1
|
Nakamura T, Kawarabayashi T, Shibata M, Kasahara H, Makioka K, Sugawara T, Oka H, Ishizawa K, Amari M, Ueda T, Kinoshita S, Miyamoto Y, Kaito K, Takatama M, Ikeda Y, Shoji M. High levels of plasma neurofilament light chain correlated with brainstem and peripheral nerve damage. J Neurol Sci 2024; 463:123137. [PMID: 39032446 DOI: 10.1016/j.jns.2024.123137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND AND OBJECTIVES Blood neurofilament light chain (NfL) is a minimally invasive, but highly sensitive biomarker of neurological diseases. However, diseases and neurological damage associated with increased NfL remain unclear. Therefore, the present study investigated factors associated with increased plasma NfL levels in various neurological diseases, focal lesions and pathological processes. METHODS This was a retrospective cohort study on 410 participants with various neurological diseases and 17 healthy and cognitively unimpaired controls (HCU). Plasma samples were analyzed to measure NfL using ECL immunoassay. The focal lesions were classified as the cerebrum, cerebellum, brainstem, meninges, spinal cord, peripheral nerves, neuromuscular junction, and muscles based on medical records. A multiple regression analysis and receiver operating characteristic curve (ROC) analysis were performed to investigate whether plasma NfL levels predict specific diseases and focal lesions. RESULTS Plasma NfL levels discriminated between the HCU and all disease groups (area under the curve (AUC), 0.97), with a cut-off value of 63.4 pg/mL. A multiple regression analysis of focal lesions adjusted by pathogenic processes showed that brainstem and peripheral nerve involvement was associated with higher plasma NfL levels. A cut-off value of 53.8 pg/mL of NfL discriminated between the HCU and neurological disease group except for brainstem or peripheral disorders (AUC 0.962), while a cut-off value of 208.0 pg/mL distinguished this group from brainstem or peripheral nervous system disorders (AUC 0.716). DISCUSSION These results demonstrate that plasma NfL has a potential to be a highly sensitive biomarker for neurological diseases and focal lesions.
Collapse
Affiliation(s)
- Takumi Nakamura
- Department of Neurology, Gunma University Graduate School of Medicine, Gunma, Japan.
| | | | - Makoto Shibata
- Department of Neurology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Hiroo Kasahara
- Department of Neurology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Kouki Makioka
- Department of Neurology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Takashi Sugawara
- Department of Neurology, Geriatrics Research Institute and Hospital, Gunma, Japan
| | - Hironori Oka
- Department of Neurology, Geriatrics Research Institute and Hospital, Gunma, Japan
| | - Kunihiko Ishizawa
- Department of Neurology, Geriatrics Research Institute and Hospital, Gunma, Japan
| | - Masakuni Amari
- Department of Neurology, Geriatrics Research Institute and Hospital, Gunma, Japan
| | - Tetsuya Ueda
- Bioanalysis Department, Mediford Corporation, Tokyo, Japan
| | | | - Yuka Miyamoto
- Bioanalysis Department, Mediford Corporation, Tokyo, Japan
| | - Kozue Kaito
- Bioanalysis Department, Mediford Corporation, Tokyo, Japan
| | - Masamitsu Takatama
- Department of Neurology, Geriatrics Research Institute and Hospital, Gunma, Japan
| | - Yoshio Ikeda
- Department of Neurology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Mikio Shoji
- Department of Neurology, Geriatrics Research Institute and Hospital, Gunma, Japan
| |
Collapse
|
2
|
Bavato F, Barro C, Schnider LK, Simrén J, Zetterberg H, Seifritz E, Quednow BB. Introducing neurofilament light chain measure in psychiatry: current evidence, opportunities, and pitfalls. Mol Psychiatry 2024; 29:2543-2559. [PMID: 38503931 PMCID: PMC11412913 DOI: 10.1038/s41380-024-02524-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024]
Abstract
The recent introduction of new-generation immunoassay methods allows the reliable quantification of structural brain markers in peripheral matrices. Neurofilament light chain (NfL), a neuron-specific cytoskeletal component released in extracellular matrices after neuroaxonal impairment, is considered a promising blood marker of active brain pathology. Given its sensitivity to a wide range of neuropathological alterations, NfL has been suggested for the use in clinical practice as a highly sensitive, but unspecific tool to quantify active brain pathology. While large efforts have been put in characterizing its clinical profile in many neurological conditions, NfL has received far less attention as a potential biomarker in major psychiatric disorders. Therefore, we briefly introduce NfL as a marker of neuroaxonal injury, systematically review recent findings on cerebrospinal fluid and blood NfL levels in patients with primary psychiatric conditions and highlight the opportunities and pitfalls. Current evidence suggests an elevation of blood NfL levels in patients with major depression, bipolar disorder, psychotic disorders, anorexia nervosa, and substance use disorders compared to physiological states. However, blood NfL levels strongly vary across diagnostic entities, clinical stage, and patient subgroups, and are influenced by several demographic, clinical, and analytical factors, which require accurate characterization. Potential clinical applications of NfL measure in psychiatry are seen in diagnostic and prognostic algorithms, to exclude neurodegenerative disease, in the assessment of brain toxicity for different pharmacological compounds, and in the longitudinal monitoring of treatment response. The high inter-individual variability of NfL levels and the lack of neurobiological understanding of its release are some of the main current limitations. Overall, this primer aims to introduce researchers and clinicians to NfL measure in the psychiatric field and to provide a conceptual framework for future research directions.
Collapse
Affiliation(s)
- Francesco Bavato
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics; Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| | - Christian Barro
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Laura K Schnider
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics; Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Joel Simrén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics; Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Boris B Quednow
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics; Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Hansra GK, Jayasena T, Hosoki S, Poljak A, Lam BCP, Rust R, Sagare A, Zlokovic B, Thalamuthu A, Sachdev PS. Fluid biomarkers of the neurovascular unit in cerebrovascular disease and vascular cognitive disorders: A systematic review and meta-analysis. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2024; 6:100216. [PMID: 38510579 PMCID: PMC10951911 DOI: 10.1016/j.cccb.2024.100216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/30/2024] [Accepted: 02/16/2024] [Indexed: 03/22/2024]
Abstract
Background The disruption of the neurovascular unit (NVU), which maintains the integrity of the blood brain barrier (BBB), has been identified as a critical mechanism in the development of cerebrovascular and neurodegenerative disorders. However, the understanding of the pathophysiological mechanisms linking NVU dysfunction to the disorders is incomplete, and reliable blood biomarkers to measure NVU dysfunction are yet to be established. This systematic review and meta-analysis aimed to identify biomarkers associated with BBB dysfunction in large vessel disease, small vessel disease (SVD) and vascular cognitive disorders (VCD). Methods A literature search was conducted in PubMed, EMBASE, Scopus and PsychINFO to identify blood biomarkers related to dysfunction of the NVU in disorders with vascular pathologies published until 20 November 2023. Studies that assayed one or more specific markers in human serum or plasma were included. Quality of studies was assessed using the Newcastle-Ottawa Quality Assessment Scale. Effects were pooled and methodological heterogeneity examined using the random effects model. Results A total of 112 studies were included in this review. Where study numbers allowed, biomarkers were analysed using random effect meta-analysis for VCD (1 biomarker; 5 studies) and cerebrovascular disorders, including stroke and SVD (9 biomarkers; 29 studies) while all remaining biomarkers (n = 17 biomarkers; 78 studies) were examined through qualitative analysis. Results of the meta-analysis revealed that cerebrospinal fluid/serum albumin quotient (Q-Alb) reliably differentiates VCD patients from healthy controls (MD = 2.77; 95 % CI = 1.97-3.57; p < 0.0001) while commonly measured biomarkers of endothelial dysfunction (VEGF, VCAM-1, ICAM-1, vWF and E-selectin) and neuronal injury (NfL) were significantly elevated in vascular pathologies. A qualitative assessment of non-meta-analysed biomarkers revealed NSE, NfL, vWF, ICAM-1, VCAM-1, lipocalin-2, MMP-2 and MMP-9 levels to be upregulated in VCD, although these findings were not consistently replicated. Conclusions This review identifies several promising biomarkers of NVU dysfunction which require further validation. A panel of biomarkers representing multiple pathophysiological pathways may offer greater discriminative power in distinguishing possible disease mechanisms of VCD.
Collapse
Affiliation(s)
- Gurpreet Kaur Hansra
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, Australia
| | - Tharusha Jayasena
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, Australia
| | - Satoshi Hosoki
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, Australia
- Department of Neurology, National Cerebral and Cardiovascular Centre, Suita, Japan
| | - Anne Poljak
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, Australia
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales, NSW, Australia
| | - Ben Chun Pan Lam
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, Australia
- School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Ruslan Rust
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Abhay Sagare
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Berislav Zlokovic
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Anbupalam Thalamuthu
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, Australia
| | - Perminder S. Sachdev
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, Australia
| |
Collapse
|
4
|
Balanza N, Francis CK, Crowley VM, Weckman AM, Zhong K, Baro B, Varo R, Bassat Q, Kain KC. Neurofilament Light Chain as a Biomarker of Neuronal Damage in Children With Malaria. J Infect Dis 2024; 229:183-188. [PMID: 37647876 PMCID: PMC10786245 DOI: 10.1093/infdis/jiad373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 09/01/2023] Open
Abstract
Malaria can cause brain injury. Neurofilament light chain (NfL) is a biomarker of neuronal damage. Here we examined longitudinal plasma NfL levels in children aged 1-12 years with uncomplicated and severe malaria from Mozambique. NfL levels were similar in all malaria cases at hospital admission. However, levels increased over time and the increment was significantly higher in severe malaria cases with neurological manifestations (ie, coma, impaired consciousness, or repeated seizures). NfL may be useful to identify and quantify brain injury in malaria.
Collapse
Affiliation(s)
- Núria Balanza
- ISGlobal, Hospital Clinic–University of Barcelona, Barcelona, Spain
| | - Caroline K Francis
- Sandra-Rotman Centre for Global Health, Toronto General Research Institute, University Health Network–Toronto General Hospital, Toronto, Ontario, Canada
| | - Valerie M Crowley
- Sandra-Rotman Centre for Global Health, Toronto General Research Institute, University Health Network–Toronto General Hospital, Toronto, Ontario, Canada
| | - Andrea M Weckman
- Sandra-Rotman Centre for Global Health, Toronto General Research Institute, University Health Network–Toronto General Hospital, Toronto, Ontario, Canada
- Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Kathleen Zhong
- Sandra-Rotman Centre for Global Health, Toronto General Research Institute, University Health Network–Toronto General Hospital, Toronto, Ontario, Canada
| | - Bàrbara Baro
- ISGlobal, Hospital Clinic–University of Barcelona, Barcelona, Spain
| | - Rosauro Varo
- ISGlobal, Hospital Clinic–University of Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | - Quique Bassat
- ISGlobal, Hospital Clinic–University of Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
- Pediatrics Department, Hospital Sant Joan de Déu–University of Barcelona, Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública, Madrid, Spain
| | - Kevin C Kain
- Sandra-Rotman Centre for Global Health, Toronto General Research Institute, University Health Network–Toronto General Hospital, Toronto, Ontario, Canada
- Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Mavroudis I, Petridis F, Balmus IM, Ciobica A, Gorgan DL, Luca AC. Review on the Role of Salivary Biomarkers in the Diagnosis of Mild Traumatic Brain Injury and Post-Concussion Syndrome. Diagnostics (Basel) 2023; 13:diagnostics13081367. [PMID: 37189468 DOI: 10.3390/diagnostics13081367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
(1) Background: While mild traumatic brain injuries (TBIs) are a major public health issue, post-concussion syndrome (PCS) remains a controversial entity. In both cases, the clinical diagnosis is mainly based on the symptoms and brain imaging evaluation. The current molecular biomarkers were described from blood and cerebrospinal fluid (CSF), yet both fluid collection methods are invasive. Saliva could be preferred in molecular diagnosis due to its non-invasive and non-expensive methods of acquisition, transport, and samples processing. (2) Objectives: In the present study, we aimed to review the latest developments in salivary biomarkers and their potential role in diagnosing mild TBIs, and PCS. (3) Results: In TBIs and PCS, a few novel studies focusing on salivary biomarkers have emphasized their importance in diagnosis. The previous studies mainly focused on micro RNAs, and only a few on extracellular vesicles, neurofilament light chain, and S100B. (4) Conclusions: The combination between salivary biomarkers, clinical history and examination, self-reported symptoms, and cognitive/balance testing can provide a non-invasive alternative diagnostic methodology, as compared to the currently approved plasma and cerebrospinal fluid biomarkers.
Collapse
Affiliation(s)
- Ioannis Mavroudis
- Department of Neurology, Leeds Teaching Hospitals NHS Trust, Leeds LS9 7TF, UK
- Faculty of Medicine, Leeds University, Leeds LS2 9JT, UK
| | - Foivos Petridis
- Third Department of Neurology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Ioana-Miruna Balmus
- Department of Exact Sciences and Natural Sciences, Institute of Interdisciplinary Research, Alexandru Ioan Cuza University of Iasi, Alexandru Lapusneanu Street, No. 26, 700057 Iasi, Romania
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, B dul Carol I, No. 11, 700506 Iasi, Romania
| | - Dragos Lucian Gorgan
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, B dul Carol I, No. 11, 700506 Iasi, Romania
| | - Alina Costina Luca
- Department of Mother and Child, Medicine-Pediatrics, "Grigore T. Popa" University of Medicine and Pharmacy, 16, Universitatii Street, 700115 Iasi, Romania
| |
Collapse
|
6
|
Petzold A. The 2022 Lady Estelle Wolfson lectureship on neurofilaments. J Neurochem 2022; 163:179-219. [PMID: 35950263 PMCID: PMC9826399 DOI: 10.1111/jnc.15682] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 01/11/2023]
Abstract
Neurofilament proteins (Nf) have been validated and established as a reliable body fluid biomarker for neurodegenerative pathology. This review covers seven Nf isoforms, Nf light (NfL), two splicing variants of Nf medium (NfM), two splicing variants of Nf heavy (NfH),α -internexin (INA) and peripherin (PRPH). The genetic and epigenetic aspects of Nf are discussed as relevant for neurodegenerative diseases and oncology. The comprehensive list of mutations for all Nf isoforms covers Amyotrophic Lateral Sclerosis, Charcot-Marie Tooth disease, Spinal muscular atrophy, Parkinson Disease and Lewy Body Dementia. Next, emphasis is given to the expanding field of post-translational modifications (PTM) of the Nf amino acid residues. Protein structural aspects are reviewed alongside PTMs causing neurodegenerative pathology and human autoimmunity. Molecular visualisations of NF PTMs, assembly and stoichiometry make use of Alphafold2 modelling. The implications for Nf function on the cellular level and axonal transport are discussed. Neurofilament aggregate formation and proteolytic breakdown are reviewed as relevant for biomarker tests and disease. Likewise, Nf stoichiometry is reviewed with regard to in vitro experiments and as a compensatory mechanism in neurodegeneration. The review of Nf across a spectrum of 87 diseases from all parts of medicine is followed by a critical appraisal of 33 meta-analyses on Nf body fluid levels. The review concludes with considerations for clinical trial design and an outlook for future research.
Collapse
Affiliation(s)
- Axel Petzold
- Department of NeurodegenerationQueen Square Insitute of Neurology, UCLLondonUK
| |
Collapse
|