1
|
Nugroho CMH, Silaen OSM, Kurnia RS, Krisnamurti DGB, Putra MA, Indrawati A, Poetri ON, Wibawan IWT, Widyaningtyas ST, Soebandrio A. In vitro antiviral activity of NanB bacterial sialidase against avian influenza H9N2 virus in MDCK cells. Avian Pathol 2025; 54:96-107. [PMID: 39069790 DOI: 10.1080/03079457.2024.2386315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
The avian influenza virus is an infectious agent that may cause global health problems in poultry and is potentially zoonotic. In the recent decades, bacterial-derived sialidases have been extensively studied for their ability to inhibit avian influenza virus infections. In this study, the antiviral activity of NanB sialidase from Pasteurella multocida was investigated through in vitro analysis using Madin-Darby canine kidney (MDCK) cells. NanB sialidase was purified from P. multocida to test its toxicity and its ability to hydrolyse its sialic acid receptors on MDCK cells. The H9N2 challenge virus was propagated in MDCK cells until cytopathic effects appeared. Antiviral activity of NanB sialidase was tested using MDCK cells, and then observed based on cell morphology, viral copy number, and expression of apoptosis-mediating genes. NanB sialidase effectively hydrolysed Neu5Acα(2,6)-Gal sialic acid at a dose of 129 mU/ml, while at 258 mU/ml, it caused toxicity to MDCK cells. Antiviral activity of sialidase was evident based on the significant decrease in viral copy number at all doses administered. The increase of p53 and caspase-3 expression was observed in infected cells without sialidase. Our study demonstrates the ability of NanB sialidase to inhibit H9N2 virus replication based on observations of sialic acid hydrolysis, reduction in viral copy number, and expression of apoptosis-related genes. The future application of sialidase may be considered as an antiviral strategy against avian influenza H9N2 virus infections. RESEARCH HIGHLIGHTSNanB sialidase effectively hydrolyses Neu5Acα(2,6)-Gal at a dose of 129 mU/ml.NanB sialidase from Pasteurella multocida can inhibit the entry of H9N2 virus into cells.NanB sialidase of Pasteurella multocida prevents infection-induced cell apoptosis.NanB sialidase reduces the H9N2 viral copy number in MDCK cells.
Collapse
Affiliation(s)
- Christian Marco Hadi Nugroho
- Doctoral Program in Biomedical Sciences, Faculty of Medicine, University of Indonesia, DKI Jakarta, Indonesia
- Animal Health Research and Diagnostic Unit, PT Medika Satwa Laboratoris, Bogor, Indonesia
| | - Otto Sahat Martua Silaen
- Doctoral Program in Biomedical Sciences, Faculty of Medicine, University of Indonesia, DKI Jakarta, Indonesia
| | - Ryan Septa Kurnia
- Doctoral Program in Biomedical Sciences, Faculty of Medicine, University of Indonesia, DKI Jakarta, Indonesia
- Animal Health Research and Diagnostic Unit, PT Medika Satwa Laboratoris, Bogor, Indonesia
| | | | - Muhammad Ade Putra
- Department of Animal Disease and Veterinary Health, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Agustin Indrawati
- Department of Animal Disease and Veterinary Health, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Okti Nadia Poetri
- Department of Animal Disease and Veterinary Health, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - I Wayan Teguh Wibawan
- Department of Animal Disease and Veterinary Health, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Silvia Tri Widyaningtyas
- Virology and Cancer Pathobiology Research Centre, Faculty of Medicine, University of Indonesia, DKI Jakarta, Indonesia
| | - Amin Soebandrio
- Department of Microbiology, Faculty of Medicine, University of Indonesia, DKI Jakarta, Indonesia
| |
Collapse
|
2
|
Putra MA, Soebandrio A, Wibawan IWT, Nugroho CMHN, Kurnia RS, Silaen OSM, Rizkiantino R, Indrawati A, Poetri ON, Krisnamurti DGB. Analyzing Molecular Traits of H9N2 Avian Influenza Virus Isolated from a Same Poultry Farm in West Java Province, Indonesia, in 2017 and 2023. F1000Res 2024; 13:571. [PMID: 39610402 PMCID: PMC11602698 DOI: 10.12688/f1000research.150975.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/11/2024] [Indexed: 11/30/2024] Open
Abstract
Background Indonesia is one of the countries that is endemic to avian influenza virus subtype H9N2. This study aims to compare the molecular characteristics of avian influenza virus (AIV) subtype H9N2 from West Java. Methods Specific pathogen-free (SPF) embryonated chicken eggs were used to inoculate samples. RNA extraction and RT-qPCR confirmed the presence of H9 and N2 genes in the samples. RT-PCR was employed to amplify the H9N2-positive sample. Nucleotide sequences were obtained through Sanger sequencing and analyzed using MEGA 7. Homology comparison and phylogenetic tree analysis, utilizing the neighbor-joining tree method, assessed the recent isolate's similarity to reference isolates from GenBank. Molecular docking analysis was performed on the HA1 protein of the recent isolate and the A/Layer/Indonesia/WestJava-04/2017 isolate, comparing their interactions with the sialic acids Neu5Ac2-3Gal and Neu5Ac2-6Gal. Results RT-qPCR confirmed the isolate samples as AIV subtype H9N2. The recent virus exhibited 11 amino acid residue differences compared to the A/Layer/Indonesia/WestJava-04/2017 isolate. Phylogenetically, the recent virus remains within the h9.4.2.5 subclade. Notably, at antigenic site II, the recent isolate featured an amino acid N at position 183, unlike A/Layer/Indonesia/WestJava-04/2017. Molecular docking analysis revealed a preference of HA1 from the 2017 virus for Neu5Ac2-3Gal, while the 2023 virus displayed a tendency to predominantly bind with Neu5Ac2-6Gal. Conclusion In summary, the recent isolate displayed multiple mutations and a strong affinity for Neu5Ac2-6Gal, commonly found in mammals.
Collapse
Affiliation(s)
- Muhammad Ade Putra
- Master of Animal Biomedical Sciences, School of Veterinary and Biomedical, IPB University, Bogor, West Java, 16680, Indonesia
| | - Amin Soebandrio
- Department of Microbiology, Faculty of Medicine, University of Indonesia, Jakarta, Jakarta, 10320, Indonesia
| | - I Wayan Teguh Wibawan
- Division of Medical Microbiology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, West Java, 16680, Indonesia
| | | | - Ryan Septa Kurnia
- Animal Health Diagnostic Unit, PT. Medika Satwa Laboratoris, Bogor, West Java, 16166, Indonesia
| | | | - Rifky Rizkiantino
- Division of Central Laboratory and Disease Research Center, Technology and Research Development, Central Proteina Prima (CP Prima) Inc., Tangerang, Banten, 15560, Indonesia
| | - Agustin Indrawati
- Division of Medical Microbiology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, West Java, 16680, Indonesia
| | - Okti Nadia Poetri
- Division of Medical Microbiology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, West Java, 16680, Indonesia
| | - Desak Gede Budi Krisnamurti
- Department of Medical Pharmacy, Faculty of Medicine, University of Indonesia, Jakarta, Jakarta, 10430, Indonesia
| |
Collapse
|
3
|
Abrashev R, Krumova E, Petrova P, Eneva R, Dishliyska V, Gocheva Y, Engibarov S, Miteva-Staleva J, Spasova B, Kolyovska V, Angelova M. Glucose Catabolite Repression Participates in the Regulation of Sialidase Biosynthesis by Antarctic Strain Penicillium griseofulvum P29. J Fungi (Basel) 2024; 10:241. [PMID: 38667912 PMCID: PMC11051313 DOI: 10.3390/jof10040241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Sialidases (neuraminidases) catalyze the removal of terminal sialic acid residues from glycoproteins. Novel enzymes from non-clinical isolates are of increasing interest regarding their application in the food and pharmaceutical industry. The present study aimed to evaluate the participation of carbon catabolite repression (CCR) in the regulation of cold-active sialidase biosynthesis by the psychrotolerant fungal strain Penicillium griseofulvum P29, isolated from Antarctica. The presence of glucose inhibited sialidase activity in growing and non-growing fungal mycelia in a dose- and time-dependent manner. The same response was demonstrated with maltose and sucrose. The replacement of glucose with glucose-6-phosphate also exerted CCR. The addition of cAMP resulted in the partial de-repression of sialidase synthesis. The CCR in the psychrotolerant strain P. griseofulvum P29 did not depend on temperature. Sialidase might be subject to glucose repression by both at 10 and 25 °C. The fluorescent assay using 4MU-Neu5Ac for enzyme activity determination under increasing glucose concentrations evidenced that CCR may have a regulatory role in sialidase production. The real-time RT-PCR experiments revealed that the sialidase gene was subject to glucose repression. To our knowledge, this is the first report that has studied the effect of CCR on cold-active sialidase, produced by an Antarctic strain.
Collapse
Affiliation(s)
- Radoslav Abrashev
- Department of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113 Sofia, Bulgaria; (R.A.); (E.K.); (V.D.); (J.M.-S.); (B.S.)
| | - Ekaterina Krumova
- Department of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113 Sofia, Bulgaria; (R.A.); (E.K.); (V.D.); (J.M.-S.); (B.S.)
| | - Penka Petrova
- Department of General Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113 Sofia, Bulgaria; (P.P.); (R.E.); (Y.G.); (S.E.)
| | - Rumyana Eneva
- Department of General Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113 Sofia, Bulgaria; (P.P.); (R.E.); (Y.G.); (S.E.)
| | - Vladislava Dishliyska
- Department of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113 Sofia, Bulgaria; (R.A.); (E.K.); (V.D.); (J.M.-S.); (B.S.)
| | - Yana Gocheva
- Department of General Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113 Sofia, Bulgaria; (P.P.); (R.E.); (Y.G.); (S.E.)
| | - Stefan Engibarov
- Department of General Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113 Sofia, Bulgaria; (P.P.); (R.E.); (Y.G.); (S.E.)
| | - Jeny Miteva-Staleva
- Department of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113 Sofia, Bulgaria; (R.A.); (E.K.); (V.D.); (J.M.-S.); (B.S.)
| | - Boryana Spasova
- Department of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113 Sofia, Bulgaria; (R.A.); (E.K.); (V.D.); (J.M.-S.); (B.S.)
| | - Vera Kolyovska
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Academician G. Bonchev 25, 1113 Sofia, Bulgaria;
| | - Maria Angelova
- Department of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113 Sofia, Bulgaria; (R.A.); (E.K.); (V.D.); (J.M.-S.); (B.S.)
| |
Collapse
|
4
|
Dolashki A, Abrashev R, Kaynarov D, Krumova E, Velkova L, Eneva R, Engibarov S, Gocheva Y, Miteva-Staleva J, Dishliyska V, Spasova B, Angelova M, Dolashka P. Structural and functional characterization of cold-active sialidase isolated from Antarctic fungus Penicillium griseofulvum P29. Biochem Biophys Rep 2024; 37:101610. [PMID: 38155944 PMCID: PMC10753047 DOI: 10.1016/j.bbrep.2023.101610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/30/2023] Open
Abstract
The fungal strain, Penicillium griseofulvum P29, isolated from a soil sample taken from Terra Nova Bay, Antarctica, was found to be a good producer of sialidase (P29). The present study was focused on the purification and structural characterization of the enzyme. P29 enzyme was purified using a Q-Sepharose column and fast performance liquid chromatography separation on a Mono Q column. The determined molecular mass of the purified enzyme of 40 kDa by SDS-PAGE and 39924.40 Da by matrix desorption/ionization mass spectrometry (MALDI-TOF/MS) analysis correlated well with the calculated mass (39903.75 kDa) from the amino acid sequence of the enzyme. P29 sialidase shows a temperature optimum of 37 °C and low-temperature stability, confirming its cold-active nature. The enzyme is more active towards α(2 → 3) sialyl linkages than those containing α(2 → 6) linkages. Based on the determined amino acid sequence and 3D structural modeling, a 3D model of P29 sialidase was presented, and the properties of the enzyme were explained. The conformational stability of the enzyme was followed by fluorescence spectroscopy, and the new enzyme was found to be conformationally stable in the neutral pH range of pH 6 to pH 9. In addition, the enzyme was more stable in an alkaline environment than in an acidic environment. The purified cold-active enzyme is the only sialidase produced and characterized from Antarctic fungi to date.
Collapse
Affiliation(s)
- Aleksandar Dolashki
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, 1113, Acad. Georgy Bonchev str., bl. 9, Bulgaria
| | - Radoslav Abrashev
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, 1113, Acad. G. Bonchev str., bl. 26, Bulgaria
| | - Dimitar Kaynarov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, 1113, Acad. Georgy Bonchev str., bl. 9, Bulgaria
| | - Ekaterina Krumova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, 1113, Acad. G. Bonchev str., bl. 26, Bulgaria
| | - Lyudmila Velkova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, 1113, Acad. Georgy Bonchev str., bl. 9, Bulgaria
| | - Rumyana Eneva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, 1113, Acad. G. Bonchev str., bl. 26, Bulgaria
| | - Stefan Engibarov
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, 1113, Acad. G. Bonchev str., bl. 26, Bulgaria
| | - Yana Gocheva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, 1113, Acad. G. Bonchev str., bl. 26, Bulgaria
| | - Jeny Miteva-Staleva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, 1113, Acad. G. Bonchev str., bl. 26, Bulgaria
| | - Vladislava Dishliyska
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, 1113, Acad. G. Bonchev str., bl. 26, Bulgaria
| | - Boryana Spasova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, 1113, Acad. G. Bonchev str., bl. 26, Bulgaria
| | - Maria Angelova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, 1113, Acad. G. Bonchev str., bl. 26, Bulgaria
| | - Pavlina Dolashka
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, 1113, Acad. Georgy Bonchev str., bl. 9, Bulgaria
| |
Collapse
|
5
|
Soni S, Chahar M, Priyanka, Chugh P, Sharma A, Narasimhan B, Mohan H. Identification of Aztreonam as a potential antibacterial agent against Pasteurella multocida sialic acid binding protein: A combined in silico and in-vitro analysis. Microb Pathog 2023; 185:106398. [PMID: 37852551 DOI: 10.1016/j.micpath.2023.106398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/06/2023] [Accepted: 10/14/2023] [Indexed: 10/20/2023]
Abstract
Pasteurella multocida, a Gram-negative zoonotic bacterial pathogen, interacts with the host environment, immune response, and infection through outer membrane proteins, adhesins, and sialic acid binding proteins. Sialic acids provide nutrition and mask bacterial identity, hindering the complement system, facilitates tissue access and biofilm formation. Sialic acid binding protein (SAB) enable adhesion to host cells, immune evasion, and nutrient acquisition, making them potential targets for preventing Pasteurella multocida infections. In this study, in silico molecular docking assessed 11 antibiotics targeting SAB (4MMP) comparing their docking scores to Amoxicillin. As SAB (4MMP) exhibits a highly conserved sequence in various Pasteurella multocida strains, including the specific strain PMR212 studied in this article, with a 96.09% similarity score. Aztreonam and Gentamicin displayed the highest docking scores (-6.025 and -5.718), followed by a 100ns molecular dynamics simulation. Aztreonam exhibited stable simulation with protein RMSD fluctuations of 1.8-2.2 Å. The ligand initially had an RMSD of 1.6 Å, stabilizing at 4.8 Å. Antibiotic sensitivity testing confirmed Aztreonam's efficacy with the largest inhibition zone of 42 mm, while Amoxicillin and Gentamicin had inhibition zones of 32 mm and 25 mm, respectively. According to CLSI guidelines, all three antibiotics were effective against Pasteurella multocida. Aztreonam's superior efficacy positions it as a promising candidate for further investigation in targeting Pasteurella multocida.
Collapse
Affiliation(s)
- Subodh Soni
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Manjeet Chahar
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Priyanka
- Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Pooja Chugh
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Aastha Sharma
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | | | - Hari Mohan
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| |
Collapse
|
6
|
Kurnia RS, Soebandrio A, Harun VH, Nugroho CMH, Krisnamurti DGB, Poetri ON, Indrawati A, Tarigan S, Natih KKN, Ibrahim F, Sudarmono PP, Silaen OSM. Clostridium perfringens sialidase interaction with Neu5Ac α-Gal sialic acid receptors by in-silico observation and its impact on monolayers cellular behavior structure. J Adv Vet Anim Res 2023; 10:667-676. [PMID: 38370892 PMCID: PMC10868698 DOI: 10.5455/javar.2023.j722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/02/2023] [Accepted: 08/20/2023] [Indexed: 02/20/2024] Open
Abstract
Objective This study aims to evaluate the effect of Clostridium perfringens sialidase treatment on monolayer cell behavior using computational screening and an in vitro approach to demonstrate interaction between enzyme-based drugs and ligands in host cells. Materials and Methods The in silico study was carried out by molecular docking analysis used to predict the interactions between atoms that occur, followed by genetic characterization of sialidase from a wild isolate. Sialidase, which has undergone further production and purification processes exposed to chicken embryonic fibroblast cell culture, and observations-based structural morphology of cells compared between treated cells and normal cells without treatment. Results Based on an in silico study, C. perfringens sialidase has an excellent binding affinity with Neu5Acα (2.3) Gal ligand receptor with Gibbs energy value (∆G)-7.35 kcal/mol and Ki value of 4.11 µM. Wild C. perfringens isolates in this study have 99.1%-100% similarity to the plc gene, NanH, and NanI genes, while NanJ shows 93.18% similarity compared to the reference isolate from GenBank. Sialidase at 750 and 150 mU may impact the viability, cell count, and cell behavior structure of fibroblast cells by significantly increasing the empty area and perimeter of chicken embryo fibroblast (CEF) cells, while at 30 mU sialidase shows no significant difference compared with mock control. Conclusion Sialidase-derived C. perfringens has the capacity to compete with viral molecules for attachment to host sialic acid based on in silico analysis. However, sialidase treatment has an impact on monolayer cell fibroblasts given exposure to high doses.
Collapse
Affiliation(s)
- Ryan Septa Kurnia
- Doctoral Program in Biomedical Science, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Amin Soebandrio
- Department of Microbiology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Vivi Hardianty Harun
- Biotechnology/Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Indonesia
| | | | | | - Okti Nadia Poetri
- Department of Animal Disease and Veterinary Health, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Agustin Indrawati
- Department of Animal Disease and Veterinary Health, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Simson Tarigan
- National Research and Innovation Agency, Cibinong, West Java, Indonesia
| | | | - Fera Ibrahim
- Department of Clinical Microbiology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | | | - Otto Sahat Martua Silaen
- Doctoral Program in Biomedical Science, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
7
|
Purwoningsih E, Arozal W, Lee HJ, Barinda AJ, Sani Y, Munim A. The Oil Formulation Derived from Moringa Oleifera Seeds Ameliorates Behavioral Abnormalities in Water-immersion Restraint Stress Mouse Model. J Exp Pharmacol 2022; 14:395-407. [PMID: 36583146 PMCID: PMC9792812 DOI: 10.2147/jep.s386745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose Repeated stress events are well known to be associated with the onset of behavioral abnormalities including depression, anxiety and memory impairment. In spite of the traditional uses of Moringa oleifera (MO), no experimental evidence for its use against chronic stress exists. Here, we investigated whether seed oil from MO (MOO) could improve behavior abnormalities of chronic stress mice induced by water-immersion restraint stress (WIRS) and the underlying mechanism. Methods BALB/C male mice at 12 weeks of age were exposed to chronic WIRS for two weeks and divided in to four groups: normal group, WIRS group, WIRS+MOO1 group (treated with MOO at the dose of 1 mL/kg BW), and WIRS+MOO2 group (treated with MOO 2 mL/kg BW). The MOO treatment was given orally for 23 days. On day 24, we checked the behavior parameters, the plasma level of cortisol, acetylcholinesterase (AChE) activity in hippocampus, mRNA expression level of brain-derived neurotrophic factor (BDNF) and oxidative stress parameters in brain tissues. In addition, we also checked the histopathological features of the gastric mucosa wall. Results Administration of MOO ameliorated anxiety-like, depression-like and memory impairment phenotypes in the WIRS mouse model although the plasma cortisol concentrations were comparable among the groups. Of note, MOO both in two doses could suppress the AChE activity in hippocampus tissue and ameliorated the MDA level in prefrontal cortex tissue in mice exposed to WIRS. Although only WIRS+MOO2 group could increase the mRNA expression of BDNF, the histopathological gastric mucosa wall features were improved in all MOO groups. Conclusion Taken together, these finding suggested that MOO may have a neuroprotective effect in the mouse model of WIRS as evidenced by improving the abnormal behaviors through enhancing mRNA expression level of BDNF, inhibited AChE activity, and prevented the increase of MDA level in the brain.
Collapse
Affiliation(s)
- Emni Purwoningsih
- Doctoral Program in Biomedical Science, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Faculty of Medicine, Universitas Muhammadiyah Sumatera Utara, Medan, Indonesia
| | - Wawaimuli Arozal
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Hee Jae Lee
- Department of Pharmacology, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Agian Jeffilano Barinda
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Metabolic, Cardiovascular, and Aging Cluster, Indonesia Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Yulvian Sani
- Research Center for Biomedical Research, National Research and Innovation Agency, Jakarta, Indonesia
| | - Abdul Munim
- Department of Pharmacognosy-Phytochemistry, Faculty of Pharmacy, Universitas Indonesia, Depok, West Java, Indonesia
| |
Collapse
|