1
|
Asdaq SMB, Mannasaheb BA, Orfali R, Shaikh IA, Alshehri A, Alghamdi A, Alrashdi MM, Almadani ME, Abdalla FMA. Antidiabetic and antioxidant potential of Crocin in high-fat diet plus streptozotocin-induced type-2 diabetic rats. Int J Immunopathol Pharmacol 2024; 38:3946320231220178. [PMID: 38233742 PMCID: PMC10798082 DOI: 10.1177/03946320231220178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 11/23/2023] [Indexed: 01/19/2024] Open
Abstract
OBJECTIVES Crocin, the principal water-soluble active constituent of saffron, possesses numerous pharmacological activities. The present investigation examined the potential antidiabetic and antioxidant characteristics of Crocin in rats with type-2 diabetes by administering it orally and intraperitoneally (i.p.). METHODS After 2 weeks of a high-fat diet, streptozotocin (STZ) (i.p., 40 mg/kg) was administered to male adult rats to induce type-2 diabetes mellitus. Body weight and fasting blood glucose (FBG) were measured on days zero, weeks 1, and 2. At the end of 2 weeks of drug administration in their respective groups, fasting insulin and glucose levels were estimated, and insulin resistance (HOMA-IR) was determined. Intraperitoneal glucose (IPGTT) and insulin tolerance tests (ITT) were carried out. Histopathological investigation and biochemical parameters were estimated in pancreatic tissues. RESULTS The Crocin (100 mg/kg) treatment has significantly improved body weight, abatement of FBG, fasting insulin, and HOMA-IR. Likewise, Crocin treatment significantly improved the glucose and insulin challenges. We observed a significantly marked elevation in endogenous antioxidant enzymes in Crocin-treated groups. Similarly, Crocin treatment reversed the histopathological changes and restored the normal integrity and function of the pancreas. CONCLUSION The overall finding indicates that intraperitoneal administration of Crocin demonstrated better control of glycemic level and body weight. Further, it has improved insulin levels in the serum and potentiated antioxidant properties.
Collapse
Affiliation(s)
| | | | - Raha Orfali
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ibrahim Ahmed Shaikh
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Ahmed Alshehri
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Adel Alghamdi
- Department of Pharmaceutical Chemistry, Faculty of Clinical Pharmacy, Al-Baha University, Al-Baha, Saudi Arabia
| | - Meshal Mohammed Alrashdi
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Moneer E Almadani
- Department of Clinical Medicine, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Faisal Mohammad Ali Abdalla
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
- Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
2
|
El-Shoura EAM, Salem MA, Ahmed YH, Ahmed LK, Zaafar D. Combined β-sitosterol and trimetazidine mitigate potassium dichromate-induced cardiotoxicity in rats through the interplay between NF-κB/AMPK/mTOR/TLR4 and HO-1/NADPH signaling pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:67771-67787. [PMID: 37115449 PMCID: PMC10203021 DOI: 10.1007/s11356-023-27021-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/10/2023] [Indexed: 05/25/2023]
Abstract
Hexavalent chromium salt, like potassium dichromate (PD), is chromium's most precarious valence state in industrial wastes. Recently, there has been increasing interest in β-sitosterol (BSS), a bioactive phytosterol, as a dietary supplement. BSS is recommended in treating cardiovascular disorders due to its antioxidant effect. Trimetazidine (TMZ) was used traditionally for cardioprotection. Through the administration of BSS and TMZ, the cardiotoxic effects of PD were to be countered in this study, in addition to examining the precise mechanism of PD-induced cardiotoxicity. Thirty male albino rats were divided into five groups; the control group: administered normal saline daily (3 mL/kg); the PD group: administered normal saline daily (3 mL/kg); BSS group: administered BSS daily (20 mg/kg); TMZ group: administered TMZ daily (15 mg/kg); and the BSS + TMZ group: administered both BSS (20 mg/kg) and TMZ (15 mg/kg) daily. All experimental groups, except the control, received on the 19th day a single dose of PD (30 mg/kg/day, S.C.). Normal saline, BSS, and TMZ were received daily for 21 consecutive days p.o. The exposure to PD promoted different oxidative stresses, pro-inflammatory, and cardiotoxicity biomarkers. BSS or TMZ succeeded solely in reducing these deleterious effects; however, their combination notably returned measured biomarkers close to normal values. The histopathological investigations have supported the biochemical findings. The combination of BSS and TMZ protects against PD cardiotoxicity in rats by reducing oxidative stress and apoptotic and inflammatory biomarkers. It may be promising for alleviating and protecting against PD-induced cardiotoxicity in people at an early stage; however, these findings need further clinical studies to be confirmed. HIGHLIGHTS: • Potassium dichromate induces cardiotoxicity in rats through the upregulation of oxidative stress, proinflammatory, and apoptotic pathways biomarkers. • β-Sitosterol possesses a possible cardioprotective effect by modulating several signaling pathways. • Trimetazidine, the antianginal agent, has a potential cardioprotective impact on PD-intoxicated rat model. • The combination of β-Sitosterol and trimetazidine was the best in modulating different pathways involved in PD cardiotoxicity in rats via the interplay between NF-κB/AMPK/mTOR/TLR4 and HO-1/NADPH signaling pathways.
Collapse
Affiliation(s)
- Ehab A. M. El-Shoura
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch Assiut, 71524 Egypt
| | - Maha A. Salem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology, and Information, Cairo, Egypt
| | - Yasmine H. Ahmed
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Lamiaa Khalaf Ahmed
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 71524 Egypt
| | - Dalia Zaafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology, and Information, Cairo, Egypt
| |
Collapse
|
3
|
Hikisz P, Jacenik D. Diet as a Source of Acrolein: Molecular Basis of Aldehyde Biological Activity in Diabetes and Digestive System Diseases. Int J Mol Sci 2023; 24:6579. [PMID: 37047550 PMCID: PMC10095194 DOI: 10.3390/ijms24076579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 03/25/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Acrolein, a highly reactive α,β-unsaturated aldehyde, is a compound involved in the pathogenesis of many diseases, including neurodegenerative diseases, cardiovascular and respiratory diseases, diabetes mellitus, and the development of cancers of various origins. In addition to environmental pollution (e.g., from car exhaust fumes) and tobacco smoke, a serious source of acrolein is our daily diet and improper thermal processing of animal and vegetable fats, carbohydrates, and amino acids. Dietary intake is one of the main routes of human exposure to acrolein, which is a major public health concern. This review focuses on the molecular mechanisms of acrolein activity in the context of its involvement in the pathogenesis of diseases related to the digestive system, including diabetes, alcoholic liver disease, and intestinal cancer.
Collapse
Affiliation(s)
- Pawel Hikisz
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Lodz, Poland
| | - Damian Jacenik
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
4
|
The Tobacco Smoke Component, Acrolein, as a Major Culprit in Lung Diseases and Respiratory Cancers: Molecular Mechanisms of Acrolein Cytotoxic Activity. Cells 2023; 12:cells12060879. [PMID: 36980220 PMCID: PMC10047238 DOI: 10.3390/cells12060879] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Acrolein, a highly reactive unsaturated aldehyde, is a ubiquitous environmental pollutant that seriously threatens human health and life. Due to its high reactivity, cytotoxicity and genotoxicity, acrolein is involved in the development of several diseases, including multiple sclerosis, neurodegenerative diseases such as Alzheimer’s disease, cardiovascular and respiratory diseases, diabetes mellitus and even the development of cancer. Traditional tobacco smokers and e-cigarette users are particularly exposed to the harmful effects of acrolein. High concentrations of acrolein have been found in both mainstream and side-stream tobacco smoke. Acrolein is considered one of cigarette smoke’s most toxic and harmful components. Chronic exposure to acrolein through cigarette smoke has been linked to the development of asthma, acute lung injury, chronic obstructive pulmonary disease (COPD) and even respiratory cancers. This review addresses the current state of knowledge on the pathological molecular mechanisms of acrolein in the induction, course and development of lung diseases and cancers in smokers.
Collapse
|
5
|
El-Shiekh RA, Nabil G, Shokry AA, Ahmed YH, Al-Hawshabi OSS, Abdel-Sattar E. Arabincoside B isolated from Caralluma arabica as a potential anti-pneumonitis in LPS mice model. Inflammopharmacology 2023; 31:1437-1447. [PMID: 36820943 PMCID: PMC9948789 DOI: 10.1007/s10787-023-01159-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/06/2023] [Indexed: 02/24/2023]
Abstract
Acute lung injury (ALI) is a life-threatening condition usually associated with poor therapeutic outcomes and a high mortality rate. Since 2019, the situation has worsened due to the COVID-19 pandemic. ALI had approximately 40% of deaths before COVID-19, mainly due to the dysfunction of the blood-gas barrier that led to lung edema, failure of gas exchange, and dyspnea. Many strategies have been taken to mitigate the disease condition, such as diuretics, surfactants, antioxidants, glucocorticoids, heparin, and ventilators with concomitant sedatives. However, until now, there is no available effective therapy for ALI. Thus, we are presenting a new compound termed Arabincoside B (AR-B), recently isolated from Caralluma arabica, to be tested in such conditions. For that, the lipopolysaccharide (LPS) mice model was used to investigate the capability of the AR-B compound to control the ALI compared to standard dexamethasone. The results showed that AR-B had a significant effect on retrieving ALI. A further mechanistic study carried out in the serum, lung homogenate, histological, and immunohistochemistry sections revealed that the AR-B either in 50 mg/kg or 75 mg/kg dose inhibited pro-inflammatory cytokines such as IL-6, IL-13, NF-κB, TNFα, and NO and stimulated regulatory cytokines IL-10. Moreover, AR-B showed a considerable potential to protect the pulmonary tissue against oxidative stress by decreasing MDA and increasing catalase and Nrf2. Also, the AR-B exhibited an anti-apoptotic effect on the lung epithelium, confirmed by reducing COX and BAX expression and upregulating Bcl-2 expression. These results pave its clinical application for ALI.
Collapse
Affiliation(s)
- Riham A. El-Shiekh
- grid.7776.10000 0004 0639 9286Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562 Egypt
| | - Ghazal Nabil
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Aya A. Shokry
- grid.7776.10000 0004 0639 9286Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211 Egypt
| | - Yasmine H. Ahmed
- grid.7776.10000 0004 0639 9286Department of Cytology & Histology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211 Egypt
| | - Othman S. S. Al-Hawshabi
- grid.411125.20000 0001 2181 7851Department of Biology, Faculty of Science, University of Aden, Aden, Yemen
| | - Essam Abdel-Sattar
- grid.7776.10000 0004 0639 9286Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562 Egypt
| |
Collapse
|