1
|
Hewel C, Schmidt H, Runkel S, Kohnen W, Schweiger-Seemann S, Michel A, Bikar SE, Lieb B, Plachter B, Hankeln T, Linke M, Gerber S. Nanopore adaptive sampling of a metagenomic sample derived from a human monkeypox case. J Med Virol 2024; 96:e29610. [PMID: 38654702 DOI: 10.1002/jmv.29610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/18/2024] [Accepted: 04/05/2024] [Indexed: 04/26/2024]
Abstract
In 2022, a series of human monkeypox cases in multiple countries led to the largest and most widespread outbreak outside the known endemic areas. Setup of proper genomic surveillance is of utmost importance to control such outbreaks. To this end, we performed Nanopore (PromethION P24) and Illumina (NextSeq. 2000) Whole Genome Sequencing (WGS) of a monkeypox sample. Adaptive sampling was applied for in silico depletion of the human host genome, allowing for the enrichment of low abundance viral DNA without a priori knowledge of sample composition. Nanopore sequencing allowed for high viral genome coverage, tracking of sample composition during sequencing, strain determination, and preliminary assessment of mutational pattern. In addition to that, only Nanopore data allowed us to resolve the entire monkeypox virus genome, with respect to two structural variants belonging to the genes OPG015 and OPG208. These SVs in important host range genes seem stable throughout the outbreak and are frequently misassembled and/or misannotated due to the prevalence of short read sequencing or short read first assembly. Ideally, standalone standard Illumina sequencing should not be used for Monkeypox WGS and de novo assembly, since it will obfuscate the structure of the genome, which has an impact on the quality and completeness of the genomes deposited in public databases and thus possibly on the ability to evaluate the complete genetic reason for the host range change of monkeypox in the current pandemic.
Collapse
Affiliation(s)
- Charlotte Hewel
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Hanno Schmidt
- SARS-CoV-2 Sequencing Consortium Mainz, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stefan Runkel
- SARS-CoV-2 Sequencing Consortium Mainz, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Transfusion Unit & Test Center, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Wolfgang Kohnen
- SARS-CoV-2 Sequencing Consortium Mainz, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Department of Hygiene and Infection Prevention, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Susann Schweiger-Seemann
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- SARS-CoV-2 Sequencing Consortium Mainz, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - André Michel
- SARS-CoV-2 Sequencing Consortium Mainz, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Medical Management Department, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sven-Ernö Bikar
- SARS-CoV-2 Sequencing Consortium Mainz, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- StarSEQ GmbH, Mainz, Germany
| | | | - Bodo Plachter
- SARS-CoV-2 Sequencing Consortium Mainz, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Thomas Hankeln
- SARS-CoV-2 Sequencing Consortium Mainz, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Faculty of Biology, Institute of Organismic and Molecular Evolution, Molecular Genetics & Genome Analysis, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Matthias Linke
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- SARS-CoV-2 Sequencing Consortium Mainz, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Susanne Gerber
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- SARS-CoV-2 Sequencing Consortium Mainz, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
2
|
Kwasiborski A, Hourdel V, Balière C, Hoinard D, Grassin Q, Feher M, De La Porte Des Vaux C, Cresta M, Vanhomwegen J, Manuguerra JC, Batéjat C, Caro V. Direct metagenomic and amplicon-based Nanopore sequencing of French human monkeypox from clinical specimen. Microbiol Resour Announc 2024; 13:e0081123. [PMID: 38047654 DOI: 10.1128/mra.00811-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023] Open
Abstract
We report the whole-genome sequence of monkeypox virus obtained using MinION technology (Oxford Nanopore Technologies) from a French clinical specimen during the 2022 epidemic. Amplicon-based sequencing and shotgun metagenomic approaches were directly applied to the sample.
Collapse
Affiliation(s)
- Aurelia Kwasiborski
- Institut Pasteur, Université Paris Cité, Environment and Infectious Risks Unit, Laboratory for Urgent Response to Biological Threats , Paris, France
| | - Véronique Hourdel
- Institut Pasteur, Université Paris Cité, Environment and Infectious Risks Unit, Laboratory for Urgent Response to Biological Threats , Paris, France
| | - Charlotte Balière
- Institut Pasteur, Université Paris Cité, Environment and Infectious Risks Unit, Laboratory for Urgent Response to Biological Threats , Paris, France
| | - Damien Hoinard
- Institut Pasteur, Université Paris Cité, Environment and Infectious Risks Unit, Laboratory for Urgent Response to Biological Threats , Paris, France
| | - Quentin Grassin
- Institut Pasteur, Université Paris Cité, Environment and Infectious Risks Unit, Laboratory for Urgent Response to Biological Threats , Paris, France
| | - Maxence Feher
- Institut Pasteur, Université Paris Cité, Environment and Infectious Risks Unit, Laboratory for Urgent Response to Biological Threats , Paris, France
| | | | | | - Jessica Vanhomwegen
- Institut Pasteur, Université Paris Cité, Environment and Infectious Risks Unit, Laboratory for Urgent Response to Biological Threats , Paris, France
| | - Jean-Claude Manuguerra
- Institut Pasteur, Université Paris Cité, Environment and Infectious Risks Unit, Laboratory for Urgent Response to Biological Threats , Paris, France
| | - Christophe Batéjat
- Institut Pasteur, Université Paris Cité, Environment and Infectious Risks Unit, Laboratory for Urgent Response to Biological Threats , Paris, France
| | - Valérie Caro
- Institut Pasteur, Université Paris Cité, Environment and Infectious Risks Unit, Laboratory for Urgent Response to Biological Threats , Paris, France
| |
Collapse
|
3
|
Zeng GG, Jiang WL, Yu J, Nie GY, Lu YR, Xiao CK, Wang C, Zheng K. The Potential Relationship Between Cardiovascular Diseases and Monkeypox. Curr Probl Cardiol 2024; 49:102116. [PMID: 37802168 DOI: 10.1016/j.cpcardiol.2023.102116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/08/2023]
Abstract
Mpox, a novel epidemic disease, has broken out the period of coronavirus disease 2019 since May 2022, which was caused by the mpox virus. Up to 12 September 2023, there are more than 90,439 confirmed mpox cases in over 115 countries all over the world. Moreover, the outbreak of mpox in 2022 was verified to be Clade II rather than Clade I. Highlighting the significance of this finding, a growing body of literature suggests that mpox may lead to a series of cardiovascular complications, including myocarditis and pericarditis. It is indeed crucial to acquire more knowledge about mpox from a perspective from the clinical cardiologist. In this review, we would discuss the epidemiological characteristics and primary treatments of mpox to attempt to provide a framework for cardiovascular physicians.
Collapse
Affiliation(s)
- Guang-Gui Zeng
- Department of Clinical Laboratory, Hengyang Central Hospital, Hengyang, Hunan, China; Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, Hunan, China; Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, 2020 Grade Excellent Doctor Class of Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Wan-Li Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, 2020 Grade Excellent Doctor Class of Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Jiang Yu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, 2020 Grade Excellent Doctor Class of Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Gui-Ying Nie
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, 2020 Grade Excellent Doctor Class of Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Yu-Ru Lu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chang-Kai Xiao
- Department of Urology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Chuan Wang
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, Hunan, China.
| | - Kang Zheng
- Department of Clinical Laboratory, Hengyang Central Hospital, Hengyang, Hunan, China.
| |
Collapse
|
4
|
Urban L, Perlas A, Francino O, Martí‐Carreras J, Muga BA, Mwangi JW, Boykin Okalebo L, Stanton JL, Black A, Waipara N, Fontsere C, Eccles D, Urel H, Reska T, Morales HE, Palmada‐Flores M, Marques‐Bonet T, Watsa M, Libke Z, Erkenswick G, van Oosterhout C. Real-time genomics for One Health. Mol Syst Biol 2023; 19:e11686. [PMID: 37325891 PMCID: PMC10407731 DOI: 10.15252/msb.202311686] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023] Open
Abstract
The ongoing degradation of natural systems and other environmental changes has put our society at a crossroad with respect to our future relationship with our planet. While the concept of One Health describes how human health is inextricably linked with environmental health, many of these complex interdependencies are still not well-understood. Here, we describe how the advent of real-time genomic analyses can benefit One Health and how it can enable timely, in-depth ecosystem health assessments. We introduce nanopore sequencing as the only disruptive technology that currently allows for real-time genomic analyses and that is already being used worldwide to improve the accessibility and versatility of genomic sequencing. We showcase real-time genomic studies on zoonotic disease, food security, environmental microbiome, emerging pathogens, and their antimicrobial resistances, and on environmental health itself - from genomic resource creation for wildlife conservation to the monitoring of biodiversity, invasive species, and wildlife trafficking. We stress why equitable access to real-time genomics in the context of One Health will be paramount and discuss related practical, legal, and ethical limitations.
Collapse
Affiliation(s)
- Lara Urban
- Helmholtz AI, Helmholtz Zentrum MuenchenNeuherbergGermany
- Helmholtz Pioneer Campus, Helmholtz Zentrum MuenchenNeuherbergGermany
- School of Life Sciences, Technical University of MunichFreisingGermany
| | - Albert Perlas
- Helmholtz AI, Helmholtz Zentrum MuenchenNeuherbergGermany
- Helmholtz Pioneer Campus, Helmholtz Zentrum MuenchenNeuherbergGermany
| | - Olga Francino
- Nano1Health SL, Parc de Recerca UABCampus Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Joan Martí‐Carreras
- Nano1Health SL, Parc de Recerca UABCampus Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Brenda A Muga
- Department of AnatomyUniversity of OtagoDunedinNew Zealand
| | | | | | | | - Amanda Black
- Bioprotection AotearoaLincoln UniversityLincolnNew Zealand
| | | | - Claudia Fontsere
- Center for Evolutionary HologenomicsThe Globe Institute, University of CopenhagenCopenhagenDenmark
| | - David Eccles
- Hugh Green Cytometry CentreMalaghan Institute of Medical ResearchWellingtonNew Zealand
| | - Harika Urel
- Helmholtz AI, Helmholtz Zentrum MuenchenNeuherbergGermany
- Helmholtz Pioneer Campus, Helmholtz Zentrum MuenchenNeuherbergGermany
- School of Life Sciences, Technical University of MunichFreisingGermany
| | - Tim Reska
- Helmholtz AI, Helmholtz Zentrum MuenchenNeuherbergGermany
- Helmholtz Pioneer Campus, Helmholtz Zentrum MuenchenNeuherbergGermany
- School of Life Sciences, Technical University of MunichFreisingGermany
| | - Hernán E Morales
- Center for Evolutionary HologenomicsThe Globe Institute, University of CopenhagenCopenhagenDenmark
- Department of Biology, Ecology BuildingLund UniversityLundSweden
| | - Marc Palmada‐Flores
- Institute of Evolutionary BiologyUniversitat Pompeu Fabra‐CSIC, PRBBBarcelonaSpain
| | - Tomas Marques‐Bonet
- Institute of Evolutionary BiologyUniversitat Pompeu Fabra‐CSIC, PRBBBarcelonaSpain
- Catalan Institution of Research and Advanced Studies (ICREA)BarcelonaSpain
- CNAGCentre of Genomic AnalysisBarcelonaSpain
- Institut Català de Paleontologia Miquel CrusafontUniversitat Autònoma de BarcelonaBarcelonaSpain
| | | | - Zane Libke
- Instituto Nacional de BiodiversidadQuitoEcuador
- Fundación Sumak Kawsay In SituCantón MeraEcuador
| | | | | |
Collapse
|
5
|
Zheng P, Zhou C, Ding Y, Liu B, Lu L, Zhu F, Duan S. Nanopore sequencing technology and its applications. MedComm (Beijing) 2023; 4:e316. [PMID: 37441463 PMCID: PMC10333861 DOI: 10.1002/mco2.316] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 07/15/2023] Open
Abstract
Since the development of Sanger sequencing in 1977, sequencing technology has played a pivotal role in molecular biology research by enabling the interpretation of biological genetic codes. Today, nanopore sequencing is one of the leading third-generation sequencing technologies. With its long reads, portability, and low cost, nanopore sequencing is widely used in various scientific fields including epidemic prevention and control, disease diagnosis, and animal and plant breeding. Despite initial concerns about high error rates, continuous innovation in sequencing platforms and algorithm analysis technology has effectively addressed its accuracy. During the coronavirus disease (COVID-19) pandemic, nanopore sequencing played a critical role in detecting the severe acute respiratory syndrome coronavirus-2 virus genome and containing the pandemic. However, a lack of understanding of this technology may limit its popularization and application. Nanopore sequencing is poised to become the mainstream choice for preventing and controlling COVID-19 and future epidemics while creating value in other fields such as oncology and botany. This work introduces the contributions of nanopore sequencing during the COVID-19 pandemic to promote public understanding and its use in emerging outbreaks worldwide. We discuss its application in microbial detection, cancer genomes, and plant genomes and summarize strategies to improve its accuracy.
Collapse
Affiliation(s)
- Peijie Zheng
- Department of Clinical MedicineSchool of MedicineZhejiang University City CollegeHangzhouChina
| | - Chuntao Zhou
- Department of Clinical MedicineSchool of MedicineZhejiang University City CollegeHangzhouChina
| | - Yuemin Ding
- Department of Clinical MedicineSchool of MedicineZhejiang University City CollegeHangzhouChina
- Institute of Translational Medicine, School of MedicineZhejiang University City CollegeHangzhouChina
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineZhejiang University City CollegeHangzhouChina
| | - Bin Liu
- Department of Clinical MedicineSchool of MedicineZhejiang University City CollegeHangzhouChina
| | - Liuyi Lu
- Department of Clinical MedicineSchool of MedicineZhejiang University City CollegeHangzhouChina
| | - Feng Zhu
- Department of Clinical MedicineSchool of MedicineZhejiang University City CollegeHangzhouChina
| | - Shiwei Duan
- Department of Clinical MedicineSchool of MedicineZhejiang University City CollegeHangzhouChina
- Institute of Translational Medicine, School of MedicineZhejiang University City CollegeHangzhouChina
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineZhejiang University City CollegeHangzhouChina
| |
Collapse
|
6
|
Rcheulishvili N, Mao J, Papukashvili D, Feng S, Liu C, Wang X, He Y, Wang PG. Design, evaluation, and immune simulation of potentially universal multi-epitope mpox vaccine candidate: focus on DNA vaccine. Front Microbiol 2023; 14:1203355. [PMID: 37547674 PMCID: PMC10403236 DOI: 10.3389/fmicb.2023.1203355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Monkeypox (mpox) is a zoonotic infectious disease caused by the mpox virus. Mpox symptoms are similar to smallpox with less severity and lower mortality. As yet mpox virus is not characterized by as high transmissibility as some severe acute respiratory syndrome 2 (SARS-CoV-2) variants, still, it is spreading, especially among men who have sex with men (MSM). Thus, taking preventive measures, such as vaccination, is highly recommended. While the smallpox vaccine has demonstrated considerable efficacy against the mpox virus due to the antigenic similarities, the development of a universal anti-mpox vaccine remains a necessary pursuit. Recently, nucleic acid vaccines have garnered special attention owing to their numerous advantages compared to traditional vaccines. Importantly, DNA vaccines have certain advantages over mRNA vaccines. In this study, a potentially universal DNA vaccine candidate against mpox based on conserved epitopes was designed and its efficacy was evaluated via an immunoinformatics approach. The vaccine candidate demonstrated potent humoral and cellular immune responses in silico, indicating the potential efficacy in vivo and the need for further research.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yunjiao He
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Peng George Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
7
|
Qudus MS, Cui X, Tian M, Afaq U, Sajid M, Qureshi S, Liu S, Ma J, Wang G, Faraz M, Sadia H, Wu K, Zhu C. The prospective outcome of the monkeypox outbreak in 2022 and characterization of monkeypox disease immunobiology. Front Cell Infect Microbiol 2023; 13:1196699. [PMID: 37533932 PMCID: PMC10391643 DOI: 10.3389/fcimb.2023.1196699] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/21/2023] [Indexed: 08/04/2023] Open
Abstract
A new threat to global health re-emerged with monkeypox's advent in early 2022. As of November 10, 2022, nearly 80,000 confirmed cases had been reported worldwide, with most of them coming from places where the disease is not common. There were 53 fatalities, with 40 occurring in areas that had never before recorded monkeypox and the remaining 13 appearing in the regions that had previously reported the disease. Preliminary genetic data suggest that the 2022 monkeypox virus is part of the West African clade; the virus can be transmitted from person to person through direct interaction with lesions during sexual activity. It is still unknown if monkeypox can be transmitted via sexual contact or, more particularly, through infected body fluids. This most recent epidemic's reservoir host, or principal carrier, is still a mystery. Rodents found in Africa can be the possible intermediate host. Instead, the CDC has confirmed that there are currently no particular treatments for monkeypox virus infection in 2022; however, antivirals already in the market that are successful against smallpox may mitigate the spread of monkeypox. To protect against the disease, the JYNNEOS (Imvamune or Imvanex) smallpox vaccine can be given. The spread of monkeypox can be slowed through measures such as post-exposure immunization, contact tracing, and improved case diagnosis and isolation. Final Thoughts: The latest monkeypox epidemic is a new hazard during the COVID-19 epidemic. The prevailing condition of the monkeypox epidemic along with coinfection with COVID-19 could pose a serious condition for clinicians that could lead to the global epidemic community in the form of coinfection.
Collapse
Affiliation(s)
- Muhammad Suhaib Qudus
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xianghua Cui
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Mingfu Tian
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Uzair Afaq
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Muhammad Sajid
- RNA Therapeutics Institute, Chan Medical School, University of Massachusetts Worcester, Worcester, MA, United States
| | - Sonia Qureshi
- Krembil Research Institute, University of Health Network, Toronto, ON, Canada
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Siyu Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - June Ma
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Guolei Wang
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Muhammad Faraz
- Department of Microbiology, Quaid-I- Azam University, Islamabad, Pakistan
| | - Haleema Sadia
- Department of Biotechnology, Baluchistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta, Pakistan
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chengliang Zhu
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
8
|
Ghosh N, Chacko L, Vallamkondu J, Banerjee T, Sarkar C, Singh B, Kalra RS, Bhatti JS, Kandimalla R, Dewanjee S. Clinical Strategies and Therapeutics for Human Monkeypox Virus: A Revised Perspective on Recent Outbreaks. Viruses 2023; 15:1533. [PMID: 37515218 PMCID: PMC10384767 DOI: 10.3390/v15071533] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
An enveloped double-stranded DNA monkeypox virus (MPXV) is a causative agent of the zoonotic viral disease, human monkeypox (HMPX). MPXV belongs to the genus Orthopoxviridae, a family of notorious smallpox viruses, and so it shares similar clinical pathophysiological features. The recent multicountry HMPX outbreak (May 2022 onwards) is recognized as an emerging global public health emergency by the World Health Organization, shunting its endemic status as opined over the past few decades. Re-emergence of HMPX raises concern to reassess the present clinical strategy and therapeutics as its outbreak evolves further. Keeping a check on these developments, here we provide insights into the HMPX epidemiology, pathophysiology, and clinical representation. Weighing on its early prevention, we reviewed the strategies that are being enrolled for HMPX diagnosis. In the line of expanded MPXV prevalence, we further reviewed its clinical management and the diverse employed preventive/therapeutic strategies, including vaccines (JYNNEOS, ACAM2000, VIGIV) and antiviral drugs/inhibitors (Tecovirimat, Cidofovir, Brincidofovir). Taken together, with a revised perspective of HMPX re-emergence, the present report summarizes new knowledge on its prevalence, pathology, and prevention strategies.
Collapse
Affiliation(s)
- Nilanjan Ghosh
- Molecular Pharmacology Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Leena Chacko
- BioAnalytical Laboratory, Meso Scale Discovery, Rockville, MD 20850-3173, USA
| | | | - Tanmoy Banerjee
- Molecular Pharmacology Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Chandrima Sarkar
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Birbal Singh
- ICAR-Indian Veterinary Research Institute (IVRI), Regional Station, Palampur 176061, Himachal Pradesh, India
| | - Rajkumar Singh Kalra
- Okinawa Institute of Science and Technology, Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda 151001, Punjab, India
| | - Ramesh Kandimalla
- Department of Biochemistry, Kakatiya Medical College, Warangal 506007, Telangana, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
| |
Collapse
|
9
|
Silva SJRD, Kohl A, Pena L, Pardee K. Clinical and laboratory diagnosis of monkeypox (mpox): Current status and future directions. iScience 2023; 26:106759. [PMID: 37206155 PMCID: PMC10183700 DOI: 10.1016/j.isci.2023.106759] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023] Open
Abstract
The emergence and rapid spread of the monkeypox virus (MPXV) to non-endemic countries has brought this once obscure pathogen to the forefront of global public health. Given the range of conditions that cause similar skin lesions, and because the clinical manifestation may often be atypical in the current mpox outbreak, it can be challenging to diagnose patients based on clinical signs and symptoms. With this perspective in mind, laboratory-based diagnosis assumes a critical role for the clinical management, along with the implementation of countermeasures. Here, we review the clinical features reported in mpox patients, the available laboratory tests for mpox diagnosis, and discuss the principles, advances, advantages, and drawbacks of each assay. We also highlight the diagnostic platforms with the potential to guide ongoing clinical response, particularly those that increase diagnostic capacity in low- and middle-income countries. With the outlook of this evolving research area, we hope to provide a resource to the community and inspire more research and the development of diagnostic alternatives with applications to this and future public health crises.
Collapse
Affiliation(s)
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Lindomar Pena
- Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Keith Pardee
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto ON M5S 3M2, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto ON M5S 3G8, Canada
| |
Collapse
|
10
|
Mastrorosa FK, Miller DE, Eichler EE. Applications of long-read sequencing to Mendelian genetics. Genome Med 2023; 15:42. [PMID: 37316925 PMCID: PMC10266321 DOI: 10.1186/s13073-023-01194-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/18/2023] [Indexed: 06/16/2023] Open
Abstract
Advances in clinical genetic testing, including the introduction of exome sequencing, have uncovered the molecular etiology for many rare and previously unsolved genetic disorders, yet more than half of individuals with a suspected genetic disorder remain unsolved after complete clinical evaluation. A precise genetic diagnosis may guide clinical treatment plans, allow families to make informed care decisions, and permit individuals to participate in N-of-1 trials; thus, there is high interest in developing new tools and techniques to increase the solve rate. Long-read sequencing (LRS) is a promising technology for both increasing the solve rate and decreasing the amount of time required to make a precise genetic diagnosis. Here, we summarize current LRS technologies, give examples of how they have been used to evaluate complex genetic variation and identify missing variants, and discuss future clinical applications of LRS. As costs continue to decrease, LRS will find additional utility in the clinical space fundamentally changing how pathological variants are discovered and eventually acting as a single-data source that can be interrogated multiple times for clinical service.
Collapse
Affiliation(s)
| | - Danny E Miller
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA, 98195, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
11
|
Liu M, Li J, Tan CS. Unlocking the Power of Nanopores: Recent Advances in Biosensing Applications and Analog Front-End. BIOSENSORS 2023; 13:598. [PMID: 37366963 DOI: 10.3390/bios13060598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Abstract
The biomedical field has always fostered innovation and the development of various new technologies. Beginning in the last century, demand for picoampere-level current detection in biomedicine has increased, leading to continuous breakthroughs in biosensor technology. Among emerging biomedical sensing technologies, nanopore sensing has shown great potential. This paper reviews nanopore sensing applications, such as chiral molecules, DNA sequencing, and protein sequencing. However, the ionic current for different molecules differs significantly, and the detection bandwidths vary as well. Therefore, this article focuses on current sensing circuits, and introduces the latest design schemes and circuit structures of different feedback components of transimpedance amplifiers mainly used in nanopore DNA sequencing.
Collapse
Affiliation(s)
- Miao Liu
- Medical College, Tianjin University, Tianjin 300072, China
| | - Junyang Li
- Medical College, Tianjin University, Tianjin 300072, China
| | - Cherie S Tan
- Medical College, Tianjin University, Tianjin 300072, China
| |
Collapse
|
12
|
Rcheulishvili N, Mao J, Papukashvili D, Feng S, Liu C, Yang X, Lin J, He Y, Wang PG. Development of a Multi-Epitope Universal mRNA Vaccine Candidate for Monkeypox, Smallpox, and Vaccinia Viruses: Design and In Silico Analyses. Viruses 2023; 15:1120. [PMID: 37243206 PMCID: PMC10222975 DOI: 10.3390/v15051120] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Notwithstanding the presence of a smallpox vaccine that is effective against monkeypox (mpox), developing a universal vaccine candidate against monkeypox virus (MPXV) is highly required as the mpox multi-country outbreak has increased global concern. MPXV, along with variola virus (VARV) and vaccinia virus (VACV), belongs to the Orthopoxvirus genus. Due to the genetic similarity of antigens in this study, we have designed a potentially universal mRNA vaccine based on conserved epitopes that are specific to these three viruses. In order to design a potentially universal mRNA vaccine, antigens A29, A30, A35, B6, and M1 were selected. The conserved sequences among the three viral species-MPXV, VACV, and VARV-were detected, and B and T cell epitopes containing the conserved elements were used for the design of the multi-epitope mRNA construct. Immunoinformatics analyses demonstrated the stability of the vaccine construct and optimal binding to MHC molecules. Humoral and cellular immune responses were induced by immune simulation analyses. Eventually, based on in silico analysis, the universal mRNA multi-epitope vaccine candidate designed in this study may have a potential protection against MPXV, VARV, and VACV that will contribute to the advancement of prevention strategies for unpredictable pandemics.
Collapse
Affiliation(s)
- Nino Rcheulishvili
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China; (N.R.); (J.M.); (D.P.); (S.F.); (C.L.); (X.Y.); (J.L.)
| | - Jiawei Mao
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China; (N.R.); (J.M.); (D.P.); (S.F.); (C.L.); (X.Y.); (J.L.)
| | - Dimitri Papukashvili
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China; (N.R.); (J.M.); (D.P.); (S.F.); (C.L.); (X.Y.); (J.L.)
| | - Shunping Feng
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China; (N.R.); (J.M.); (D.P.); (S.F.); (C.L.); (X.Y.); (J.L.)
| | - Cong Liu
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China; (N.R.); (J.M.); (D.P.); (S.F.); (C.L.); (X.Y.); (J.L.)
| | - Xidan Yang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China; (N.R.); (J.M.); (D.P.); (S.F.); (C.L.); (X.Y.); (J.L.)
- School of Nursing, Southwest Medical University, Luzhou 646000, China
| | - Jihui Lin
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China; (N.R.); (J.M.); (D.P.); (S.F.); (C.L.); (X.Y.); (J.L.)
- School of Nursing, Southwest Medical University, Luzhou 646000, China
| | - Yunjiao He
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China; (N.R.); (J.M.); (D.P.); (S.F.); (C.L.); (X.Y.); (J.L.)
| | - Peng George Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China; (N.R.); (J.M.); (D.P.); (S.F.); (C.L.); (X.Y.); (J.L.)
| |
Collapse
|
13
|
Chauhan RP, Fogel R, Limson J. Overview of Diagnostic Methods, Disease Prevalence and Transmission of Mpox (Formerly Monkeypox) in Humans and Animal Reservoirs. Microorganisms 2023; 11:1186. [PMID: 37317160 DOI: 10.3390/microorganisms11051186] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 06/16/2023] Open
Abstract
Mpox-formerly monkeypox-is a re-emerging zoonotic virus disease, with large numbers of human cases reported during multi-country outbreaks in 2022. The close similarities in clinical symptoms that Mpox shares with many orthopoxvirus (OPXV) diseases make its diagnosis challenging, requiring laboratory testing for confirmation. This review focuses on the diagnostic methods used for Mpox detection in naturally infected humans and animal reservoirs, disease prevalence and transmission, clinical symptoms and signs, and currently known host ranges. Using specific search terms, up to 2 September 2022, we identified 104 relevant original research articles and case reports from NCBI-PubMed and Google Scholar databases for inclusion in the study. Our analyses observed that molecular identification techniques are overwhelmingly being used in current diagnoses, especially real-time PCR (3982/7059 cases; n = 41 studies) and conventional PCR (430/1830 cases; n = 30 studies) approaches being most-frequently-used to diagnose Mpox cases in humans. Additionally, detection of Mpox genomes, using qPCR and/or conventional PCR coupled to genome sequencing methods, offered both reliable detection and epidemiological analyses of evolving Mpox strains; identified the emergence and transmission of a novel clade 'hMPXV-1A' lineage B.1 during 2022 outbreaks globally. While a few current serologic assays, such as ELISA, reported on the detection of OPXV- and Mpox-specific IgG (891/2801 cases; n = 17 studies) and IgM antibodies (241/2688 cases; n = 11 studies), hemagglutination inhibition (HI) detected Mpox antibodies in human samples (88/430 cases; n = 6 studies), most other serologic and immunographic assays used were OPXV-specific. Interestingly, virus isolation (228/1259 cases; n = 24 studies), electron microscopy (216/1226 cases; n = 18 studies), and immunohistochemistry (28/40; n = 7 studies) remain useful methods of Mpox detection in humans in select instances using clinical and tissue samples. In animals, OPXV- and Mpox-DNA and antibodies were detected in various species of nonhuman primates, rodents, shrews, opossums, a dog, and a pig. With evolving transmission dynamics of Mpox, information on reliable and rapid detection methods and clinical symptoms of disease is critical for disease management.
Collapse
Affiliation(s)
- Ravendra P Chauhan
- Biotechnology Innovation Centre, Rhodes University, Makhanda 6139, Eastern Cape, South Africa
| | - Ronen Fogel
- Biotechnology Innovation Centre, Rhodes University, Makhanda 6139, Eastern Cape, South Africa
| | - Janice Limson
- Biotechnology Innovation Centre, Rhodes University, Makhanda 6139, Eastern Cape, South Africa
| |
Collapse
|
14
|
Chen Y, Wu C, A R, Zhao L, Zhang Z, Tan W. Perspective on the application of genome sequencing for monkeypox virus surveillance. Virol Sin 2023; 38:327-333. [PMID: 36972867 PMCID: PMC10039704 DOI: 10.1016/j.virs.2023.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/21/2023] [Indexed: 03/27/2023] Open
Abstract
•Whole genome sequencing of MPXV is crucial for monitoring emerging variants and assessing their potential pathogenicity. •The critical steps of mNGS, encompassing nucleic acid extraction, library preparation, sequencing, and data analysis, are concisely explained. •Optimization strategies for sample pre-processing, virus enrichment, and sequencing platform selection are deliberated. •Conducting next-generation sequencing and third-generation sequencing concurrently is highly recommended.
Collapse
Affiliation(s)
- Yuda Chen
- School of Public Health, Baotou Medical College, Baotou, 014040, China; NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100052, China
| | - Changcheng Wu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100052, China
| | - Ruhan A
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100052, China
| | - Li Zhao
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100052, China
| | - Zhongxian Zhang
- School of Public Health, Baotou Medical College, Baotou, 014040, China; NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100052, China
| | - Wenjie Tan
- School of Public Health, Baotou Medical College, Baotou, 014040, China; NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100052, China.
| |
Collapse
|
15
|
Balière C, Hourdel V, Kwasiborski A, Grassin Q, Feher M, Hoinard D, Vanhomwegen J, Taieb F, Consigny PH, Manuguerra JC, Leclercq I, Batéjat C, Caro V. Complete Genome Sequences of Monkeypox Virus from a French Clinical Sample and the Corresponding Isolated Strain, Obtained Using Nanopore Sequencing. Microbiol Resour Announc 2023; 12:e0000923. [PMID: 36971577 PMCID: PMC10112124 DOI: 10.1128/mra.00009-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
We report the whole-genome sequences of a monkeypox virus from the skin lesion of a French patient and the corresponding isolated viral strain. Both viral genomic sequences were successfully obtained by applying shotgun metagenomics using the Oxford Nanopore Technologies sequencing approach.
Collapse
|
16
|
Muñoz-Barrera A, Ciuffreda L, Alcoba-Florez J, Rubio-Rodríguez LA, Rodríguez-Pérez H, Gil-Campesino H, García-Martínez de Artola D, Salas-Hernández J, Rodríguez-Núñez J, Íñigo-Campos A, García-Olivares V, Díez-Gil O, González-Montelongo R, Valenzuela-Fernández A, Lorenzo-Salazar JM, Flores C. Bioinformatic approaches to draft the viral genome sequence of Canary Islands cases related to the multicountry mpox virus 2022-outbreak. Comput Struct Biotechnol J 2023; 21:2197-2203. [PMID: 36968018 PMCID: PMC10015108 DOI: 10.1016/j.csbj.2023.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
On July 23, 2022, monkeypox disease (mpox) was declared a Public Emergency of International Concern (PHEIC) by the World Health Organization (WHO) due to a multicountry outbreak. In Europe, several cases of mpox virus (MPXV) infection related to this outbreak were detected in the Canary Islands (Spain). Here we describe the combination of viral DNA sequencing and bioinformatic approaches, including methods for de novo genome assembly and short- and long-read technologies, used to reconstruct the first MPXV genome isolated in the Canary Islands on the 31st of May 2022 from a male adult patient with mild symptoms. The same sequencing and bioinformatic approaches were then validated with three other positive cases of MPXV infection from the same mpox outbreak. We obtained the best results using a reference-based approach with short reads, evidencing 46-79 nucleotide variants against viral sequences from the 2018-2019 mpox outbreak and placing the viral sequences in the new B.1 sublineage of clade IIb of the MPXV classification. This study of MPXV demonstrates the potential of metagenomics sequencing for rapid and precise pathogen identification.
Collapse
Affiliation(s)
- Adrián Muñoz-Barrera
- Genomics Division, Instituto Tecnológico y de Energías Renovables, 38600 Santa Cruz de Tenerife, Spain
| | - Laura Ciuffreda
- Research Unit, Hospital Universitario Ntra. Sra. de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - Julia Alcoba-Florez
- Servicio de Microbiología, Hospital Universitario Ntra. Sra. de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - Luis A. Rubio-Rodríguez
- Genomics Division, Instituto Tecnológico y de Energías Renovables, 38600 Santa Cruz de Tenerife, Spain
| | - Héctor Rodríguez-Pérez
- Research Unit, Hospital Universitario Ntra. Sra. de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - Helena Gil-Campesino
- Servicio de Microbiología, Hospital Universitario Ntra. Sra. de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | | | - Josmar Salas-Hernández
- Research Unit, Hospital Universitario Ntra. Sra. de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - Julia Rodríguez-Núñez
- Research Unit, Hospital Universitario Ntra. Sra. de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - Antonio Íñigo-Campos
- Genomics Division, Instituto Tecnológico y de Energías Renovables, 38600 Santa Cruz de Tenerife, Spain
| | - Víctor García-Olivares
- Genomics Division, Instituto Tecnológico y de Energías Renovables, 38600 Santa Cruz de Tenerife, Spain
| | - Oscar Díez-Gil
- Servicio de Microbiología, Hospital Universitario Ntra. Sra. de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | | | - Agustín Valenzuela-Fernández
- Laboratorio “Inmunología Celular y Viral”, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - José M. Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables, 38600 Santa Cruz de Tenerife, Spain
| | - Carlos Flores
- Genomics Division, Instituto Tecnológico y de Energías Renovables, 38600 Santa Cruz de Tenerife, Spain
- Research Unit, Hospital Universitario Ntra. Sra. de Candelaria, 38010 Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, 35450 Las Palmas de Gran Canaria, Spain
- Correspondence to: Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Carretera del Rosario s/n, 38010 Santa Cruz de Tenerife, Spain.
| |
Collapse
|
17
|
MacKenzie M, Argyropoulos C. An Introduction to Nanopore Sequencing: Past, Present, and Future Considerations. MICROMACHINES 2023; 14:459. [PMID: 36838159 PMCID: PMC9966803 DOI: 10.3390/mi14020459] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
There has been significant progress made in the field of nanopore biosensor development and sequencing applications, which address previous limitations that restricted widespread nanopore use. These innovations, paired with the large-scale commercialization of biological nanopore sequencing by Oxford Nanopore Technologies, are making the platforms a mainstay in contemporary research laboratories. Equipped with the ability to provide long- and short read sequencing information, with quick turn-around times and simple sample preparation, nanopore sequencers are rapidly improving our understanding of unsolved genetic, transcriptomic, and epigenetic problems. However, there remain some key obstacles that have yet to be improved. In this review, we provide a general introduction to nanopore sequencing principles, discussing biological and solid-state nanopore developments, obstacles to single-base detection, and library preparation considerations. We present examples of important clinical applications to give perspective on the potential future of nanopore sequencing in the field of molecular diagnostics.
Collapse
Affiliation(s)
- Morgan MacKenzie
- Department of Internal Medicine, Division of Nephrology, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | - Christos Argyropoulos
- Department of Internal Medicine, Division of Nephrology, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA
- Clinical & Translational Science Center, Department of Internal Medicine, Division of Nephrology, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
18
|
Pourriyahi H, Aryanian Z, Afshar ZM, Goodarzi A. A systematic review and clinical atlas on mucocutaneous presentations of the current monkeypox outbreak: With a comprehensive approach to all dermatologic and nondermatologic aspects of the new and previous monkeypox outbreaks. J Med Virol 2023; 95:e28230. [PMID: 36254380 DOI: 10.1002/jmv.28230] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/03/2022] [Accepted: 10/13/2022] [Indexed: 11/11/2022]
Abstract
Monkeypox is a zoonotic disease, endemic in central and west African regions, and has re-emerged, currently causing an outbreak as of May 2022. In this systematic review, we aimed to characterize the current face of the disease, with a detailed categorization of mucocutaneous, as well as systemic symptoms of the disease. We searched four main online databases with the keywords "monkeypox" and "Orthopoxvirus". A total of 46 articles were included, with a cumulative number of 1984 confirmed cases. Patients were predominantly men who have sex with men, who were mostly in their 30s, with a history of unprotected sexual contact or international travel. Among mucocutaneous manifestations, anogenital lesions were the most commonly observed, followed by lesions on the limbs, face, trunk, and palms or soles. Among lesion types, vesiculopustular, pustular or pseudo-pustular, vesicular-umbilicated and papular lesions were the most common, mainly presenting asynchronously, with less than 10 lesions on each patient. Almost all patients also reported systemic manifestations, namely fever, lymphadenopathy, fatigue, myalgia, headaches, pharyngitis, and proctitis. Sexual contact is the main pathway of transmission in the current outbreak, with viral shedding in bodily fluids playing a key role. We've compared these idiosyncratic findings of the new outbreak with previous outbreaks. We've also gathered and categorized images from our included studies to make a "clinical atlas" for this "new" face of monkeypox, which can be of utmost importance for clinicians to be familiarized with, and have a clear picture of monkeypox for their differential diagnoses.
Collapse
Affiliation(s)
- Homa Pourriyahi
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Aryanian
- Autoimmune Bullous Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Dermatology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Zeinab Mohseni Afshar
- Clinical Research Development Center, Imam Reza Hospital Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Azadeh Goodarzi
- Department of Dermatology, School of Medicine, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Aja-Macaya P, Rumbo-Feal S, Poza M, Cañizares A, Vallejo JA, Bou G. A new and efficient enrichment method for metagenomic sequencing of Monkeypox virus. BMC Genomics 2023; 24:29. [PMID: 36650445 PMCID: PMC9847149 DOI: 10.1186/s12864-023-09114-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The methodology described in previous literature for Monkeypox virus (MPXV) sequencing shows low efficiency when using metagenomic approaches. The aim of the present study was to evaluate a new fine-tuned method for extraction and enrichment of genomic MPXV DNA using clinical samples and to compare it to a non-enrichment metagenomic approach. RESULTS A new procedure that allows sample enrichment in MPXV DNA, avoiding wasting the sequencing capacity in human DNA, was designed. This procedure consisted of host DNA depletion using a saponin/NaCl combination treatment and DNase, together with high g-force centrifugations. After typical quality control, samples using the enrichment method contained around 96% of reads not classified as human DNA, while the non-enrichment protocol showed around 5-10%. When reads not belonging to Orthopoxvirus were removed, enriched samples kept about 50% of the original read counts, while non-enriched ones kept only 2-7%. CONCLUSIONS Results showed a very significant improvement in sequencing efficiency, increasing the number of reads belonging to MPXV, the depth of coverage and the trustworthiness of the consensus sequences. This, in turn, allows for more samples to be included in a single cartridge, reducing costs and time to diagnosis, which can be very important factors when dealing with a contagious disease.
Collapse
Affiliation(s)
- Pablo Aja-Macaya
- grid.411066.40000 0004 1771 0279Microbiology Research Group, Biomedical Research Institute of A Coruña (INIBIC) - University Hospital of A Coruña (CHUAC) - CIBER of Infectious Diseases (CIBERINFEC), Servicio de Microbiología, 3ª planta, Edificio Sur, Hospital Universitario, As Xubias, 15006 A Coruña, Spain
| | - Soraya Rumbo-Feal
- grid.411066.40000 0004 1771 0279Microbiology Research Group, Biomedical Research Institute of A Coruña (INIBIC) - University Hospital of A Coruña (CHUAC) - CIBER of Infectious Diseases (CIBERINFEC), Servicio de Microbiología, 3ª planta, Edificio Sur, Hospital Universitario, As Xubias, 15006 A Coruña, Spain
| | - Margarita Poza
- grid.411066.40000 0004 1771 0279Microbiology Research Group, Biomedical Research Institute of A Coruña (INIBIC) - University Hospital of A Coruña (CHUAC) - CIBER of Infectious Diseases (CIBERINFEC), Servicio de Microbiología, 3ª planta, Edificio Sur, Hospital Universitario, As Xubias, 15006 A Coruña, Spain ,grid.8073.c0000 0001 2176 8535University of A Coruña (UDC) - Center for Advanced Research (CICA), Facultad de Ciencias, Campus Zapateira, 15008 A Coruña, Spain
| | - Angelina Cañizares
- grid.411066.40000 0004 1771 0279Microbiology Research Group, Biomedical Research Institute of A Coruña (INIBIC) - University Hospital of A Coruña (CHUAC) - CIBER of Infectious Diseases (CIBERINFEC), Servicio de Microbiología, 3ª planta, Edificio Sur, Hospital Universitario, As Xubias, 15006 A Coruña, Spain
| | - Juan A. Vallejo
- grid.411066.40000 0004 1771 0279Microbiology Research Group, Biomedical Research Institute of A Coruña (INIBIC) - University Hospital of A Coruña (CHUAC) - CIBER of Infectious Diseases (CIBERINFEC), Servicio de Microbiología, 3ª planta, Edificio Sur, Hospital Universitario, As Xubias, 15006 A Coruña, Spain
| | - Germán Bou
- grid.411066.40000 0004 1771 0279Microbiology Research Group, Biomedical Research Institute of A Coruña (INIBIC) - University Hospital of A Coruña (CHUAC) - CIBER of Infectious Diseases (CIBERINFEC), Servicio de Microbiología, 3ª planta, Edificio Sur, Hospital Universitario, As Xubias, 15006 A Coruña, Spain
| |
Collapse
|
20
|
Phylogenetic analysis of all available monkeypox virus strains shows the close relatedness of contemporary ones. Heliyon 2023; 9:e12895. [PMID: 36643900 PMCID: PMC9829444 DOI: 10.1016/j.heliyon.2023.e12895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
The present research aimed to evaluate the diversity of all monkeypox virus strains with a special focus on recently isolated ones by a comprehensive phylogenetic analysis of all available sequences, based on the concatenate of four viral genes. Almost all current strains from 2022 showed a high level of similarity to each other on the analyzed stretches: 218 strains shared identical sequence. Among all analyzed strains, the highest number of differences was counted compared to a RefSeq strain (Zaire-96-I-16) on the whole concatenate. Our analysis supported the distinction between Clade I (formerly Congo Basin clade), IIa and IIb (together formerly West African clade) strains and classified all 2022 strains in the last one. The high number of differences and long branch observable concerning strain Zaire-96-I-16 is most probably caused by a sequencing error. As this strain represents one of the two available reference sequences in GenBank, it is recommendable to confirm or exclude the concerning mutation. The developed method, based on four gene sequences, reflected the established whole-genome-based intraspecies classification. Although this method provides significantly less information about the strains compared to whole genome analyses, since its resolution is much lower, it still enables the rapid subspecies classification of the strains into the established clades. The genes in the analyzed concatenate are so conserved that further differentiation of contemporary strains is impossible; these strains are identical in the analyzed sections. On the other hand, since whole genome analyses are compute-intensive, the described method offers a simpler and more accessible alternative for monitoring and preliminary typing of newly sequenced monkeypox virus strains.
Collapse
|
21
|
Mpox and pregnancy: A neglected disease and its impact on perinatal health. Rev Clin Esp 2023; 223:32-39. [PMID: 36341988 PMCID: PMC9620439 DOI: 10.1016/j.rceng.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/14/2022] [Indexed: 11/06/2022]
Abstract
Viral infections during pregnancy have been one of the leading causes associated with significant perinatal problems, such as congenital defects, fetal neurological syndromes, stillbirths, and adverse pregnancy outcomes. The mpox virus infection, caused by an Orthopoxvirus related to the human smallpox virus, was declared a global health emergency by the World Health Organization in July 2022 due to the large number of cases emerging outside the usual endemic area in Africa. There is little information on the impact of mpox virus infection during pregnancy, although the limited evidence available shows a high rate of fetal harm. This review addresses the problem of mpox virus infection in pregnant women and provides indications for its prevention, diagnosis, and treatment.
Collapse
|
22
|
Velázquez-Cervantes MA, Ulloa-Aguilar JM, León-Juárez M. [Mpox and pregnancy: A neglected disease and its impact on perinatal health]. Rev Clin Esp 2023; 223:32-39. [PMID: 36277866 PMCID: PMC9576805 DOI: 10.1016/j.rce.2022.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/14/2022] [Indexed: 11/06/2022]
Abstract
Viral infections during pregnancy have been one of the leading causes associated with significant perinatal problems, such as congenital defects, fetal neurological syndromes, stillbirths, and adverse pregnancy outcomes. The mpox virus infection, caused by an Orthopoxvirus related to the human smallpox virus, was declared a global health emergency by the World Health Organization in July 2022 due to the large number of cases emerging outside the usual endemic area in Africa. There is little information on the impact of mpox virus infection during pregnancy, although the limited evidence available shows a high rate of fetal harm. This review addresses the problem of mpox virus infection in pregnant women and provides indications for its prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- M A Velázquez-Cervantes
- Departamento de Inmuno-bioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, México
| | - J M Ulloa-Aguilar
- Departamento de Inmuno-bioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, México
| | - M León-Juárez
- Departamento de Inmuno-bioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, México
| |
Collapse
|
23
|
Lim CK, Roberts J, Moso M, Liew KC, Taouk ML, Williams E, Tran T, Steinig E, Caly L, Williamson DA. Mpox diagnostics: Review of current and emerging technologies. J Med Virol 2023; 95:e28429. [PMID: 36571266 PMCID: PMC10108241 DOI: 10.1002/jmv.28429] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
Mpox is a zoonotic disease caused by monkeypox virus (MPXV) from the Orthopoxvirus genus. Unprecedented transmission events have led to more than 70 000 cases reported worldwide by October 2022. The change in mpox epidemiology has raised concerns of its ability to establish endemicity beyond its traditional geographical locations. In this review, we discuss the current understanding of mpox virology and viral dynamics that are relevant to mpox diagnostics. A synopsis of the traditional and emerging laboratory technologies useful for MPXV detection and in guiding "elimination" strategies is outlined in this review. Importantly, development in MPXV genomics has rapidly advanced our understanding of the role of viral evolution and adaptation in the current outbreak.
Collapse
Affiliation(s)
- Chuan Kok Lim
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.,Department of Infectious Diseases, Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jason Roberts
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.,Department of Infectious Diseases, Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Michael Moso
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.,Department of Infectious Diseases, Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kwee Chin Liew
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.,Department of Infectious Diseases, Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Mona L Taouk
- Department of Infectious Diseases, Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Eloise Williams
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.,Department of Infectious Diseases, Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Thomas Tran
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.,Department of Infectious Diseases, Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Eike Steinig
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.,Department of Infectious Diseases, Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Leon Caly
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.,Department of Infectious Diseases, Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Deborah Ann Williamson
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.,Department of Infectious Diseases, Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
24
|
The evolving epidemiology of monkeypox virus. Cytokine Growth Factor Rev 2022; 68:1-12. [PMID: 36244878 PMCID: PMC9547435 DOI: 10.1016/j.cytogfr.2022.10.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 02/07/2023]
Abstract
Monkeypox, caused by the monkeypox virus (MPXV), is a zoonotic disease endemic mainly in West and Central Africa. As of 27 September 2022, human monkeypox has occurred in more than 100 countries (mostly in non-endemic regions) and caused over 66,000 confirmed cases, which differs from previous epidemics that mainly affected African countries. Due to the increasing number of confirmed cases worldwide, the World Health Organization (WHO) has declared the monkeypox outbreak as a Public Health Emergency of International Concern on July 23, 2022. The international outbreak of human monkeypox represents a novel route of transmission for MPXV, with genital lesions as the primary infection, and the emergence of monkeypox in the current outbreak is also new, as novel variants emerge. Clinical physicians and scientists should be aware of this emerging situation, which presents a different scenario from previous outbreaks. In this review, we will discuss the molecular virology, evasion of antiviral immunity, epidemiology, evolution, and detection of MPXV, as well as prophylaxis and treatment strategies for monkeypox. This review also emphasizes the integration of relevant epidemiological data with genomic surveillance data to obtain real-time data, which could formulate prevention and control measures to curb this outbreak.
Collapse
|
25
|
Affiliation(s)
- Antoine Gessain
- From Institut Pasteur, Université de Paris Cité, Centre National de la Recherche Scientifique, UMR3569, Unité d'Épidémiologie et Physiopathologie des Virus Oncogènes, Département de Virologie (A.G.), and Assistance Publique-Hôpitaux de Paris, Department of Infectious and Tropical Diseases, Bichat-Claude Bernard University Hospital, INSERM, ANRS Maladies Infectieuses Émergentes (Y.Y.) - both in Paris; and Institut Pasteur de Bangui, Bangui, Central African Republic (E.N.)
| | - Emmanuel Nakoune
- From Institut Pasteur, Université de Paris Cité, Centre National de la Recherche Scientifique, UMR3569, Unité d'Épidémiologie et Physiopathologie des Virus Oncogènes, Département de Virologie (A.G.), and Assistance Publique-Hôpitaux de Paris, Department of Infectious and Tropical Diseases, Bichat-Claude Bernard University Hospital, INSERM, ANRS Maladies Infectieuses Émergentes (Y.Y.) - both in Paris; and Institut Pasteur de Bangui, Bangui, Central African Republic (E.N.)
| | - Yazdan Yazdanpanah
- From Institut Pasteur, Université de Paris Cité, Centre National de la Recherche Scientifique, UMR3569, Unité d'Épidémiologie et Physiopathologie des Virus Oncogènes, Département de Virologie (A.G.), and Assistance Publique-Hôpitaux de Paris, Department of Infectious and Tropical Diseases, Bichat-Claude Bernard University Hospital, INSERM, ANRS Maladies Infectieuses Émergentes (Y.Y.) - both in Paris; and Institut Pasteur de Bangui, Bangui, Central African Republic (E.N.)
| |
Collapse
|
26
|
Huang Y, Mu L, Wang W. Monkeypox: epidemiology, pathogenesis, treatment and prevention. Signal Transduct Target Ther 2022; 7:373. [PMID: 36319633 PMCID: PMC9626568 DOI: 10.1038/s41392-022-01215-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/18/2022] [Accepted: 09/27/2022] [Indexed: 11/15/2022] Open
Abstract
Monkeypox is a zoonotic disease that was once endemic in west and central Africa caused by monkeypox virus. However, cases recently have been confirmed in many nonendemic countries outside of Africa. WHO declared the ongoing monkeypox outbreak to be a public health emergency of international concern on July 23, 2022, in the context of the COVID-19 pandemic. The rapidly increasing number of confirmed cases could pose a threat to the international community. Here, we review the epidemiology of monkeypox, monkeypox virus reservoirs, novel transmission patterns, mutations and mechanisms of viral infection, clinical characteristics, laboratory diagnosis and treatment measures. In addition, strategies for the prevention, such as vaccination of smallpox vaccine, is also included. Current epidemiological data indicate that high frequency of human-to-human transmission could lead to further outbreaks, especially among men who have sex with men. The development of antiviral drugs and vaccines against monkeypox virus is urgently needed, despite some therapeutic effects of currently used drugs in the clinic. We provide useful information to improve the understanding of monkeypox virus and give guidance for the government and relative agency to prevent and control the further spread of monkeypox virus.
Collapse
Affiliation(s)
- Yong Huang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Li Mu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
27
|
Ejaz H, Junaid K, Younas S, Abdalla AE, Bukhari SNA, Abosalif KOA, Ahmad N, Ahmed Z, Hamza MA, Anwar N. Emergence and dissemination of monkeypox, an intimidating global public health problem. J Infect Public Health 2022; 15:1156-1165. [PMID: 36174285 PMCID: PMC9534090 DOI: 10.1016/j.jiph.2022.09.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 11/18/2022] Open
Abstract
The monkeypox virus (MPXV) is the cause of a zoonotic infection similar to smallpox. Although it is endemic to Africa, it has recently begun to circulate in other parts of the world. In July 2022, the World Health Organization declared monkeypox an international public health emergency. This review aims to provide an overview of this neglected zoonotic pathogen. MPXV circulates as two distinct clades, the Central African and West African, with case fatality rates of 10.6% and 3.6%, respectively. The risk of infection is greater for those who work with animals or infected individuals. The virus' entry into the human body provokes both natural and acquired immunity. Although natural killer cells, CD4 + T cells, and CD8 + T cells play an essential role in eradicating MPXV, there is still a gap in the understanding of the host immune response to the virus. Currently, there are no specific therapeutic guidelines for treating monkeypox; however, some antiviral drugs such as tecovirimat and cidofovir may help to abate the severity of the disease. The use of nonpharmaceutical interventions and immunization can reduce the risk of infection. Increased surveillance and identification of monkeypox cases are crucial to understand the constantly shifting epidemiology of this resurging and intimidating disease. The present review provides a detailed perspective on the emergence and circulation of MPXV in human populations, infection risks, human immune response, disease diagnosis and prevention strategies, and future implications, and highlights the importance of the research community engaging more with this disease for an effective global response.
Collapse
Affiliation(s)
- Hasan Ejaz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al Jouf 72388, Saudi Arabia.
| | - Kashaf Junaid
- School of Biological and Behavioural Sciences, Queen Mary University of London, E1 4NS London, United Kingdom
| | - Sonia Younas
- HKU-Pasteur Research Pole, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Abualgasim E Abdalla
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al Jouf 72388, Saudi Arabia
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf 72388, Saudi Arabia
| | - Khalid O A Abosalif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al Jouf 72388, Saudi Arabia
| | - Naveed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Al Jouf 72388, Saudi Arabia
| | - Zeeshan Ahmed
- Institute of Industrial Biotechnology, GC University, Lahore 5400, Pakistan
| | - Manhal Ahmed Hamza
- Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, Omdurman Islamic University, Omdurman 14415, Sudan
| | - Naeem Anwar
- Allied Health Department, College of Health and Sport Sciences, University of Bahrain, 32038, Kingdom of Bahrain
| |
Collapse
|
28
|
Monkeypox: Some Keys to Understand This Emerging Disease. Animals (Basel) 2022; 12:ani12172190. [PMID: 36077910 PMCID: PMC9454429 DOI: 10.3390/ani12172190] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 12/15/2022] Open
Abstract
In 1958, several monkeys in a Copenhagen laboratory developed a skin rash from which an orthopoxvirus could be isolated, which was named monkeypox virus (MPXV). However, the natural animal reservoir for MPXV is thought to be a rodent. The first human case occurred in 1970, and the incidence has increased progressively throughout the years. Starting May 2022, the number of cases outside Africa has soared, especially in Western Europe. There are two clades of MPXV, Congo Basin, with higher virulence and mortality, and Western Africa (WA). MPXV from the present outbreak has been proposed to be classified as Clade 3, distinct from the WA clade by at least 50 substitutions, which may increase human-to-human transmissibility. Most cases correspond to men in their 30s who have sex with men, and the possibility of sexual transmission is under investigation. Though there is no evidence of human-to-animal transmission, pets of positive human cases may be classified as low risk, including dogs, cats, and birds, who can be quarantined at home, and high risk, such as pet rabbits or mice, who should be isolated in official laboratories for observation. The current epidemiological data do not support the risk of a pandemic.
Collapse
|
29
|
Abstract
Recently, monkeypox has become a global concern amid the ongoing COVID-19 pandemic. Monkeypox is an acute rash zoonosis caused by the monkeypox virus, which was previously concentrated in Africa. The re-emergence of this pathogen seems unusual on account of outbreaks in multiple nonendemic countries and the incline to spread from person to person. We need to revisit this virus to prevent the epidemic from getting worse. In this review, we comprehensively summarize studies on monkeypox, including its epidemiology, biological characteristics, pathogenesis, and clinical characteristics, as well as therapeutics and vaccines, highlighting its unusual outbreak attributed to the transformation of transmission. We also analyze the present situation and put forward countermeasures from both clinical and scientific research to address it.
Collapse
|