1
|
Dehasque M, Morales HE, Díez-Del-Molino D, Pečnerová P, Chacón-Duque JC, Kanellidou F, Muller H, Plotnikov V, Protopopov A, Tikhonov A, Nikolskiy P, Danilov GK, Giannì M, van der Sluis L, Higham T, Heintzman PD, Oskolkov N, Gilbert MTP, Götherström A, van der Valk T, Vartanyan S, Dalén L. Temporal dynamics of woolly mammoth genome erosion prior to extinction. Cell 2024; 187:3531-3540.e13. [PMID: 38942016 DOI: 10.1016/j.cell.2024.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/08/2024] [Accepted: 05/17/2024] [Indexed: 06/30/2024]
Abstract
A number of species have recently recovered from near-extinction. Although these species have avoided the immediate extinction threat, their long-term viability remains precarious due to the potential genetic consequences of population declines, which are poorly understood on a timescale beyond a few generations. Woolly mammoths (Mammuthus primigenius) became isolated on Wrangel Island around 10,000 years ago and persisted for over 200 generations before becoming extinct around 4,000 years ago. To study the evolutionary processes leading up to the mammoths' extinction, we analyzed 21 Siberian woolly mammoth genomes. Our results show that the population recovered quickly from a severe bottleneck and remained demographically stable during the ensuing six millennia. We find that mildly deleterious mutations gradually accumulated, whereas highly deleterious mutations were purged, suggesting ongoing inbreeding depression that lasted for hundreds of generations. The time-lag between demographic and genetic recovery has wide-ranging implications for conservation management of recently bottlenecked populations.
Collapse
Affiliation(s)
- Marianne Dehasque
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden; Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, 10405 Stockholm, Sweden; Department of Zoology, Stockholm University, 10691 Stockholm, Sweden.
| | - Hernán E Morales
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - David Díez-Del-Molino
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden; Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, 10405 Stockholm, Sweden; Department of Zoology, Stockholm University, 10691 Stockholm, Sweden
| | - Patrícia Pečnerová
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, 10405 Stockholm, Sweden; Department of Zoology, Stockholm University, 10691 Stockholm, Sweden; Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - J Camilo Chacón-Duque
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden; Department of Zoology, Stockholm University, 10691 Stockholm, Sweden; Department of Archaeology and Classical Studies, Stockholm University, Lilla Frescativägen 7, 11418 Stockholm, Sweden
| | - Foteini Kanellidou
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden; Department of Zoology, Stockholm University, 10691 Stockholm, Sweden
| | - Héloïse Muller
- Master de Biologie, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon I, Universite de Lyon, 69007 Lyon, France
| | - Valerii Plotnikov
- Academy of Sciences of Sakha Republic, Lenin Avenue 33, Yakutsk, Republic of Sakha (Yakutia), Russia
| | - Albert Protopopov
- Academy of Sciences of Sakha Republic, Lenin Avenue 33, Yakutsk, Republic of Sakha (Yakutia), Russia
| | - Alexei Tikhonov
- Zoological Institute of Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Pavel Nikolskiy
- Geological Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Gleb K Danilov
- Peter the Great Museum of Anthropology and Ethnography, Kunstkamera, Russian Academy of Sciences, 3 University Embankment, Box 199034, Saint-Petersburg, Russia
| | - Maddalena Giannì
- Department of Evolutionary Anthropology, Faculty of Life Sciences, University of Vienna, Vienna, Austria; Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Laura van der Sluis
- Department of Evolutionary Anthropology, Faculty of Life Sciences, University of Vienna, Vienna, Austria; Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Tom Higham
- Department of Evolutionary Anthropology, Faculty of Life Sciences, University of Vienna, Vienna, Austria; Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Peter D Heintzman
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden; Department of Geological Sciences, Stockholm University, 10691 Stockholm, Sweden
| | - Nikolay Oskolkov
- Department of Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Lund University, Lund, Sweden
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark; University Museum, NTNU, Trondheim, Norway
| | - Anders Götherström
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden; Department of Archaeology and Classical Studies, Stockholm University, Lilla Frescativägen 7, 11418 Stockholm, Sweden
| | - Tom van der Valk
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden; Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, 10405 Stockholm, Sweden; SciLifeLab, Stockholm, Sweden
| | - Sergey Vartanyan
- North-East Interdisciplinary Scientific Research Institute N.A.N.A. Shilo, Far East Branch, Russian Academy of Sciences, Magadan, Russia
| | - Love Dalén
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden; Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, 10405 Stockholm, Sweden; Department of Zoology, Stockholm University, 10691 Stockholm, Sweden.
| |
Collapse
|
2
|
Mohan M, Sathyakumar S, Krishnamurthy R. Predator in proximity: how does a large carnivore respond to anthropogenic pressures at fine-scales? Implications for interface area management. PeerJ 2024; 12:e17693. [PMID: 39006024 PMCID: PMC11246029 DOI: 10.7717/peerj.17693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 06/14/2024] [Indexed: 07/16/2024] Open
Abstract
Background Driven by habitat loss and fragmentation, large carnivores are increasingly navigating human-dominated landscapes, where their activity is restricted and their behaviour altered. This movement, however, raises significant concerns and costs for people living nearby. While intricately linked, studies often isolate human and carnivore impacts, hindering effective management efforts. Hence, in this study, we brought these two into a common framework, focusing on an interface area between the critical tiger habitat and the human-dominated multiple-use buffer area of a central Indian protected area. Methods We employed a fine-scale camera trap survey complemented by GPS-collar movement data to understand spatio-temporal activity patterns and adjustments of tigers in response to anthropogenic pressures. We used an occupancy framework to evaluate space use, Bayesian circular GLMs to model temporal activity, and home range and step length analyses to assess the movement patterns of tigers. Further, we used predation-risk models to understand conflict patterns as a function of tiger presence and other habitat variables. Results Despite disturbance, a high proportion of the sampled area was occupied by 17 unique tigers (ψ = 0.76; CI [0.73-0.92]). The distance to villages (β ± SE = 0.63 ± 0.21) and the relative abundance of large-bodied wild prey (β ± SE = 0.72 ± 0.37) emerged as key predictors of tiger space use probability, indicating a preference for wild prey by tigers, while human influences constrained their habitat utilisation. Distance to villages was also identified as the most significant predictor of the tigers' temporal activity (μ ± σ = 3.03 ± 0.06 rad) that exhibited higher nocturnality near villages. A total of 11% of tiger home ranges were within village boundaries, accompanied by faster movement in these areas (displacement 40-82% higher). Livestock depredation probability by tigers increased with proximity to villages (P = 0.002) and highway (P = 0.003). Although tiger space use probability (P = 0.056) and wild prey abundance (P = 0.134) were non-significant at the 0.05 threshold, their presence in the best-fit predation-risk model suggests their contextual relevance for understanding conflict risk. The results highlight the importance of appropriately managing livestock near human infrastructures to effectively mitigate conflict. Conclusions Shared space of carnivores and humans requires dynamic site-specific actions grounded in evidence-based decision-making. This study emphasises the importance of concurrently addressing the intricate interactions between humans and large carnivores, particularly the latter's behavioural adaptations and role in conflict dynamics. Such an integrated approach is essential to unravel cause-effect relationships and promote effective interface management in human-dominated landscapes.
Collapse
Affiliation(s)
- Manu Mohan
- Post-Graduate Programme in Wildlife Science, Wildlife Institute of India, Dehradun, Uttarakhand, India
- Department of Landscape Level Planning and Management, Wildlife Institute of India, Dehradun, Uttarakhand, India
| | - Sambandam Sathyakumar
- Department of Endangered Species Management, Wildlife Institute of India, Dehradun, Uttarakhand, India
| | - Ramesh Krishnamurthy
- Department of Landscape Level Planning and Management, Wildlife Institute of India, Dehradun, Uttarakhand, India
- Faculty of Forestry, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Havmøller LW, Wahyudi HA, Iqbal M, Nawangsari VA, Setiawan J, Chandradewi DS, Møller PR, Træholt C, Havmøller RW. Exploring temporal activity of dholes, their prey, and competitors in East Java, Indonesia. Ecol Evol 2024; 14:e11666. [PMID: 38975263 PMCID: PMC11224129 DOI: 10.1002/ece3.11666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 07/09/2024] Open
Abstract
Dholes (Cuon alpinus) are endangered large carnivores found in scattered populations in Asia. One of the main threats to dholes is the decreasing prey availability throughout their distribution range. In the present study, we used camera trap data collected over 6 years to investigate the temporal activity patterns of dholes and their putative prey species in Baluran National Park in Java, Indonesia. We also explored the overlap in activity between dholes and the park's other remaining large carnivore the Javan leopard (Panthera pardus melas), as well as humans. Furthermore, we investigated potential differences in activity patterns between dholes in packs and dholes roaming in pairs or alone. We found a high temporal overlap between dholes and their wild ungulate prey species (ranging from Δ = 0.66-0.90), with the lowest overlap observed between dholes and bantengs (Bos javanicus) (Δ = 0.66), and the highest between dholes and muntjacs (Muntiacus muntjak) (Δ = 0.90). A very low overlap was found between dholes and domestic cattle (Bos indicus) (Δ = 0.27) whereas a moderately high overlap was found between dholes and leopards (Δ = 0.70) and dholes and humans (Δ = 0.62). We found a significant difference in activity patterns between dholes in packs and dholes roaming alone or in pairs (Δ = 0.78, p = .01). Single/pairs of dholes were more active both during the day and at night, whereas packs were predominantly active around sunrise and sunset. The high overlap with humans potentially has a negative effect on dhole activity, particularly for dispersing individuals, and the low overlap with domestic species questions the extent to which dholes are considered to predate on them.
Collapse
Affiliation(s)
- Linnea Worsøe Havmøller
- Natural History Museum of DenmarkUniversity of CopenhagenCopenhagenDenmark
- Research and Conservation, Copenhagen ZooFrederiksbergDenmark
- Department for the Ecology of Animal SocietiesMax Planck Institute of Animal BehaviorConstanceGermany
| | | | - Mochammad Iqbal
- Baluran National Park, JI Raya Banyuwangi‐SitubondoDesa WonorejoIndonesia
| | | | - Johan Setiawan
- Baluran National Park, JI Raya Banyuwangi‐SitubondoDesa WonorejoIndonesia
| | | | - Peter Rask Møller
- Natural History Museum of DenmarkUniversity of CopenhagenCopenhagenDenmark
- Norwegian College of Fishery ScienceUiT – the Arctic University of NorwayTromsøNorway
| | - Carl Træholt
- Research and Conservation, Copenhagen ZooFrederiksbergDenmark
| | - Rasmus Worsøe Havmøller
- Natural History Museum of DenmarkUniversity of CopenhagenCopenhagenDenmark
- Research and Conservation, Copenhagen ZooFrederiksbergDenmark
- Department for the Ecology of Animal SocietiesMax Planck Institute of Animal BehaviorConstanceGermany
| |
Collapse
|
4
|
Musto C, Cerri J, Capizzi D, Fontana MC, Rubini S, Merialdi G, Berzi D, Ciuti F, Santi A, Rossi A, Barsi F, Gelmini L, Fiorentini L, Pupillo G, Torreggiani C, Bianchi A, Gazzola A, Prati P, Sala G, Apollonio M, Delogu M, Biancardi A, Uboldi L, Moretti A, Garbarino C. First evidence of widespread positivity to anticoagulant rodenticides in grey wolves (Canis lupus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169990. [PMID: 38232835 DOI: 10.1016/j.scitotenv.2024.169990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/19/2024]
Abstract
Second-generation Anticoagulant Rodenticides (ARs) can be critical for carnivores, due to their widespread use and impacts. However, although many studies explored the impacts of ARs on small and mesocarnivores, none assessed the extent to which they could contaminate large carnivores in anthropized landscapes. We filled this gap by exploring spatiotemporal trends in grey wolf (Canis lupus) exposure to ARs in central and northern Italy, by subjecting a large sample of dead wolves (n = 186) to the LC-MS/MS method. Most wolves (n = 115/186, 61.8 %) tested positive for ARs (1 compound, n = 36; 2 compounds, n = 47; 3 compounds, n = 16; 4 or more compounds, n = 16). Bromadiolone, brodifacoum and difenacoum, were the most common compounds, with brodifacoum and bromadiolone being the ARs that co-occurred the most (n = 61). Both the probability of testing positive for multiple ARs and the concentration of brodifacoum, and bromadiolone in the liver, systematically increased in wolves that were found at more anthropized sites. Moreover, wolves became more likely to test positive for ARs through time, particularly after 2020. Our results underline that rodent control, based on ARs, increases the risks of unintentional poisoning of non-target wildlife. However, this risk does not only involve small and mesocarnivores, but also large carnivores at the top of the food chain, such as wolves. Therefore, rodent control is adding one further conservation threat to endangered large carnivores in anthropized landscapes of Europe, whose severity could increase over time and be far higher than previously thought. Large-scale monitoring schemes for ARs in European large carnivores should be devised as soon as possible.
Collapse
Affiliation(s)
- Carmela Musto
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Bologna, Italy.
| | - Jacopo Cerri
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy.
| | - Dario Capizzi
- Directorate for Environment, Latium Region, 00173 Rome, Italy
| | - Maria Cristina Fontana
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Silva Rubini
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Giuseppe Merialdi
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Duccio Berzi
- Centro per lo Studio e la Documentazione sul Lupo, 50033 Firenze, Italy
| | - Francesca Ciuti
- Centro per lo Studio e la Documentazione sul Lupo, 50033 Firenze, Italy
| | - Annalisa Santi
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Arianna Rossi
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Filippo Barsi
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Luca Gelmini
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Laura Fiorentini
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Giovanni Pupillo
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Camilla Torreggiani
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Alessandro Bianchi
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Alessandra Gazzola
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Paola Prati
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Giovanni Sala
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Marco Apollonio
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | - Mauro Delogu
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Bologna, Italy
| | - Alberto Biancardi
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Laura Uboldi
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Alessandro Moretti
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Chiara Garbarino
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| |
Collapse
|
5
|
Green AR, Anagnostou M, Harris NC, Allred SB. Cool cats and communities: Exploring the challenges and successes of community-based approaches to protecting felids from the illegal wildlife trade. FRONTIERS IN CONSERVATION SCIENCE 2023. [DOI: 10.3389/fcosc.2023.1057438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Implementing community-based approaches to countering illegal wildlife trade is important to not only improve the effectiveness of strategies to protect wildlife, but also to promote equity and justice. We conducted an international exploratory review of interventions that aim to address the illegal trade in wildlife using a variety of community-based approaches. We focused our study on Felidae species in particular, as they factor centrally in the illegal wildlife trade, and have received significant conservation attention due to many being charismatic species. We searched for case studies that have been or are currently being implemented, and that were published between 2012-2022 in scholarly or grey literature databases. We extracted data on 40 case studies across 34 countries, including information on the approaches used, successes, challenges, and recommendations using a Theory of Change framework for community action on illegal wildlife trade. Initiatives to protect Felidae species from illegal trade could consider using multi-pronged approaches, consider historically underrepresented groups within communities - including women - in their design, and should evaluate the social and ecological outcomes to improve future efforts.
Collapse
|
6
|
McGuire JL, Lawing AM, Díaz S, Stenseth NC. The past as a lens for biodiversity conservation on a dynamically changing planet. Proc Natl Acad Sci U S A 2023; 120:e2201950120. [PMID: 36745815 PMCID: PMC9963080 DOI: 10.1073/pnas.2201950120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- Jenny L. McGuire
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA30332
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA30332
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA30332
| | - A. Michelle Lawing
- Ecology and Conservation Biology, Texas A&M University, College Station, TX77843
- Interdisciplinary Doctoral Degree Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, TX77843
| | - Sandra Díaz
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto Multidisciplinario de Biología Vegetal, 5000Córdoba, Argentina
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, 5000Córdoba, Argentina
| | - Nils Chr. Stenseth
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo0316, Norway
- International Union of Biological Sciences, 91405Orsay, France
| |
Collapse
|
7
|
Rode KD, Douglas D, Atwood T, Durner G, Wilson R, Pagano A. Observed and forecasted changes in land use by polar bears in the Beaufort and Chukchi Seas, 1985–2040. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|