1
|
Lalonde JN, Pilania G, Marrone BL. Materials designed to degrade: structure, properties, processing, and performance relationships in polyhydroxyalkanoate biopolymers. Polym Chem 2024:d4py00623b. [PMID: 39464417 PMCID: PMC11498330 DOI: 10.1039/d4py00623b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/05/2024] [Indexed: 10/29/2024]
Abstract
Conventional plastics pose significant environmental and health risks across their life cycle, driving intense interest in sustainable alternatives. Among these, polyhydroxyalkanoates (PHAs) stand out for their biocompatibility, degradation characteristics, and diverse applications. Yet, challenges like production cost, scalability, and limited chemical variety hinder their widespread adoption, impacting material selection and design. This review examines PHA research through the lens of the classical materials tetrahedron, exploring property-structure-processing-performance (PSPP) relationships. By analyzing recent literature and addressing current limitations, we gain valuable insights into PHA development. Despite challenges, we remain optimistic about the role of PHAs in transitioning towards a circular plastic economy, emphasizing the need for further research to unlock their full potential.
Collapse
Affiliation(s)
- Jessica N Lalonde
- Department of Mechanical Engineering and Materials Science, Duke University Durham NC 27708 USA
- Bioscience Division, Los Alamos National Laboratory Los Alamos NM 87545 USA
| | | | - Babetta L Marrone
- Bioscience Division, Los Alamos National Laboratory Los Alamos NM 87545 USA
| |
Collapse
|
2
|
Corti Monzón G, Bertola G, Herrera Seitz MK, Murialdo SE. Exploring polyhydroxyalkanoates biosynthesis using hydrocarbons as carbon source: a comprehensive review. Biodegradation 2024; 35:519-538. [PMID: 38310580 DOI: 10.1007/s10532-023-10068-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/13/2023] [Indexed: 02/06/2024]
Abstract
Environmental pollution caused by petrochemical hydrocarbons (HC) and plastic waste is a pressing global challenge. However, there is a promising solution in the form of bacteria that possess the ability to degrade HC, making them valuable tools for remediating contaminated environments and effluents. Moreover, some of these bacteria offer far-reaching potential beyond bioremediation, as they can also be utilized to produce polyhydroxyalkanoates (PHAs), a common type of bioplastics. The accumulation of PHAs in bacterial cells is facilitated in environments with high C/N or C/P ratio, which are often found in HC-contaminated environments and effluents. Consequently, some HC-degrading bacteria can be employed to simultaneously produce PHAs and conduct biodegradation processes. Although bacterial bioplastic production has been thoroughly studied, production costs are still too high compared to petroleum-derived plastics. This article aims to provide a comprehensive review of recent scientific advancements concerning the capacity of HC-degrading bacteria to produce PHAs. It will delve into the microbial strains involved and the types of bioplastics generated, as well as the primary pathways for HC biodegradation and PHAs production. In essence, we propose the potential utilization of HC-degrading bacteria as a versatile tool to tackle two major environmental challenges: HC pollution and the accumulation of plastic waste. Through a comprehensive analysis of strengths and weaknesses in this aspect, this review aims to pave the way for future research in this area, with the goal of facilitating and promoting investigation in a field where obtaining PHAs from HC remains a costly and challenging process.
Collapse
Affiliation(s)
- G Corti Monzón
- Instituto de Ciencia y Tecnología de Alimentos y Ambiente, INCITAA, CONICET, Universidad Nacional de Mar del Plata, Buenos Aires, Argentina.
| | - G Bertola
- Instituto de Ciencia y Tecnología de Alimentos y Ambiente, INCITAA, CONICET, Universidad Nacional de Mar del Plata, Buenos Aires, Argentina
| | - M K Herrera Seitz
- Instituto de Investigaciones Biológicas, IIB, CONICET, Universidad Nacional de Mar del Plata, Buenos Aires, Argentina
| | - S E Murialdo
- Instituto de Ciencia y Tecnología de Alimentos y Ambiente, INCITAA, CIC, Universidad Nacional de Mar del Plata, Buenos Aires, Argentina
| |
Collapse
|
3
|
Moanis R, Geeraert H, Van den Brande N, Hennecke U, Peeters E. Paracoccus kondratievae produces poly(3-hydroxybutyrate) under elevated temperature conditions. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13260. [PMID: 38838099 PMCID: PMC11150862 DOI: 10.1111/1758-2229.13260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/13/2024] [Indexed: 06/07/2024]
Abstract
As part of ongoing efforts to discover novel polyhydroxyalkanoate-producing bacterial species, we embarked on characterizing the thermotolerant species, Paracoccus kondratievae, for biopolymer synthesis. Using traditional chemical and thermal characterization techniques, we found that P. kondratievae accumulates poly(3-hydroxybutyrate) (PHB), reaching up to 46.8% of the cell's dry weight after a 24-h incubation at 42°C. Although P. kondratievae is phylogenetically related to the prototypical polyhydroxyalkanoate producer, Paracoccus denitrificans, we observed significant differences in the PHB production dynamics between these two Paracoccus species. Notably, P. kondratievae can grow and produce PHB at elevated temperatures ranging from 42 to 47°C. Furthermore, P. kondratievae reaches its peak PHB content during the early stationary growth phase, specifically after 24 h of growth in a flask culture. This is then followed by a decline in the later stages of the stationary growth phase. The depolymerization observed in this growth phase is facilitated by the abundant presence of the PhaZ depolymerase enzyme associated with PHB granules. We observed the highest PHB levels when the cells were cultivated in a medium with glycerol as the sole carbon source and a carbon-to-nitrogen ratio of 10. Finally, we found that PHB production is induced as an osmotic stress response, similar to other polyhydroxyalkanoate-producing species.
Collapse
Affiliation(s)
- Radwa Moanis
- Research Group of Microbiology, Department of Bioengineering SciencesVrije Universiteit BrusselBrusselsBelgium
- Faculty of Sciences, Botany and Microbiology DepartmentDamanhour UniversityDamanhourEgypt
| | - Hannelore Geeraert
- Research Group of Physical Chemistry and Polymer ScienceVrije Universiteit BrusselBrusselsBelgium
| | - Niko Van den Brande
- Research Group of Physical Chemistry and Polymer ScienceVrije Universiteit BrusselBrusselsBelgium
| | - Ulrich Hennecke
- Research Group of Organic Chemistry, Department of Chemistry and Department of Bioengineering SciencesVrije Universiteit BrusselBrusselsBelgium
| | - Eveline Peeters
- Research Group of Microbiology, Department of Bioengineering SciencesVrije Universiteit BrusselBrusselsBelgium
| |
Collapse
|
4
|
Lhamo P, Mahanty B. Impact of Acetic Acid Supplementation in Polyhydroxyalkanoates Production by Cupriavidus necator Using Mixture-Process Design and Artificial Neural Network. Appl Biochem Biotechnol 2024; 196:1155-1174. [PMID: 37166651 DOI: 10.1007/s12010-023-04567-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 05/12/2023]
Abstract
The trend in bioplastic application has increased over the years where polyhydroxyalkanoates (PHAs) have emerged as a potential candidate with the advantage of being bio-origin, biodegradable, and biocompatible. The present study aims to understand the effect of acetic acid concentration (in combination with sucrose) as a mixture variable and its time of addition (process variable) on PHA production by Cupriavidus necator. The addition of acetic acid at a concentration of 1 g l-1 showed a positive influence on biomass and PHA yield; however, the further increase had a reversal effect. The addition of acetic acid at the time of incubation showed a higher PHA yield, whereas maximum biomass was achieved when acetic acid was added after 48 h. Genetic algorithm (GA) optimized artificial neural network (ANN) was used to model PHA concentration from mixture-process design data. Fitness of the GA-ANN model (R2: 0.935) was superior when compared to the polynomial model (R2: 0.301) from mixture design. Optimization of the ANN model projected 2.691 g l-1 PHA from 7.245 g l-1 acetic acid, 12.756 g l-1 sucrose, and the addition of acetic acid at the time of incubation. Sensitivity analysis indicates the inhibitory effect of all the predictors at higher levels. ANN model can be further used to optimize the variables while extending the bioprocess to fed-batch operation.
Collapse
Affiliation(s)
- Pema Lhamo
- Karunya Institute of Technology and Sciences, Coimbatore, India
| | | |
Collapse
|
5
|
Mandragutti T, Jarso TS, Godi S, Begum SS, K B. Physicochemical characterization of polyhydroxybutyrate (PHB) produced by the rare halophile Brachybacterium paraconglomeratum MTCC 13074. Microb Cell Fact 2024; 23:59. [PMID: 38388436 PMCID: PMC10882773 DOI: 10.1186/s12934-024-02324-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 02/03/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Polyhydroxybutyrate is a biopolymer produced by bacteria and archaea under nitrogen-limiting conditions. PHB is an essential polymer in the bioplastic sector because of its biodegradability, eco-friendliness, and adaptability. The characterization of PHB is a multifaceted process for studying the structure and its properties. This entire aspect can assure the long-term viability and performance attributes of the PHB. The characteristics of PHB extracted from the halophile Brachybacterium paraconglomeratum were investigated with the objective of making films for application in healthcare. RESULTS This was the first characterization study on PHB produced by a rare halophile, Brachybacterium paraconglomeratum (MTCC 13074). In this study, the strain produced 2.72 g/l of PHB for.5.1 g/l of biomass under optimal conditions. Methods are described for the determination of the physicochemical properties of PHB. The prominent functional groups CH3 and C = O were observed by FT-IR and the actual chemical structure of the PHB was deduced by NMR. GCMS detects the confirmation of four methyl ester derivatives of the extracted PHB in the sample. Mass spectrometry revealed the molecular weight of methyl 3-hydroxybutyric acid (3HB) present in the extract. The air-dried PHB films were exposed to TGA, DSC and a universal testing machine to determine the thermal profile and mechanical stability. Additionally, the essential property of biopolymers like viscosity was also assessed for the extracted PHB. CONCLUSIONS The current study demonstrated the consistency and quality of B. paraconglomeratum PHB. Therefore, Brachybacterium sps are also a considerable source of PHB with desired characteristics for industrial production.
Collapse
Affiliation(s)
- Teja Mandragutti
- Department of Biotechnology, Andhra University, Visakhapatnam, 530 003, India.
| | - Tura Safawo Jarso
- Department of Biology (Applied Genetics and Biotechnology Stream), College of Natural Sciences, Salale University, Fiche, Ethiopia
| | - Sudhakar Godi
- Department of Biotechnology, Andhra University, Visakhapatnam, 530 003, India
| | - S Sharmila Begum
- Department of Biotechnology, Dr Lankapalli Bullayya College, Visakhapatnam, 530013, India
| | - Beulah K
- Department of Biotechnology, Dr Lankapalli Bullayya College, Visakhapatnam, 530013, India
| |
Collapse
|
6
|
Mozejko-Ciesielska J, Moraczewski K, Czaplicki S, Singh V. Production and characterization of polyhydroxyalkanoates by Halomonas alkaliantarctica utilizing dairy waste as feedstock. Sci Rep 2023; 13:22289. [PMID: 38097607 PMCID: PMC10721877 DOI: 10.1038/s41598-023-47489-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023] Open
Abstract
Currently, the global demand for polyhydroxyalkanoates (PHAs) is significantly increasing. PHAs are produced by several bacteria that are an alternative source of synthetic polymers derived from petrochemical refineries. This study established a simple and more feasible process of PHA production by Halomonas alkaliantarctica using dairy waste as the only carbon source. The data confirmed that the analyzed halophile could metabolize cheese whey (CW) and cheese whey mother liquor (CWML) into biopolyesters. The highest yield of PHAs was 0.42 g/L in the cultivation supplemented with CWML. Furthermore, it was proved that PHA structure depended on the type of by-product from cheese manufacturing, its concentration, and the culture time. The results revealed that H. alkaliantarctica could produce P(3HB-co-3HV) copolymer in the cultivations with CW at 48 h and 72 h without adding of any precursors. Based on the data obtained from physicochemical and thermal analyses, the extracted copolymer was reported to have properties suitable for various applications. Overall, this study described a promising approach for valorizing of dairy waste as a future strategy of industrial waste management to produce high value microbial biopolymers.
Collapse
Affiliation(s)
- Justyna Mozejko-Ciesielska
- Department of Microbiology and Mycology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10719, Olsztyn, Poland.
| | - Krzysztof Moraczewski
- Institute of Materials Engineering, Kazimierz Wielki University, 85064, Bydgoszcz, Poland
| | - Sylwester Czaplicki
- Department of Plant Food Chemistry and Processing, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Pl. Cieszyński 1, 10726, Olsztyn, Poland
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, 382715, India
| |
Collapse
|
7
|
Możejko-Ciesielska J, Ray S, Sankhyan S. Recent Challenges and Trends of Polyhydroxyalkanoate Production by Extremophilic Bacteria Using Renewable Feedstocks. Polymers (Basel) 2023; 15:4385. [PMID: 38006109 PMCID: PMC10674690 DOI: 10.3390/polym15224385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Polyhydroxyalkanoates (PHAs) are biodegradable polymers with immense potential in addressing the global plastic pollution crisis and advancing sustainable bioplastics production. Among the various microbes known for PHA production, extremophilic bacteria possess unique capabilities to thrive under extreme conditions, making them attractive candidates for PHA synthesis. Furthermore, the utilization of renewable feedstocks for PHA production aligns with the growing demand for sustainable bioplastic alternatives. A diverse range of extremophilic bacteria, especially halophiles and thermophiles, has provided cost-competitive platforms for producing customized PHA polymers. Extremophilic bacteria offer unique advantages over mesophiles due to their contamination resistance, high cell density growth, and unique culture conditions. The current status of Halomonas spp. as a chassis further allows exploration of metabolic engineering approaches to overcome the challenges associated with current industrial biotechnology. This article especially focuses on extremophilic bacteria and explores recent advances in utilizing renewable feedstocks such as lignocellulosic biomass, agro-industrial residues, and waste streams for PHA production. The integration of biorefinery concepts and circular economy principles in PHA manufacturing is also examined. This review is an attempt to provide an understanding of renewable substrates as feedstocks and emerging trends in PHA production by extremophilic bacteria. It underscores the pivotal role of extremophiles and sustainable feedstock sources in advancing the feasibility and eco-friendliness of PHAs as a promising biopolymer alternative.
Collapse
Affiliation(s)
- Justyna Możejko-Ciesielska
- Department of Microbiology and Mycology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10719 Olsztyn, Poland
| | - Subhasree Ray
- Department of Life Sciences, School of Basic Science and Research, Sharda University, Greater Noida 201310, India;
| | - Shivangi Sankhyan
- Department of Life Sciences, School of Basic Science and Research, Sharda University, Greater Noida 201310, India;
| |
Collapse
|
8
|
Mahato RP, Kumar S, Singh P. Production of polyhydroxyalkanoates from renewable resources: a review on prospects, challenges and applications. Arch Microbiol 2023; 205:172. [PMID: 37017747 DOI: 10.1007/s00203-023-03499-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/11/2023] [Accepted: 03/22/2023] [Indexed: 04/06/2023]
Abstract
Bioplastics replace synthetic plastics of petrochemical origin, which contributes challenge to both polymer quality and economics. Novel polyhydroxyalkanoates (PHA)-composite materials, with desirable product quality, could be developed, thus targeting the global plastics market, in the coming years. It is possible that PHA can be a greener substitute for their petroleum-based competitors since they are simply decomposed, which may lessen the pressure on municipal and industrial waste management systems. PHA production has proven to be the bottleneck in industrial application and commercialization because of the high price of carbon substrates and downstream processes required to achieve reliability. Bacterial PHA production by these municipal and industrial wastes, which act as a cheap, renewable carbon substrate, eliminates waste management hassles and acts as an efficient substitute for synthetic plastics. In the present review, challenges and opportunities related to the commercialization of polyhydroxyalkanoates are discussed and presented. Moreover, it discusses critical steps of their production process, feedstock evaluation, optimization strategies, and downstream processes. This information may provide us the complete utilization of bacterial PHA during possible applications in packaging, nutrition, medicine, and pharmaceuticals.
Collapse
Affiliation(s)
- Richa Prasad Mahato
- Department of Microbiology, Kanya Gurukul Campus, Gurukul Kangri University, Haridwar, 249407, India.
| | - Saurabh Kumar
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Padma Singh
- Department of Microbiology, Kanya Gurukul Campus, Gurukul Kangri University, Haridwar, 249407, India
| |
Collapse
|
9
|
Szacherska K, Moraczewski K, Czaplicki S, Oleskowicz-Popiel P, Mozejko-Ciesielska J. Effect of short- and medium-chain fatty acid mixture on polyhydroxyalkanoate production by Pseudomonas strains grown under different culture conditions. Front Bioeng Biotechnol 2022; 10:951583. [PMID: 35957637 PMCID: PMC9358023 DOI: 10.3389/fbioe.2022.951583] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Short- and medium-chain fatty acids (SMCFAs) derived from the acidogenic anaerobic mixed culture fermentation of acid whey obtained from a crude cheese production line and their synthetic mixture that simulates a real SMCFA-rich stream were evaluated for polyhydroxyalkanoate (PHA) production. Three individual Pseudomonas sp. strains showed different capabilities of growing and producing PHAs in the presence of a synthetic mixture of SMCFAs. Pseudomonas sp. GL06 exhibited the highest SMCFA tolerance and produced PHAs with the highest productivity (2.7 mg/L h). Based on these observations, this strain was selected for further investigations on PHA production in a fed-batch bioreactor with a SMCFA-rich stream extracted from the effluent. The results showed that PHA productivity reached up to 4.5 mg/L h at 24 h of fermentation together with the ammonium exhaustion in the growth medium. Moreover, the PHA monomeric composition varied with the bacterial strain and the type of the growth medium used. Furthermore, a differential scanning calorimetric and thermogravimetric analysis showed that a short- and medium-chain-length PHA copolymer made of 3-hydroxybutyric, -hexanoic, -octanoic, -decanoic, and -dodecanoic has promising properties. The ability of Pseudomonas sp. to produce tailored PHA copolymers together with the range of possible applications opens new perspectives in the development of PHA bioproduction as a part of an integrated valorization process of SMCFAs derived from waste streams.
Collapse
Affiliation(s)
- Karolina Szacherska
- Department of Microbiology and Mycology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | | | - Sylwester Czaplicki
- Department of Plant Food Chemistry and Processing, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Piotr Oleskowicz-Popiel
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Poznan, Poland
| | - Justyna Mozejko-Ciesielska
- Department of Microbiology and Mycology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
- *Correspondence: Justyna Mozejko-Ciesielska,
| |
Collapse
|