increased damage to human health on a daily basis because of damage to the ecological niche. Rapid urban growth and industrialized societies importantly compromise air quality, which can be assessed by a notable accumulation of air pollutants in both the gas and the particle phases. Of them, particulate matter (PM) represents a highly complex mixture of organic and inorganic compounds of the most variable size, composition, and origin. PM being one of the most complex environmental pollutants, its accumulation also varies in a temporal and spatial manner, which challenges current analytical techniques used to investigate PM interactions. Nevertheless, the characterization of the chemical composition of PM is a reliable indicator of the composition of the atmosphere, the quality of breathed air in urbanized societies, industrial zones and consequently gives support for pertinent measures to avoid serious health damage. Epigenomic damage is one of the most promising biological mechanisms of air pollution-derived carcinogenesis. Therefore, this review aims to highlight the implication of PM exposure in diverse molecular mechanisms driving human diseases by altered epigenetic regulation. The presented findings in the context of pan-organic cancer, fibrosis, neurodegeneration and metabolic diseases may provide valuable insights into the toxicity effects of PM components at the epigenomic level and may serve as biomarkers of early detection for novel targeted therapies.
Collapse
Affiliation(s)
- Dulcemaría Gavito-Covarrubias
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
| | - Ivonne Ramírez-Díaz
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
- Universidad Popular Autónoma del Estado de Puebla (UPAEP), Puebla, Mexico
| | - Josué Guzmán-Linares
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
| | - Ilhuicamina Daniel Limón
- Laboratory of Neuropharmacology, Faculty of Chemical Sciences, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Dulce María Manuel-Sánchez
- Laboratory of Neuropharmacology, Faculty of Chemical Sciences, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Alejandro Molina-Herrera
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
| | - Miguel Ángel Coral-García
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
| | - Estela Anastasio
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
| | - Arely Anaya-Hernández
- Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Primavera López-Salazar
- Centro de Investigaciones en Dispositivos Semiconductores (CIDS), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Gabriel Juárez-Díaz
- Centro de Investigaciones en Dispositivos Semiconductores (CIDS), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Javier Martínez-Juárez
- Centro de Investigaciones en Dispositivos Semiconductores (CIDS), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Julián Torres-Jácome
- Laboratorio de Fisiopatología Cardiovascular, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Alondra Albarado-Ibáñez
- Laboratorio de Fisiopatología Cardiovascular, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Ygnacio Martínez-Laguna
- Vicerrectoría de Investigación y Estudios de Posgrado, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Carolina Morán
- Centro de Investigación en Fisicoquímica de Materiales, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Karla Rubio
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
| |
Collapse
|
6
|
Uzair M, Haq TU, Ali S, Hussain M, Jalil F, Ali Y, Shah AA. The miRNA variants MIR196A2 (rs11614913) and MIR423 (rs6505162) contribute to an increase in the risk of myocardial infarction. Mol Genet Genomic Med 2024; 12:e2323. [PMID: 38013659 PMCID: PMC10767615 DOI: 10.1002/mgg3.2323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/26/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023] Open
Abstract
INTRODUCTION MicroRNAs (miRNAs) are small, single-stranded RNA molecules that negatively regulate gene expression and play a key role in the pathogenesis of human diseases. Recent studies have suggested that miRNAs contribute to cardiovascular diseases (CVDs). However, the association between single-nucleotide polymorphisms (SNPs) in miRNAs and myocardial infarction (MI) remains in infancy. AIM The current study was designed to find out the association of SNPs in MIR196A2 and MIR423 (rs11614913 and rs6505162, respectively). METHODS Using Tetra-Primer Amplification Refractory Mutation System-Polymerase Chain Reaction (T-ARMS PCR) in 400 cases (MI patients) and 336 healthy controls. Using different inheritance models (co-dominant, homozygous dominant, homozygous recessive, and additive models), the association of these SNPs was genotyped with MI risk. RESULTS For variant rs11614913, significant distribution of the genotypes among the cases and controls was determined by co-dominant [χ2 = 29.19, 2; p value < 0.0001], dominant (C/C vs. C/T + T/T) [OR = 0.45 (0.34 to 0.61); p < 0.0001], recessive (T/T vs. C/T + C/C) [OR = 1.009 (0.63 to 1.63); p-value p value > 0.999], and additive models [OR = 0.65 (0.52 to 0.80); p value = 0.0001]. Similarly, a significant association of rs6505162 was determined by co-dominant [χ2 = 24.29, 2; p value < 0.0001], dominant (C/C vs. A/C+ A/A) [OR = 0.44 (0.32 to 0.61); p value < 0.0001], recessive (A/A vs. A/C + C/C) [OR = 1.29 (0.85 to 1.98); p value = 0.28], and additive models [OR = 0.65 (0.52 to 0.81); p value = 0.0001]. CONCLUSION Therefore, the current study showed that both variants rs11614913 and rs6505162 are significantly associated with MI in the Pakistani population.
Collapse
Affiliation(s)
- Muhammad Uzair
- Department of Biotechnology, Faculty of Biological SciencesUniversity of MalakandChakdaraPakistan
| | - Taqweem Ul Haq
- Department of Biotechnology, Faculty of Biological SciencesUniversity of MalakandChakdaraPakistan
| | - Sajjad Ali
- Department of Biotechnology, Faculty of Biological SciencesUniversity of MalakandChakdaraPakistan
| | - Manzar Hussain
- Department of Biotechnology, Faculty of Biological SciencesUniversity of MalakandChakdaraPakistan
| | - Fazal Jalil
- Department of BiotechnologyAbdul Wali Khan University Mardan (AWKUM)MardanPakistan
| | - Yasir Ali
- School of Biomedical SciencesThe Chinese University of Hong KongHong KongHong Kong
| | - Aftab Ali Shah
- Department of Biotechnology, Faculty of Biological SciencesUniversity of MalakandChakdaraPakistan
| |
Collapse
|
7
|
Liu X, Yang L, Wang Y, Yan P, Lu Y. Effects of Fireworks Burning on Air Quality during the Chinese Spring Festival-Evidence from Zhengzhou, China. TOXICS 2023; 12:23. [PMID: 38250979 PMCID: PMC11154464 DOI: 10.3390/toxics12010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024]
Abstract
Fireworks burning significantly degrades air quality over a short duration. The prohibition of fireworks burning (POFB) policy of 2016 and the restricted-hours fireworks burning (RHFB) policy of 2023 in Zhengzhou City provide an ideal opportunity to investigate the effects of such policies and of fireworks burning on air quality during the Spring Festival period. Based on air quality ground-based monitoring data and meteorological data for Zhengzhou City, the article analyzes the impact of the POFB policy and the RHFB policy on air quality. The results show that: (1) The ban on fireworks burning significantly affects Spring Festival air quality, with a decrease of 16.0% in the Air Quality Index (AQI) value in 2016 compared to 2015 and a 74.9% increase in 2023 compared to 2022. (2) From 2016 to 2022, the Spring Festival period witnessed a substantial decrease in average concentration of main pollutants, along with a delayed occurrence of peak concentrations, indicating a noticeable "peak-shaving" effect. However, in 2023, there was an increase in pollutant concentrations, volatility, and a significant surge in hourly concentration. (3) The POFB policy and RHFB policy notably impacted PM2.5 and PM10, with a decrease of 16.1% and 23.6% in PM2.5 and PM10 concentrations, respectively, in 2016 compared to 2015, but an increase of 74.5% and 79.2%, respectively, in 2023 compared to 2022. (4) The contribution of fireworks burning to PM2.5 concentrations significantly decreased during the fireworks burning period (FBP) in 2016 after the POFB policy and increased significantly in 2023 during FBP after the implementation of the RHFB policy. Unfavorable meteorological conditions will undoubtedly exacerbate air quality pollution caused by fireworks burning.
Collapse
Affiliation(s)
- Xinzhan Liu
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China; (X.L.); (Y.W.); (P.Y.); (Y.L.)
- Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Regions, Henan University, Ministry of Education, Kaifeng 475004, China
| | - Ling Yang
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China; (X.L.); (Y.W.); (P.Y.); (Y.L.)
- Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Regions, Henan University, Ministry of Education, Kaifeng 475004, China
| | - Yan Wang
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China; (X.L.); (Y.W.); (P.Y.); (Y.L.)
- Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Regions, Henan University, Ministry of Education, Kaifeng 475004, China
| | - Pengfei Yan
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China; (X.L.); (Y.W.); (P.Y.); (Y.L.)
- Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Regions, Henan University, Ministry of Education, Kaifeng 475004, China
| | - Yimeng Lu
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China; (X.L.); (Y.W.); (P.Y.); (Y.L.)
- Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Regions, Henan University, Ministry of Education, Kaifeng 475004, China
| |
Collapse
|
8
|
Danesh Yazdi M, Nassan FL, Kosheleva A, Wang C, Xu Z, Di Q, Requia WJ, Comfort NT, Wu H, Laurent LC, DeHoff P, Vokonas P, Baccarelli AA, Schwartz JD. Intermediate and long-term exposure to air pollution and temperature and the extracellular microRNA profile of participants in the normative aging study (NAS). ENVIRONMENTAL RESEARCH 2023; 229:115949. [PMID: 37084943 PMCID: PMC10335853 DOI: 10.1016/j.envres.2023.115949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/27/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND The molecular effects of intermediate and long-term exposure to air pollution and temperature, such as those on extracellular microRNA (ex-miRNA) are not well understood but may have clinical consequences. OBJECTIVES To assess the association between exposure to ambient air pollution and temperature and ex-miRNA profiles. METHODS Our study population consisted of 734 participants in the Normative Aging Study (NAS) between 1999 and 2015. We used high-resolution models to estimate four-week, eight-week, twelve-week, six-month, and one-year moving averages of PM2.5, O3, NO2, and ambient temperature based on geo-coded residential addresses. The outcome of interest was the extracellular microRNA (ex-miRNA) profile of each participant over time. We used a longitudinal quantile regression approach to estimate the association between the exposures and each ex-miRNA. Results were corrected for multiple comparisons and ex-miRNAs that were still significantly associated with the exposures were further analyzed using KEGG pathway analysis and Ingenuity Pathway Analysis. RESULTS We found 151 significant associations between levels of PM2.5, O3, NO2, and ambient temperature and 82 unique ex-miRNAs across multiple quantiles. Most of the significant results were associations with intermediate-term exposure to O3, long-term exposure to PM2.5, and both intermediate and long-term exposure to ambient temperature. The exposures were most often associated with the 75th and 90th percentile of the outcomes. Pathway analyses of significant ex-miRNAs revealed their involvement in biological pathways involving cell function and communication as well as clinical diseases such as cardiovascular disease, respiratory disease, and neurological disease. CONCLUSION Our results show that intermediate and long-term exposure to all our exposures of interest were associated with changes in the ex-miRNA profile of study participants. Further studies on environmental risk factors and ex-miRNAs are warranted.
Collapse
Affiliation(s)
- Mahdieh Danesh Yazdi
- Program in Public Health, Department of Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA; Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA.
| | - Feiby L Nassan
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA; Biogen Inc, Cambridge, MA, USA
| | - Anna Kosheleva
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Cuicui Wang
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Zongli Xu
- Laboratory of Molecular Carcinogenesis and Biostatistics Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Qian Di
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Weeberb J Requia
- School of Public Policy and Government, Fundação Getúlio Vargas, Brasília, Distrito Federal, Brazil
| | - Nicole T Comfort
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY, USA
| | - Haotian Wu
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY, USA
| | - Louise C Laurent
- Department of Obstetrics, Gynecology, & Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Peter DeHoff
- Department of Obstetrics, Gynecology, & Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Pantel Vokonas
- Department of Veterans Affairs, Boston, MA, USA; Department of Medicine, Boston University Chobanian and Avidisian School of Medicine, Boston, MA, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY, USA
| | - Joel D Schwartz
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
9
|
BAÑERAS J, IGLESIES-GRAU J, TÉLLEZ-PLAZA M, ARRARTE V, BÁEZ-FERRER N, BENITO B, CAMPUZANO RUIZ R, CECCONI A, DOMÍNGUEZ-RODRÍGUEZ A, RODRÍGUEZ-SINOVAS A, UJUETA F, VOZZI C, LAMAS GA, NAVAS-ACIÉN A. [Environment and cardiovascular health: causes, consequences and opportunities in prevention and treatment]. Rev Esp Cardiol 2022; 75:1050-1058. [PMID: 36570815 PMCID: PMC9785336 DOI: 10.1016/j.recesp.2022.05.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The environment is a strong determinant of cardiovascular health. Environmental cardiology studies the contribution of environmental exposures with the aim of minimizing the harmful influences of pollution and promoting cardiovascular health through specific preventive or therapeutic strategies. The present review focuses on particulate matter and metals, which are the pollutants with the strongest level of scientific evidence, and includes possible interventions. Legislation, mitigation and control of pollutants in air, water and food, as well as environmental policies for heart-healthy spaces, are key measures for cardiovascular health. Individual strategies include the chelation of divalent metals such as lead and cadmium, metals that can only be removed from the body via chelation. The TACT (Trial to Assess Chelation Therapy, NCT00044213) clinical trial demonstrated cardiovascular benefit in patients with a previous myocardial infarction, especially in those with diabetes. Currently, the TACT2 trial (NCT02733185) is replicating the TACT results in people with diabetes. Data from the United States and Argentina have also shown the potential usefulness of chelation in severe peripheral arterial disease. More research and action in environmental cardiology could substantially help to improve the prevention and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Jordi BAÑERAS
- Servei de Cardiologia, Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, España
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), España
| | - Josep IGLESIES-GRAU
- Centre ÉPIC and Research Center, Montreal Heart Institute, Montreal, Quebec, Canadá
| | - María TÉLLEZ-PLAZA
- Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Madrid, España
| | - Vicente ARRARTE
- Servicio de Cardiología, Hospital General Universitario Dr. Balmis, ISABIAL, Alicante, España
| | - Néstor BÁEZ-FERRER
- Servicio de Cardiología, Hospital Universitario de Canarias, Universidad Europea de Canarias, Santa Cruz de Tenerife, España
| | - Begoña BENITO
- Servei de Cardiologia, Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, España
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), España
| | - Raquel CAMPUZANO RUIZ
- Servicio de Cardiología, Hospital Universitario Fundación de Alcorcón, Alcorcón, Madrid, España
| | - Alberto CECCONI
- Servicio de Cardiología, Hospital Universitario de la Princesa, Madrid, España
| | - Alberto DOMÍNGUEZ-RODRÍGUEZ
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), España
- Servicio de Cardiología, Hospital Universitario de Canarias, Universidad Europea de Canarias, Santa Cruz de Tenerife, España
| | - Antonio RODRÍGUEZ-SINOVAS
- Servei de Cardiologia, Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, España
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), España
| | - Francisco UJUETA
- Columbia University Division of Cardiology, Mount Sinai Medical Center, Miami Beach, Florida, Estados Unidos
| | - Carlos VOZZI
- Departamento de Cardiología, Instituto Vozzi, Rosario, Argentina
| | - Gervasio A. LAMAS
- Columbia University Division of Cardiology, Mount Sinai Medical Center, Miami Beach, Florida, Estados Unidos
- Department of Medicine, Mount Sinai Medical Center, Miami Beach, Florida, Estados Unidos
| | - Ana NAVAS-ACIÉN
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, Nueva York, Estados Unidos
| |
Collapse
|
10
|
Bañeras J, Iglesies-Grau J, Téllez-Plaza M, Arrarte V, Báez-Ferrer N, Benito B, Campuzano Ruiz R, Cecconi A, Domínguez-Rodríguez A, Rodríguez-Sinovas A, Ujueta F, Vozzi C, Lamas GA, Navas-Acién A. Environment and cardiovascular health: causes, consequences and opportunities in prevention and treatment. REVISTA ESPANOLA DE CARDIOLOGIA (ENGLISH ED.) 2022; 75:1050-1058. [PMID: 35931285 PMCID: PMC10266758 DOI: 10.1016/j.rec.2022.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
The environment is a strong determinant of cardiovascular health. Environmental cardiology studies the contribution of environmental exposures with the aim of minimizing the harmful influences of pollution and promoting cardiovascular health through specific preventive or therapeutic strategies. The present review focuses on particulate matter and metals, which are the pollutants with the strongest level of scientific evidence, and includes possible interventions. Legislation, mitigation and control of pollutants in air, water and food, as well as environmental policies for heart-healthy spaces, are key measures for cardiovascular health. Individual strategies include the chelation of divalent metals such as lead and cadmium, metals that can only be removed from the body via chelation. The TACT (Trial to Assess Chelation Therapy, NCT00044213) clinical trial demonstrated cardiovascular benefit in patients with a previous myocardial infarction, especially in those with diabetes. Currently, the TACT2 trial (NCT02733185) is replicating the TACT results in people with diabetes. Data from the United States and Argentina have also shown the potential usefulness of chelation in severe peripheral arterial disease. More research and action in environmental cardiology could substantially help to improve the prevention and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Jordi Bañeras
- Servei de Cardiologia, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Josep Iglesies-Grau
- Centre ÉPIC and Research Center, Montreal Heart Institute, Montreal, Quebec, Canada
| | - María Téllez-Plaza
- Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Vicente Arrarte
- Servicio de Cardiología, Hospital General Universitario Dr. Balmis, ISABIAL, Alicante, Spain
| | - Néstor Báez-Ferrer
- Servicio de Cardiología, Hospital Universitario de Canarias, Universidad Europea de Canarias, Santa Cruz de Tenerife, Spain
| | - Begoña Benito
- Servei de Cardiologia, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Raquel Campuzano Ruiz
- Servicio de Cardiología, Hospital Universitario Fundación de Alcorcón, Alcorcón, Madrid, Spain
| | - Alberto Cecconi
- Servicio de Cardiología, Hospital Universitario de La Princesa, Madrid, Spain
| | - Alberto Domínguez-Rodríguez
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain; Servicio de Cardiología, Hospital Universitario de Canarias, Universidad Europea de Canarias, Santa Cruz de Tenerife, Spain
| | - Antonio Rodríguez-Sinovas
- Servei de Cardiologia, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Francisco Ujueta
- Columbia University Division of Cardiology, Mount Sinai Medical Center, Miami Beach, Florida, United States
| | - Carlos Vozzi
- Departamento de Cardiología, Instituto Vozzi, Rosario, Argentina
| | - Gervasio A Lamas
- Columbia University Division of Cardiology, Mount Sinai Medical Center, Miami Beach, Florida, United States; Department of Medicine, Mount Sinai Medical Center, Miami Beach, Florida, United States
| | - Ana Navas-Acién
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, Nueva York, United States.
| |
Collapse
|
11
|
Dong M, Chen D, Zhu Y, Yang S, Kumar S, Zhang R, Zhou Y, Yang Z, Zheng N, Zhu T, Xiang J, Liu Y, Kang L, Liu J. Impaired regulation of MMP2/16-MLCK3 by miR-146a-5p increased susceptibility to myocardial ischemic injury in aging mice. Cardiovasc Res 2022; 119:786-801. [PMID: 35727952 PMCID: PMC10153423 DOI: 10.1093/cvr/cvac104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 05/11/2022] [Accepted: 06/02/2022] [Indexed: 11/14/2022] Open
Abstract
AIMS Aging impairs cardiac function and increases susceptibility to myocardial ischemic injury. Cardiac myosin light chain kinase (MLCK3) phosphorylates cardiac myosin regulatory light chain (MLC2), controlling sarcomere organization and cardiomyocyte contraction. Dysregulation of MLCK3 and phosphorylated MLC2 (p-MLC2) contributes to heart failure after myocardial infarction (MI). We aimed at exploring how the MLCK3-p-MLC2 axis changes in aging hearts post MI and at investigating the underlying regulatory mechanisms. METHODS AND RESULTS We generated adult (3 months) and aged (30 months) MI mouse models to compare their cardiac performance, and then detected MLCK3 expression and MLC2 activity. Aging increased the size of MI-induced infarctions and promoted cardiac contractile dysfunction. Furthermore, MLCK3 expression and MLC2 activity increased in adult hearts after MI, but not in aged hearts. miR-146a was found consistently increased in adult and aged hearts post-MI. Mechanistic analyses performed in vitro demonstrated that miR-146a-5p downregulated matrix metalloprotease (MMP)2/16 expression in cardiomyocytes. This downregulation in turn increased MLCK3 expression and MLC2 activity. However, miR-146a-5p failed to regulate the MMP2/16-MLCK3-p-MLC2 axis in senescent cardiomyocytes or in cardiac miR-146a conditional knockout mice, with the latter experiencing an exacerbated deterioration of cardiac function post-MI. CONCLUSION These results suggest that increase of MLCK3 and p-MLC2 contents through decreasing MMP2/16 by miR-146a-5p represents a compensatory mechanism that can protect cardiac contractile function after MI. Aging impairs this miR-146a-5p-regulated MMP2/16-MLCK3-p-MLC2 contractile axis, leading to compromised contractile function and increased susceptibility to heart failure.
Collapse
Affiliation(s)
- Ming Dong
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Pathophysiology, Shenzhen University Health Science Center, Shenzhen, China.,Guangzhou Laboratory, GuangdongChina
| | | | - Yanxia Zhu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Pathophysiology, Shenzhen University Health Science Center, Shenzhen, China
| | - Shu Yang
- Department of Endocrinology, the Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China.,Clinical Medical Research Center, The First Affiliated Hospital of Southern University of Science and Technology, ShenzhenChina
| | - Sanatosh Kumar
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Pathophysiology, Shenzhen University Health Science Center, Shenzhen, China
| | - Rui Zhang
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Pathophysiology, Shenzhen University Health Science Center, Shenzhen, China
| | - Yin Zhou
- Guangzhou Laboratory, GuangdongChina
| | - Ziyi Yang
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Pathophysiology, Shenzhen University Health Science Center, Shenzhen, China
| | - Na Zheng
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Pathophysiology, Shenzhen University Health Science Center, Shenzhen, China
| | - Ting Zhu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Pathophysiology, Shenzhen University Health Science Center, Shenzhen, China
| | - Jiaqing Xiang
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Pathophysiology, Shenzhen University Health Science Center, Shenzhen, China
| | - Yun Liu
- The Seventh Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| | - Lin Kang
- The Biobank of National Innovation Center for Advanced Medical Devices, Shenzhen People's Hospital, Southern University of Science and Technology, Shenzhen, China.,Department of Geriatrics, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Jie Liu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Pathophysiology, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
12
|
Parra R, Saud C, Espinoza C. Simulating PM 2.5 Concentrations during New Year in Cuenca, Ecuador: Effects of Advancing the Time of Burning Activities. TOXICS 2022; 10:264. [PMID: 35622677 PMCID: PMC9144387 DOI: 10.3390/toxics10050264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023]
Abstract
Fine particulate matter (PM2.5) is dangerous to human health. At midnight on 31 December, in Ecuadorian cities, people burn puppets and fireworks, emitting high amounts of PM2.5. On 1 January 2022, concentrations between 27.3 and 40.6 µg m-3 (maximum mean over 24 h) were measured in Cuenca, an Andean city located in southern Ecuador; these are higher than 15 µg m-3, the current World Health Organization guideline. We estimated the corresponding PM2.5 emissions and used them as an input to the Weather Research and Forecasting with Chemistry (WRF-Chem 3.2) model to simulate the change in PM2.5 concentrations, assuming these emissions started at 18:00 LT or 21:00 LT on 31 December 2021. On average, PM2.5 concentrations decreased by 51.4% and 33.2%. Similar modeling exercises were completed for 2016 to 2021, providing mean decreases between 21.4% and 61.0% if emissions started at 18:00 LT. Lower mean reductions, between 2.3% and 40.7%, or even local increases, were computed for emissions beginning at 21:00 LT. Reductions occurred through better atmospheric conditions to disperse PM2.5 compared to midnight. Advancing the burning time can help reduce the health effects of PM2.5 emissions on 31 December.
Collapse
Affiliation(s)
- René Parra
- Instituto de Simulación Computacional (ISC-USFQ), Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador;
| | - Claudia Saud
- Instituto de Simulación Computacional (ISC-USFQ), Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador;
| | - Claudia Espinoza
- Red de Monitoreo de Calidad del Aire de Cuenca, Empresa Pública de Movilidad, Tránsito y Transporte de Cuenca, EMOV EP, Cuenca 010206, Ecuador;
| |
Collapse
|