1
|
Veshkini A, Hammon HM, Vogel L, Viala D, Delosière M, Tröscher A, Déjean S, Ceciliani F, Sauerwein H, Bonnet M. The skimmed milk proteome of dairy cows is affected by the stage of lactation and by supplementation with polyunsaturated fatty acids. Sci Rep 2024; 14:23990. [PMID: 39402117 PMCID: PMC11473731 DOI: 10.1038/s41598-024-74978-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/30/2024] [Indexed: 10/17/2024] Open
Abstract
The impact of nutritional modification to increase functional polyunsaturated fatty acids (PUFA), such as n-3 and n-6 fatty acids (FA) or conjugated linoleic acid (CLA), on milk proteome profile during early lactation remains largely unknown. We used an untargeted proteomics approach to investigate the impact of lactation day and PUFA supplementation on the proteome signature in skimmed milk over the course of early lactation. Sixteen Holstein dairy cows received abomasal infusion of saturated FA (CTRL) or a mixture of essential FA and CLA (EFA + CLA group) from - 63 to + 63 days relative to parturition. Using quantitative proteomics, 479 unique proteins were identified in skimmed milk at days 1, 28, and 63 postpartum. The top discriminating proteins between transition milk (day 1) and mature milk (days 28 and 63), including members of complements (i.e. C2 and C5), growth factor (TGFB2), lipoproteins (i.e. APOE and APOD), and chaperones (i.e. ST13 and CLU), are associated with calves' immune system and gut development. The EFA + CLA supplementation moderately affected a few proteins associated with regulating mammary glands' lipogenesis through the (re)assembly of lipoprotein particles, possibly under the PPAR signaling pathway. Collectively, skimmed milk proteome is dynamically regulated initially by cow's metabolic and physiological changes and to a lesser extent by nutritional PUFA modifications.
Collapse
Affiliation(s)
- Arash Veshkini
- Institute of Animal Science, Physiology Unit, University of Bonn, Bonn, Germany.
- Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany.
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, 63122, Saint-Genès-Champanelle, France.
- Department of Veterinary Medicine, Università degli Studi di Milano, Lodi, Italy.
| | - Harald M Hammon
- Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Laura Vogel
- Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Didier Viala
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, 63122, Saint-Genès-Champanelle, France
| | - Mylène Delosière
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, 63122, Saint-Genès-Champanelle, France
| | | | - Sébastien Déjean
- Institut de Mathématiques de Toulouse, UMR 5219, Université de Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Fabrizio Ceciliani
- Department of Veterinary Medicine, Università degli Studi di Milano, Lodi, Italy
| | - Helga Sauerwein
- Institute of Animal Science, Physiology Unit, University of Bonn, Bonn, Germany
| | - Muriel Bonnet
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, 63122, Saint-Genès-Champanelle, France
| |
Collapse
|
2
|
Huang D, Wang Y, Ding H, Zhao H. Comparative Analysis of Angora Rabbit Colostrum and Mature Milk Using Quantitative Proteomics. BIOLOGY 2024; 13:634. [PMID: 39194572 DOI: 10.3390/biology13080634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024]
Abstract
Colostrum intake is a crucial determinant of survival in newborn rabbits. Neonates rely entirely on passive immunity transfer from their mothers while suckling colostrum. The goal of this study was to explore the protein differences of rabbit milk during different lactation periods. Our findings showed that the daily milk yield exhibited an increasing trend from the 2nd to the 21st day of lactation. A data-independent acquisition proteomics approach identified a total of 2011 proteins. Significantly, different abundances were found for 525 proteins in the colostrum and the mature milk samples. Eleven differentially abundant proteins (DAPs) were examined using parallel reaction monitoring, which verified the reliability of the proteomic data. Gene Ontology analysis revealed that these DAPs were primarily associated with glycosyltransferase activity, macromolecule transmembrane transporter activity, and regulation of acute inflammatory response. The dominant metabolic pathways of the DAPs involve the complement and coagulation cascades. A protein-protein interaction analysis identified apolipoprotein B, apolipoprotein A1, triose phosphate isomerase 1, and albumin as the hub proteins responsible for distinguishing differences between biological properties in rabbit colostrum and mature milk. These findings enhance our comprehension of the rabbit milk proteome, particularly in expanding our knowledge regarding the requirements of neonatal rabbits.
Collapse
Affiliation(s)
- Dongwei Huang
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Yuanlang Wang
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Haisheng Ding
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Huiling Zhao
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| |
Collapse
|
3
|
Ávila G, Ceciliani F, Viala D, Dejean S, Sala G, Lecchi C, Bonnet M. Conjugated linoleic acid (CLA) modulates bovine peripheral blood mononuclear cells (PBMC) proteome in vitro. J Proteomics 2024; 304:105232. [PMID: 38909954 DOI: 10.1016/j.jprot.2024.105232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/16/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Conjugated linoleic acid (CLA) is a group of natural isomers of the n-6 polyunsaturated fatty acid (PUFA) linoleic acid, exerting biological effects on cow physiology. This study assessed the impact of the mixture 50:50 (vol:vol) of CLA isomers (cis-9, trans-11 and trans-10, cis-12) on bovine peripheral blood mononuclear cells (PBMC) proteome, identifying 1608 quantifiable proteins. A supervised multivariate statistical analysis, sparse variant partial least squares - discriminant analysis (sPLS-DA) for paired data identified 407 discriminant proteins (DP), allowing the clustering between the CLA and controls. The ProteINSIDE workflow found that DP with higher abundance in the CLA group included proteins related to innate immune defenses (PLIN2, CD36, C3, C4, and AGP), with antiapoptotic (SERPINF2 and ITIH4) and antioxidant effects (HMOX1). These results demonstrated that CLA modulates the bovine PBMC proteome, supports the antiapoptotic and immunomodulatory effects observed in previous in vitro studies on bovine PBMC, and suggests a cytoprotective role against oxidative stress. SIGNIFICANCE: In this study, we report for the first time that the mixture 50:50 (vol:vol) of cis-9, trans-11, and trans-10, cis-12-CLA isomers modulates the bovine PBMC proteome. Our results support the immunomodulatory and antiapoptotic effects observed in bovine PBMC in vitro. In addition, the present study proposes a cytoprotective role of CLA mixture against oxidative stress. We suggest a molecular signature of CLA treatment based on combining a multivariate sparse discriminant analysis and a clustering method. This demonstrates the great value of sPLS-DA as an alternative option to identify discriminant proteins with relevant biological significance.
Collapse
Affiliation(s)
- G Ávila
- Department of Veterinary Medicine and Animal Science, Università Degli Studi di Milano, Via dell'Università 6, 26900 Lodi, Italy
| | - F Ceciliani
- Department of Veterinary Medicine and Animal Science, Università Degli Studi di Milano, Via dell'Università 6, 26900 Lodi, Italy.
| | - D Viala
- INRAE, Université Clermont Auvergne, Vetagro Sup, UMRH, 63122 Saint-Genès-Champanelle, France; INRAE, Metabolomic and Proteomic Exploration Facility (PFEM), F-63122 Saint-Genès-Champanelle, France
| | - S Dejean
- Institut de Mathématiques de Toulouse, Université de Toulouse, CNRS, UPS, UMR 5219, 31062 Toulouse, France
| | - G Sala
- Department of Veterinary Medicine and Animal Science, Università Degli Studi di Milano, Via dell'Università 6, 26900 Lodi, Italy
| | - C Lecchi
- Department of Veterinary Medicine and Animal Science, Università Degli Studi di Milano, Via dell'Università 6, 26900 Lodi, Italy
| | - M Bonnet
- INRAE, Université Clermont Auvergne, Vetagro Sup, UMRH, 63122 Saint-Genès-Champanelle, France
| |
Collapse
|
4
|
Veshkini A, Ceciliani F, Bonnet M, Hammon HM. Review: Effect of essential fatty acids and conjugated linoleic acid on the adaptive physiology of dairy cows during the transition period. Animal 2023; 17 Suppl 2:100757. [PMID: 36966026 DOI: 10.1016/j.animal.2023.100757] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/08/2023] Open
Abstract
Cows fed total mixed rations (silage-based) may not receive as much essential fatty acids (EFAs) and conjugated linoleic acids (CLAs) as cows fed pasture-based rations (fresh grass) containing rich sources of polyunsaturated fatty acids. CLA-induced milk fat depression allows dairy cows to conserve more metabolisable energy, thereby shortening the state of negative energy balance and reducing excessive fat mobilisation at early lactation. EFAs, particularly α-linolenic acid, exert anti-inflammatory and antioxidative properties, thereby modulating immune functions. Thus, combined EFA and CLA supplementation seems to be an effective nutritional strategy to relieve energy metabolism and to improve immune response, which are often compromised during the transition from late pregnancy to lactation in high-yielding dairy cows. There has been extensive research on this idea over the last two decades, and despite promising results, several interfering factors have led to varying findings, making it difficult to conclude whether and under what conditions EFA and CLA supplementations are beneficial for dairy cows during the transition period. This article reviews the latest studies on the effects of EFA and CLA supplementation, alone or in combination, on dairy cow metabolism and health during various stages around parturition. Our review article summarises and provides novel insights into the mechanisms by which EFA and/or CLA influence markers of metabolism, energy homeostasis and partitioning, immunity, and inflammation revealed by a deep molecular phenotyping.
Collapse
Affiliation(s)
- Arash Veshkini
- Institute of Nutritional Physiology Research, Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany; Department of Veterinary Medicine, Università degli Studi di Milano, 26900 Lodi, Italy.
| | - Fabrizio Ceciliani
- Department of Veterinary Medicine, Università degli Studi di Milano, 26900 Lodi, Italy
| | - Muriel Bonnet
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - Harald Michael Hammon
- Institute of Nutritional Physiology Research, Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| |
Collapse
|
5
|
Delosière M, Bernard L, Viala D, Fougère H, Bonnet M. Milk and plasma proteomes from cows facing diet-induced milk fat depression are related to immunity, lipid metabolism and inflammation. Animal 2023; 17:100822. [PMID: 37196580 DOI: 10.1016/j.animal.2023.100822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 05/19/2023] Open
Abstract
Milk proteins are a source of bioactive molecules for calves and humans that may also reflect the physiology and metabolism of dairy cows. Dietary lipid supplements are classically used to modulate the lipid content and composition of bovine milk, with potential impacts on the nutrient's homeostasis and the systemic inflammation of cows that remains to be more explored. This study aimed at identifying discriminant proteins and their associated pathways in twelve Holstein cows (87 ± 7 days in milk), multiparous and non-pregnant, fed for 28 d a diet either, supplemented with 5% DM intake of corn oil and with 50% additional starch from wheat in the concentrate (COS, n = 6) chosen to induce a milk fat depression, or with 3% DM intake of hydrogenated palm oil (HPO, n = 6) known to increase milk fat content. Intake, milk yield and milk composition were measured. On d 27 of the experimental periods, milk and blood samples were collected and label-free quantitative proteomics was performed on proteins extracted from plasma, milk fat globule membrane (MFGM) and skimmed milk (SM). The proteomes from COS and HPO samples were composed of 98, 158 and 70 unique proteins, respectively, in plasma, MFGM and SM. Of these, the combination of a univariate and a multivariate partial least square discriminant analyses reveals that 15 proteins in plasma, 24 in MFGM and 14 in SM signed the differences between COS and HPO diets. The 15 plasma proteins were related to the immune system, acute-phase response, regulation of lipid transport and insulin sensitivity. The 24 MFGM proteins were related to the lipid biosynthetic process and secretion. The 14 SM proteins were linked mainly to immune response, inflammation and lipid transport. This study proposes discriminant milk and plasma proteomes, depending on diet-induced divergence in milk fat secretion, that are related to nutrient homeostasis, inflammation, immunity and lipid metabolism. The present results also suggest a higher state of inflammation with the COS diet.
Collapse
Affiliation(s)
- Mylène Delosière
- INRAE, Université Clermont Auvergne, Vetagro Sup, UMRH, 63122 Saint-Genès-Champanelle, France.
| | - Laurence Bernard
- INRAE, Université Clermont Auvergne, Vetagro Sup, UMRH, 63122 Saint-Genès-Champanelle, France
| | - Didier Viala
- INRAE, Université Clermont Auvergne, Vetagro Sup, UMRH, 63122 Saint-Genès-Champanelle, France; INRAE, Université Clermont Auvergne, Vetagro Sup, PFEM, 63122 Saint-Genès-Champanelle, France
| | - Hélène Fougère
- INRAE, Université Clermont Auvergne, Vetagro Sup, UMRH, 63122 Saint-Genès-Champanelle, France
| | - Muriel Bonnet
- INRAE, Université Clermont Auvergne, Vetagro Sup, UMRH, 63122 Saint-Genès-Champanelle, France
| |
Collapse
|
6
|
Veshkini A, Hammon HM, Lazzari B, Vogel L, Gnott M, Tröscher A, Vendramin V, Sadri H, Sauerwein H, Ceciliani F. Investigating circulating miRNA in transition dairy cows: What miRNAomics tells about metabolic adaptation. Front Genet 2022; 13:946211. [PMID: 36082001 PMCID: PMC9445238 DOI: 10.3389/fgene.2022.946211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
In the current study, we investigated dairy cows’ circulating microRNA (miRNA) expression signature during several key time points around calving, to get insights into different aspects of metabolic adaptation. In a trial with 32 dairy cows, plasma samples were collected on days −21, 1, 28, and 63 relative to calving. Individually extracted total RNA was subjected to RNA sequencing using NovaSeq 6,000 (Illumina, CA) on the respective platform of IGA Technology Services, Udine, Italy. MiRDeep2 was used to identify known and novel miRNA according to the miRbase collection. Differentially expressed miRNA (DEM) were assessed at a threshold of fold-change > 1.5 and false discovery rate < 0.05 using the edgeR package. The MiRWalk database was used to predict DEM targets and their associated KEGG pathways. Among a total of 1,692 identified miRNA, 445 known miRNA were included for statistical analysis, of which 84, 59, and 61 DEM were found between days −21 to 1, 1 to 28, and 28 to 63, respectively. These miRNA were annotated to KEGG pathways targeting the insulin, MAPK, Ras, Wnt, Hippo, sphingolipid, T cell receptor, and mTOR signaling pathways. MiRNA-mRNA network analysis identified miRNA as master regulators of the biological process including miR-138, miR-149-5p, miR-2466-3p, miR-214, miR-504, and miR-6523a. This study provided new insights into the miRNA signatures of transition to the lactation period. Calving emerged as a critical time point when miRNA were most affected, while the following period appeared to be recovering from massive parturition changes. The primarily affected pathways were key signaling pathways related to establishing metabolic and immune adaptations.
Collapse
Affiliation(s)
- Arash Veshkini
- Institute of Animal Science, Physiology Unit, University of Bonn, Bonn, Germany
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
- Department of Veterinary Medicine, Università degli Studi di Milano, Lodi, Italy
| | | | - Barbara Lazzari
- Institute of Agricultural Biology and Biotechnology of the CNR, Milan, Italy
| | - Laura Vogel
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Martina Gnott
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | | | | | - Hassan Sadri
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Helga Sauerwein
- Institute of Animal Science, Physiology Unit, University of Bonn, Bonn, Germany
| | - Fabrizio Ceciliani
- Department of Veterinary Medicine, Università degli Studi di Milano, Lodi, Italy
- *Correspondence: Fabrizio Ceciliani,
| |
Collapse
|
7
|
Effects of different ratios of omega-6:omega-3 fatty acids in the diet of sows on the proteome of milk-derived extracellular vesicles. J Proteomics 2022; 264:104632. [DOI: 10.1016/j.jprot.2022.104632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/24/2022]
|