1
|
Pang Y, Zhang L, Zhong Z, Yang N, Zheng Y, Ding W. Nobiletin restores HFD-induced enteric nerve injury by regulating enteric glial activation and the GDNF/AKT/FOXO3a/P21 pathway. Mol Med 2024; 30:113. [PMID: 39095693 PMCID: PMC11297793 DOI: 10.1186/s10020-024-00841-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/17/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND To explore whether nobiletin has a protective effect on high-fat diet (HFD)-induced enteric nerve injury and its underlying mechanism. METHODS An obesity model was induced by a HFD. Nobiletin (100 mg/kg and 200 mg/kg) and vehicle were administered by gastric gavage for 4 weeks. Lee's index, body weight, OGTT and intestinal propulsion assays were performed before sacrifice. After sampling, lipids were detected using Bodipy 493/503; lipid peroxidation was detected using MDA and SOD kits and the expression of PGP 9.5, Trem2, GFAP, β-tubulin 3, Bax, Bcl2, Nestin, P75 NTR, SOX10 and EDU was detected using immunofluorescence. The GDNF, p-AKT, AKT, p-FOXO3a, FOXO3a and P21 proteins were detected using western blotting. The relative mRNA expression levels of NOS2 were detected via qPCR. Primary enteric neural stem cells (ENSCs) were cultured. After ENSCs were treated with palmitic acid (PA) and nobiletin, CCK-8 and caspase-3/7 activity assays were performed to evaluate proliferation and apoptosis. RESULTS HFD consumption caused colon lipid accumulation and peroxidation, induced enteric nerve damage and caused intestinal motor dysfunction. However, nobiletin reduced lipid accumulation and peroxidation in the colon; promoted Trem2, β-tubulin 3, Nestin, P75NTR, SOX10 and Bcl2 expression; inhibited Bax and GFAP expression; reduced NOS2 mRNA transcription; and regulated the GDNF/AKT/FOXO3a/P21 pathway. Nobiletin also promoted PA-induced impairment of ENSCs. CONCLUSIONS Nobiletin restored HFD-induced enteric nerve injury, which may be associated with inhibiting enteric nerve apoptosis, promoting enteric nerve survival and regulating the GDNF/AKT/FOXO3a/P21 pathway.
Collapse
Affiliation(s)
- Yueshan Pang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
- The Second Clinical Medical College, North Sichuan Medical College, Nanchong Central Hospital, Nanchong, 637000, China
| | - Li Zhang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Zhuoting Zhong
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Ni Yang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Yali Zheng
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Weijun Ding
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China.
| |
Collapse
|
2
|
Moreira Gobis MDL, Goulart de Souza-Silva T, de Almeida Paula HA. The impact of a western diet on gut microbiota and circadian rhythm: A comprehensive systematic review of in vivo preclinical evidence. Life Sci 2024; 349:122741. [PMID: 38788974 DOI: 10.1016/j.lfs.2024.122741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/13/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024]
Abstract
AIMS Here, we present a systematic review that compiles in vivo experimental data regarding the effect of the WD on the gut microbiota and its impact on the circadian rhythm. Additionally, we reviewed studies evaluating the combined effects of WD and circadian cycle disruption on gut microbiota and circadian cycle markers. MATERIALS AND METHODS The original studies indexed in PubMed/Medline, Scopus, and Web of Science databases were screened according to the PRISMA strategy. KEY FINDINGS Preclinical studies revealed that WD triggers circadian rhythmicity disruption, reduces the alpha-diversity of the microbiota and favors the growth of bacterial groups that are detrimental to intestinal homeostasis, such as Clostridaceae, Enterococcus, Parasutterella and Proteobacteria. When the WD is combined with circadian clock disruption, gut dysbiosis become more pronounced. Reduced cycling of Per3, Rev-erb and CLOCK in the intestine, which are related to dysregulation of lipid metabolism and potential metabolic disease, was observed. SIGNIFICANCE In conclusion, current evidence supports the potential of WD to trigger microbiota dysregulation, disrupt the biological clock, and increase susceptibility to metabolic disorders and potentially chronic diseases.
Collapse
Affiliation(s)
| | - Thaiany Goulart de Souza-Silva
- Institute of Biological Science, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | |
Collapse
|
3
|
Martchenko A, Papaelias A, Bolz SS. Physiologic effects of the maqui berry ( Aristotelia chilensis): a focus on metabolic homeostasis. Food Funct 2024; 15:4724-4740. [PMID: 38618933 DOI: 10.1039/d3fo02524a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The prevalence and socioeconomic impact of metabolic diseases is rapidly growing. The limited availability of effective and affordable treatments has fuelled interest in the therapeutic potential of natural compounds as they occur in selected food sources. These compounds might help to better manage the current problems of treatment availability, affordability, and adverse effects that, in combination, limit treatment duration and efficacy at present. Specifically, berries garnered interest given a strong epidemiological link between their consumption and improved metabolic functions, making the analysis of their phytochemical composition and the identification and characterization of biologically active ingredients an emerging area of research. In this regard, the present review focuses on the South American maqui berry Aristotelia chilensis, which has been extensively used by the indigenous Mapuche population for generations to treat a variety of disease conditions. An overview of the maqui plant composition precedes a review of pre-clinical and clinical studies that investigated the effects of maqui berries and their major components on metabolic homeostasis. The final part of the review highlights possible technologies to conserve maqui berry structural and functional integrity during passage through the small intestine, ultimately aiming to augment their systemic and luminal bioavailability and biological effects. The integration of the various aspects discussed herein can assist in the development of effective maqui-based therapies to benefit the growing population of metabolically compromised patients.
Collapse
Affiliation(s)
- Alexandre Martchenko
- Department of Physiology, University of Toronto, Toronto, Canada
- Toronto Centre for Microvascular Medicine at The Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, 661 University Avenue, 14th Floor, Toronto, M5G 1M1, Canada.
| | - Alexandra Papaelias
- Department of Physiology, University of Toronto, Toronto, Canada
- Toronto Centre for Microvascular Medicine at The Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, 661 University Avenue, 14th Floor, Toronto, M5G 1M1, Canada.
| | - Steffen-Sebastian Bolz
- Department of Physiology, University of Toronto, Toronto, Canada
- Toronto Centre for Microvascular Medicine at The Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, 661 University Avenue, 14th Floor, Toronto, M5G 1M1, Canada.
- Heart & Stroke/Richard Lewar Centre of Excellence for Cardiovascular Research, University of Toronto, Toronto, Canada
| |
Collapse
|
4
|
Petrenko V, Sinturel F, Riezman H, Dibner C. Lipid metabolism around the body clocks. Prog Lipid Res 2023; 91:101235. [PMID: 37187314 DOI: 10.1016/j.plipres.2023.101235] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/06/2023] [Accepted: 05/12/2023] [Indexed: 05/17/2023]
Abstract
Lipids play important roles in energy metabolism along with diverse aspects of biological membrane structure, signaling and other functions. Perturbations of lipid metabolism are responsible for the development of various pathologies comprising metabolic syndrome, obesity, and type 2 diabetes. Accumulating evidence suggests that circadian oscillators, operative in most cells of our body, coordinate temporal aspects of lipid homeostasis. In this review we summarize current knowledge on the circadian regulation of lipid digestion, absorption, transportation, biosynthesis, catabolism, and storage. Specifically, we focus on the molecular interactions between functional clockwork and biosynthetic pathways of major lipid classes comprising cholesterol, fatty acids, triacylglycerols, glycerophospholipids, glycosphingolipids, and sphingomyelins. A growing body of epidemiological studies associate a socially imposed circadian misalignment common in modern society with growing incidence of metabolic disorders, however the disruption of lipid metabolism rhythms in this connection has only been recently revealed. Here, we highlight recent studies that unravel the mechanistic link between intracellular molecular clocks, lipid homeostasis and development of metabolic diseases based on animal models of clock disruption and on innovative translational studies in humans. We also discuss the perspectives of manipulating circadian oscillators as a potentially powerful approach for preventing and managing metabolic disorders in human patients.
Collapse
Affiliation(s)
- Volodymyr Petrenko
- Thoracic and Endocrine Surgery Division, Department of Surgery, University Hospital of Geneva, Geneva 1211, Switzerland; Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland; Institute of Genetics and Genomics in Geneva (iGE3), Geneva 1211, Switzerland
| | - Flore Sinturel
- Thoracic and Endocrine Surgery Division, Department of Surgery, University Hospital of Geneva, Geneva 1211, Switzerland; Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland; Institute of Genetics and Genomics in Geneva (iGE3), Geneva 1211, Switzerland
| | - Howard Riezman
- Department of Biochemistry, Faculty of Science, NCCR Chemical Biology, University of Geneva, Geneva 1211, Switzerland
| | - Charna Dibner
- Thoracic and Endocrine Surgery Division, Department of Surgery, University Hospital of Geneva, Geneva 1211, Switzerland; Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland; Institute of Genetics and Genomics in Geneva (iGE3), Geneva 1211, Switzerland.
| |
Collapse
|
5
|
Neba Ambe GNN, Breda C, Bhambra AS, Arroo RRJ. Effect of the Citrus Flavone Nobiletin on Circadian Rhythms and Metabolic Syndrome. Molecules 2022; 27:molecules27227727. [PMID: 36431828 PMCID: PMC9695244 DOI: 10.3390/molecules27227727] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
The importance of the circadian clock in maintaining human health is now widely acknowledged. Dysregulated and dampened clocks may be a common cause of age-related diseases and metabolic syndrome Thus, circadian clocks should be considered as therapeutic targets to mitigate disease symptoms. This review highlights a number of dietary compounds that positively affect the maintenance of the circadian clock. Notably the polymethoxyflavone nobiletin has shown some encouraging results in pre-clinical experiments. Although many more experiments are needed to fully elucidate its exact mechanism of action, it is a promising candidate with potential as a chronotherapeutic agent.
Collapse
Affiliation(s)
- Gael N. N. Neba Ambe
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | - Carlo Breda
- School of Allied Health Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | - Avninder Singh Bhambra
- School of Allied Health Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | - Randolph R. J. Arroo
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK
- Correspondence:
| |
Collapse
|
6
|
Brubaker PL. The Molecular Determinants of Glucagon-like Peptide Secretion by the Intestinal L cell. Endocrinology 2022; 163:6717959. [PMID: 36156130 DOI: 10.1210/endocr/bqac159] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Indexed: 11/19/2022]
Abstract
The intestinal L cell secretes a diversity of biologically active hormones, most notably the glucagon-like peptides, GLP-1 and GLP-2. The highly successful introduction of GLP-1-based drugs into the clinic for the treatment of patients with type 2 diabetes and obesity, and of a GLP-2 analog for patients with short bowel syndrome, has led to the suggestion that stimulation of the endogenous secretion of these peptides may serve as a novel therapeutic approach in these conditions. Situated in the intestinal epithelium, the L cell demonstrates complex relationships with not only circulating, paracrine, and neural regulators, but also ingested nutrients and other factors in the lumen, most notably the microbiota. The integrated input from these numerous secretagogues results in a variety of temporal patterns in L cell secretion, ranging from minutes to 24 hours. This review combines the findings of traditional, physiological studies with those using newer molecular approaches to describe what is known and what remains to be elucidated after 5 decades of research on the intestinal L cell and its secreted peptides, GLP-1 and GLP-2.
Collapse
Affiliation(s)
- Patricia L Brubaker
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
7
|
Biancolin AD, Jeong H, Mak KWY, Yuan Z, Brubaker PL. Disrupted and Elevated Circadian Secretion of Glucagon-Like Peptide-1 in a Murine Model of Type 2 Diabetes. Endocrinology 2022; 163:6649564. [PMID: 35876276 PMCID: PMC9368029 DOI: 10.1210/endocr/bqac118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Indexed: 11/19/2022]
Abstract
Metabolism and circadian rhythms are intimately linked, with circadian glucagon-like peptide-1 (GLP-1) secretion by the intestinal L-cell entraining rhythmic insulin release. GLP-1 secretion has been explored in the context of obesogenic diets, but never in a rodent model of type 2 diabetes (T2D). There is also considerable disagreement regarding GLP-1 levels in human T2D. Furthermore, recent evidence has demonstrated decreased expression of the β-cell exocytotic protein secretagogin (SCGN) in T2D. To extend these findings to the L-cell, we administered oral glucose tolerance tests at 6 time points in 4-hour intervals to the high-fat diet/streptozotocin (HFD-STZ) mouse model of T2D. This revealed a 10-fold increase in peak GLP-1 secretion with a phase shift of the peak from the normal feeding period into the fasting-phase. This was accompanied by impairments in the rhythms of glucose, glucagon, mucosal clock genes (Arntl and Cry2), and Scgn. Immunostaining revealed that L-cell GLP-1 intensity was increased in the HFD-STZ model, as was the proportion of L-cells that expressed SCGN; however, this was not found in L-cells from humans with T2D, which exhibited decreased GLP-1 staining but maintained their SCGN expression. Gcg expression in isolated L-cells was increased along with pathways relating to GLP-1 secretion and electron transport chain activity in the HFD-STZ condition. Further investigation into the mechanisms responsible for this increase in GLP-1 secretion may give insights into therapies directed toward upregulating endogenous GLP-1 secretion.
Collapse
Affiliation(s)
- Andrew D Biancolin
- Departments of Physiology, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Hyerin Jeong
- Departments of Physiology, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Kimberly W Y Mak
- Departments of Physiology, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Zixuan Yuan
- Departments of Physiology, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Patricia L Brubaker
- Correspondence: Patricia L. Brubaker, Ph.D., Rm 3366 Medical Sciences Building, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
8
|
Zhu H, Wang K, Chen S, Kang J, Guo N, Chen H, Liu J, Wu Y, He P, Tu Y, Li B. Saponins from Camellia sinensis Seeds Stimulate GIP Secretion in Mice and STC-1 Cells via SGLT1 and TGR5. Nutrients 2022; 14:nu14163413. [PMID: 36014921 PMCID: PMC9416400 DOI: 10.3390/nu14163413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 12/03/2022] Open
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) is one of the important incretins and possesses lots of physiological activities such as stimulating insulin secretion and maintaining glucose homeostasis. The pentacyclic triterpenoid saponins are the major active ingredients in tea (Camellia sinensis) seeds. This study aimed to investigate the effect of tea seed saponins on the GIP secretion and related mechanisms. Our data showed that the total tea seed saponins (TSS, 65 mg/kg BW) and theasaponin E1 (TSE1, 2–4 µM) could increase the GIP mRNA and protein levels in mice and STC-1 cells. Phlorizin, the inhibitor of Sodium/glucose cotransporter 1 (SGLT1), reversed the TSE1-induced increase in Ca2+ and GIP mRNA level. In addition, TSE1 upregulated the protein expression of Takeda G protein-coupled receptor 5 (TGR5), and TGR5 siRNA significantly decreased GIP expression in TSE1-treated STC-1 cells. Network pharmacology analysis revealed that six proteins and five signaling pathways were associated with SGLT1, TGR5 and GIP regulated by TSE1. Taken together, tea seed saponins could stimulate GIP expression via SGLT1 and TGR5, and were promising natural active ingredients for improving metabolism and related diseases.
Collapse
Affiliation(s)
- Huanqing Zhu
- Department of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Kaixi Wang
- Department of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Shuna Chen
- Department of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jiaxin Kang
- Department of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Na Guo
- Department of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Hongbo Chen
- Department of Tea Science, Zhejiang Shuren University, 8 Shuren Road, Hangzhou 310000, China
| | - Junsheng Liu
- Department of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yuanyuan Wu
- Department of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Puming He
- Department of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Youying Tu
- Department of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Bo Li
- Department of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Correspondence:
| |
Collapse
|
9
|
Liu C, Liu Y, Xin Y, Wang Y. Circadian secretion rhythm of GLP-1 and its influencing factors. Front Endocrinol (Lausanne) 2022; 13:991397. [PMID: 36531506 PMCID: PMC9755352 DOI: 10.3389/fendo.2022.991397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022] Open
Abstract
Circadian rhythm is an inherent endogenous biological rhythm in living organisms. However, with the improvement of modern living standards, many factors such as prolonged artificial lighting, sedentarism, short sleep duration, intestinal flora and high-calorie food intake have disturbed circadian rhythm regulation on various metabolic processes, including GLP-1 secretion, which plays an essential role in the development of various metabolic diseases. Herein, we focused on GLP-1 and its circadian rhythm to explore the factors affecting GLP-1 circadian rhythm and its potential mechanisms and propose some feasible suggestions to improve GLP-1 secretion.
Collapse
|