1
|
Wu X, Chen W, Deng H, Wang L, Nicewicz DA, Li Z, Wu Z. Manufacturing 6-[ 18F]Fluoro- L-DOPA via Flow Chemistry-Enhanced Photoredox Radiofluorination. Org Lett 2024; 26:4308-4313. [PMID: 38728659 DOI: 10.1021/acs.orglett.4c01114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
In this study, we introduce a practical methodology for the synthesis of PET probes by seamlessly combining flow chemistry with photoredox radiofluorination. The clinical PET tracer 6-[18F]FDOPA was smoothly prepared in a 24.3% non-decay-corrected yield with over 99.0% radiochemical purity (RCP) and enantiomeric excess (ee), notably by a simple cartridge-based purification. The flow chemistry-enhanced photolabeling method supplies an efficient and versatile solution for the synthesis of 6-[18F]FDOPA and for more PET tracer development.
Collapse
Affiliation(s)
- Xuedan Wu
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, 125 Mason Farm Road, Marsico Hall, Chapel Hill, North Carolina 27599, United States
- LED Radiofluidics Corp., 250 Bell Tower Drive, Genome Science Building, Chapel Hill, North Carolina 27599, United States
| | - Wei Chen
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, 125 Mason Farm Road, Marsico Hall, Chapel Hill, North Carolina 27599, United States
| | - Huaifu Deng
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, 125 Mason Farm Road, Marsico Hall, Chapel Hill, North Carolina 27599, United States
| | - Li Wang
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, 125 Mason Farm Road, Marsico Hall, Chapel Hill, North Carolina 27599, United States
| | - David A Nicewicz
- Department of Chemistry, University of North Carolina-Chapel Hill, 125 South Road, Chapel Hill, North Carolina 27514, United States
| | - Zibo Li
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, 125 Mason Farm Road, Marsico Hall, Chapel Hill, North Carolina 27599, United States
| | - Zhanhong Wu
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, 125 Mason Farm Road, Marsico Hall, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
2
|
Webb EW, Cheng K, Winton WP, Klein BJ, Bowden GD, Horikawa M, Liu SW, Wright JS, Verhoog S, Kalyani D, Wismer M, Krska SW, Sanford MS, Scott PJ. Development of High-Throughput Experimentation Approaches for Rapid Radiochemical Exploration. J Am Chem Soc 2024; 146:10581-10590. [PMID: 38580459 PMCID: PMC11099536 DOI: 10.1021/jacs.3c14822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Positron emission tomography is a widely used imaging platform for studying physiological processes. Despite the proliferation of modern synthetic methodologies for radiolabeling, the optimization of these reactions still primarily relies on inefficient one-factor-at-a-time approaches. High-throughput experimentation (HTE) has proven to be a powerful approach for optimizing reactions in many areas of chemical synthesis. However, to date, HTE has rarely been applied to radiochemistry. This is largely because of the short lifetime of common radioisotopes, which presents major challenges for efficient parallel reaction setup and analysis using standard equipment and workflows. Herein, we demonstrate an effective HTE workflow and apply it to the optimization of copper-mediated radiofluorination of pharmaceutically relevant boronate ester substrates. The workflow utilizes commercial equipment and allows for rapid analysis of reactions for optimizing reactions, exploring chemical space using pharmaceutically relevant aryl boronates for radiofluorinations, and constructing large radiochemistry data sets.
Collapse
Affiliation(s)
- E. William Webb
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| | - Kevin Cheng
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| | - Wade P. Winton
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| | - Brandon J.C. Klein
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 428 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Gregory D. Bowden
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen 72074, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University, Tuebingen 72074, Germany
| | - Mami Horikawa
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - S. Wendy Liu
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| | - Jay S. Wright
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| | - Stefan Verhoog
- Translational Imaging, Merck and Co., Inc., West Point, PA 19486, United States
| | - Dipannita Kalyani
- Discovery Chemistry, Merck Research Laboratories, Merck and Co., Inc., Rahway, NJ 07065, United States
| | - Michael Wismer
- Discovery Chemistry, Merck Research Laboratories, Merck and Co., Inc., Rahway, NJ 07065, United States
| | - Shane W. Krska
- Discovery Chemistry, Merck Research Laboratories, Merck and Co., Inc., Rahway, NJ 07065, United States
| | - Melanie S. Sanford
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Peter J.H. Scott
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 428 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
3
|
Mc Veigh M, Bellan LM. Microfluidic synthesis of radiotracers: recent developments and commercialization prospects. LAB ON A CHIP 2024; 24:1226-1243. [PMID: 38165824 DOI: 10.1039/d3lc00779k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Positron emission tomography (PET) is a powerful diagnostic tool that holds incredible potential for clinicians to track a wide variety of biological processes using specialized radiotracers. Currently, however, a single radiotracer accounts for over 95% of procedures, largely due to the cost of radiotracer synthesis. Microfluidic platforms provide a solution to this problem by enabling a dose-on-demand pipeline in which a single benchtop platform would synthesize a wide array of radiotracers. In this review, we will explore the field of microfluidic production of radiotracers from early research to current development. Furthermore, the benefits and drawbacks of different microfluidic reactor designs will be analyzed. Lastly, we will discuss the various engineering considerations that must be addressed to create a fully developed, commercially effective platform that can usher the field from research and development to commercialization.
Collapse
Affiliation(s)
- Mark Mc Veigh
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN, 37235, USA
| | - Leon M Bellan
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, 37235, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
4
|
Lu Y, Collins J, Lin KS, van Dam RM. Scalable droplet-based radiosynthesis of [ 18F]fluorobenzyltriphenylphosphonium cation ([ 18F]FBnTP) via a "numbering up" approach. LAB ON A CHIP 2024; 24:728-737. [PMID: 38240629 PMCID: PMC10869106 DOI: 10.1039/d3lc01068f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
The [18F]fluorobenzyltriphenylphosphonium cation ([18F]FBnTP) has emerged as a highly promising positron emission tomography (PET) tracer for myocardial perfusion imaging (MPI) due to its uniform distribution in the myocardium and favorable organ biodistribution demonstrated in preclinical studies. However, a complex and low-efficiency radiosynthesis procedure has significantly hindered its broader preclinical and clinical explorations. Recently, Zhang et al. developed a pinacolyl arylboronate precursor, enabling a one-step synthesis process that greatly streamlines the production of [18F]FBnTP. Building upon this progress, our group successfully adapted the approach to a microdroplet reaction format and demonstrated improved radiosynthesis performance in a preliminary optimization study. However, scaling up to clinical dose amounts was not explored. In this work, we demonstrate that scale-up can be performed in a straightforward manner using a "numbering up" strategy (i.e. performing multiple droplet reactions in parallel and pooling the crude products). The resulting radiochemical yield after purification and formulation was high, up to 66 ± 1% (n = 4) for a set of experiments involving pooling of 4 droplet reactions, accompanied by excellent radiochemical purity (>99%) and molar activity (339-710 GBq μmol-1). Notably, we efficiently achieved sufficient activity yield (0.76-1.84 GBq) for multiple clinical doses from 1.6 to 3.7 GBq of [18F]fluoride in just 37-47 min.
Collapse
Affiliation(s)
- Yingqing Lu
- Crump Institute for Molecular Imaging, University of California Los Angeles (UCLA), Los Angeles, CA, USA.
- Department of Molecular & Medical Pharmacology, UCLA, Los Angeles, CA, USA
- Physics and Biology in Medicine Interdepartmental Graduate Program, UCLA, Los Angeles, CA, USA
| | - Jeffrey Collins
- Crump Institute for Molecular Imaging, University of California Los Angeles (UCLA), Los Angeles, CA, USA.
- Department of Molecular & Medical Pharmacology, UCLA, Los Angeles, CA, USA
| | - Kuo-Shyan Lin
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - R Michael van Dam
- Crump Institute for Molecular Imaging, University of California Los Angeles (UCLA), Los Angeles, CA, USA.
- Department of Molecular & Medical Pharmacology, UCLA, Los Angeles, CA, USA
- Physics and Biology in Medicine Interdepartmental Graduate Program, UCLA, Los Angeles, CA, USA
| |
Collapse
|
5
|
Jones J, Do V, Lu Y, van Dam RM. Accelerating radiochemistry development: Automated robotic platform for performing up to 64 droplet radiochemical reactions in a morning. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2023; 468:143524. [PMID: 37576334 PMCID: PMC10421640 DOI: 10.1016/j.cej.2023.143524] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The growing discovery and development of novel radiopharmaceuticals and radiolabeling methods requires an increasing capacity for radiochemistry experiments. However, such studies typically rely on radiosynthesizers designed for clinical batch production rather than research, greatly limiting throughput. Two general solutions are being pursued to address this: developing new synthesis optimization algorithms to minimize how many experiments are needed, and developing apparatus with enhanced experiment throughput. We describe here a novel high-throughput system based on performing arrays of droplet-based reactions at 10 μL volume scale in parallel. The automatic robotic platform can perform a set of 64 experiments in ~3 h (from isotope loading to crude product, plus sampling onto TLC plates), plus ~1 h for off-line radio-TLC analysis and radioactivity measurements, rather than the weeks or months that would be needed using a conventional system. We show the high repeatability and low crosstalk of the platform and demonstrate optimization studies for two 18F-labeled tracers. This novel automated platform greatly increases the practicality of performing arrays of droplet reactions by eliminating human error, vastly reducing tedium and fatigue, minimizing radiation exposure, and freeing up radiochemist time for other intellectually valuable pursuits.
Collapse
Affiliation(s)
- Jason Jones
- Crump Institute of Molecular Imaging, University of California Los Angeles (UCLA),Los Angeles, CA, USA
- Physics and Biology in Medicine Interdepartmental Graduate Program, UCLA, USA
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, UCLA, US
| | - Viviann Do
- Crump Institute of Molecular Imaging, University of California Los Angeles (UCLA),Los Angeles, CA, USA
- Department of Biochemistry, UCLA, USA
| | - Yingqing Lu
- Crump Institute of Molecular Imaging, University of California Los Angeles (UCLA),Los Angeles, CA, USA
- Physics and Biology in Medicine Interdepartmental Graduate Program, UCLA, USA
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, UCLA, US
| | - R Michael van Dam
- Crump Institute of Molecular Imaging, University of California Los Angeles (UCLA),Los Angeles, CA, USA
- Physics and Biology in Medicine Interdepartmental Graduate Program, UCLA, USA
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, UCLA, US
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, UCLA, USA
| |
Collapse
|
6
|
Laferriere-Holloway TS, Rios A, Lu Y, Okoro CC, van Dam RM. A rapid and systematic approach for the optimization of radio thin-layer chromatography resolution. J Chromatogr A 2023; 1687:463656. [PMID: 36463649 PMCID: PMC9894532 DOI: 10.1016/j.chroma.2022.463656] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Radiopharmaceutical analysis is limited by conventional methods. Radio-HPLC may be inaccurate for some compounds (e.g., 18F-radiopharmaceuticals) due to radionuclide sequester. Radio-TLC is simpler, faster, and detects all species but has limited resolution. Imaging-based readout of TLC plates (e.g., using Cerenkov luminescence imaging) can improve readout resolution, but the underlying chromatographic separation efficiency may be insufficient to resolve chemically similar species such as product and precursor-derived impurities. This study applies a systematic mobile phase optimization method, PRISMA, to improve radio-TLC resolution. The PRISMA method optimizes the mobile phase by selecting the correct solvent, optimizing solvent polarity, and optimizing composition. Without prior knowledge of impurities and by simply observing the separation resolution between a radiopharmaceutical and its nearest radioactive or non-radioactive impurities (observed via UV imaging) for different mobile phases, the PRISMA method enabled the development of high-resolution separation conditions for a wide range of 18F-radiopharmaceuticals ( [18F]PBR-06, [18F]FEPPA, [18F]Fallypride, [18F]FPEB, and [18F]FDOPA). Each optimization required a single batch of crude radiopharmaceutical and a few hours. Interestingly, the optimized TLC method provided greater accuracy (compared to other published TLC methods) in determining the product abundance of one radiopharmaceutical studied in more depth ( [18F]Fallypride) and was capable of resolving a comparable number of species as isocratic radio-HPLC. We used the PRISMA-optimized mobile phase for [18F]FPEB in combination with multi-lane radio-TLC techniques to evaluate reaction performance during high-throughput synthesis optimization of [18F]FPEB. The PRISMA methodology, in combination with high-resolution radio-TLC readout, enables a rapid and systematic approach to achieving high-resolution and accurate analysis of radiopharmaceuticals without the need for radio-HPLC.
Collapse
Affiliation(s)
- Travis S Laferriere-Holloway
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA; Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA, USA.
| | - Alejandra Rios
- Physics and Biology in Medicine Interdepartmental Graduate Program, UCLA, Los Angeles, CA, USA; Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA, USA
| | - Yingqing Lu
- Physics and Biology in Medicine Interdepartmental Graduate Program, UCLA, Los Angeles, CA, USA; Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA, USA
| | - Chelsea C Okoro
- Institute for Society and Genetics, UCLA, Los Angeles, CA, USA; Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA, USA
| | - R Michael van Dam
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA; Physics and Biology in Medicine Interdepartmental Graduate Program, UCLA, Los Angeles, CA, USA; Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Rapid Purification and Formulation of Radiopharmaceuticals via Thin-Layer Chromatography. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238178. [PMID: 36500272 PMCID: PMC9738419 DOI: 10.3390/molecules27238178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
Before formulating radiopharmaceuticals for injection, it is necessary to remove various impurities via purification. Conventional synthesis methods involve relatively large quantities of reagents, requiring high-resolution and high-capacity chromatographic methods (e.g., semi-preparative radio-HPLC) to ensure adequate purity of the radiopharmaceutical. Due to the use of organic solvents during purification, additional processing is needed to reformulate the radiopharmaceutical into an injectable buffer. Recent developments in microscale radiosynthesis have made it possible to synthesize radiopharmaceuticals with vastly reduced reagent masses, minimizing impurities. This enables purification with lower-capacity methods, such as analytical HPLC, with a reduction of purification time and volume (that shortens downstream re-formulation). Still, the need for a bulky and expensive HPLC system undermines many of the advantages of microfluidics. This study demonstrates the feasibility of using radio-TLC for the purification of radiopharmaceuticals. This technique combines high-performance (high-resolution, high-speed separation) with the advantages of a compact and low-cost setup. A further advantage is that no downstream re-formulation step is needed. Production and purification of clinical scale batches of [18F]PBR-06 and [18F]Fallypride are demonstrated with high yield, purity, and specific activity. Automating this radio-TLC method could provide an attractive solution for the purification step in microscale radiochemistry systems.
Collapse
|