1
|
Pellman J, Goldstein A, Słabicki M. Human E3 ubiquitin ligases: accelerators and brakes for SARS-CoV-2 infection. Biochem Soc Trans 2024:BST20230324. [PMID: 39222407 DOI: 10.1042/bst20230324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
E3 ubiquitin ligases regulate the composition of the proteome. These enzymes mono- or poly-ubiquitinate their substrates, directly altering protein function or targeting proteins for degradation by the proteasome. In this review, we discuss the opposing roles of human E3 ligases as effectors and targets in the evolutionary battle between host and pathogen, specifically in the context of SARS-CoV-2 infection. Through complex effects on transcription, translation, and protein trafficking, human E3 ligases can either attenuate SARS-CoV-2 infection or become vulnerabilities that are exploited by the virus to suppress the host's antiviral defenses. For example, the human E3 ligase RNF185 regulates the stability of SARS-CoV-2 envelope protein through the ubiquitin-proteasome pathway, and depletion of RNF185 significantly increases SARS-CoV-2 viral titer (iScience (2023) 26, 106601). We highlight recent advances that identify functions for numerous human E3 ligases in the SARS-CoV-2 life cycle and we assess their potential as novel antiviral agents.
Collapse
Affiliation(s)
- Jesse Pellman
- Broad Institute of MIT and Harvard, Cambridge, MA, U.S.A
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, U.S.A
| | - Anna Goldstein
- Broad Institute of MIT and Harvard, Cambridge, MA, U.S.A
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, U.S.A
| | - Mikołaj Słabicki
- Broad Institute of MIT and Harvard, Cambridge, MA, U.S.A
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, U.S.A
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Boston, MA, U.S.A
| |
Collapse
|
2
|
Nguyen HNT, Vuong CK, Fukushige M, Usuda M, Takagi LK, Yamashita T, Obata-Yasuoka M, Hamada H, Osaka M, Tsukada T, Hiramatsu Y, Ohneda O. Extracellular vesicles derived from SARS-CoV-2 M-protein-induced triple negative breast cancer cells promoted the ability of tissue stem cells supporting cancer progression. Front Oncol 2024; 14:1346312. [PMID: 38515582 PMCID: PMC10955079 DOI: 10.3389/fonc.2024.1346312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024] Open
Abstract
Introduction SARS-CoV-2 infection increases the risk of worse outcomes in cancer patients, including those with breast cancer. Our previous study reported that the SARS-CoV-2 membrane protein (M-protein) promotes the malignant transformation of triple-negative breast cancer cells (triple-negative BCC). Methods In the present study, the effects of M-protein on the ability of extracellular vesicles (EV) derived from triple-negative BCC to regulate the functions of tissue stem cells facilitating the tumor microenvironment were examined. Results Our results showed that EV derived from M-protein-induced triple-negative BCC (MpEV) significantly induced the paracrine effects of adipose tissue-derived mesenchymal stem cells (ATMSC) on non-aggressive BCC, promoting the migration, stemness phenotypes, and in vivo metastasis of BCC, which is related to PGE2/IL1 signaling pathways, in comparison to EV derived from normal triple-negative BCC (nEV). In addition to ATMSC, the effects of MpEV on endothelial progenitor cells (EPC), another type of tissue stem cells, were examined. Our data suggested that EPC uptaking MpEV acquired a tumor endothelial cell-like phenotype, with increasing angiogenesis and the ability to support the aggressiveness and metastasis of non-aggressive BCC. Discussion Taken together, our findings suggest the role of SARS-CoV-2 M-protein in altering the cellular communication between cancer cells and other non-cancer cells inside the tumor microenvironment via EV. Specifically, M-proteins induced the ability of EV derived from triple-negative BCC to promote the functions of non-cancer cells, such as tissue stem cells, in tumorigenesis.
Collapse
Affiliation(s)
- Hoai-Nga Thi Nguyen
- Laboratory of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Cat-Khanh Vuong
- Laboratory of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Mizuho Fukushige
- Laboratory of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Momoko Usuda
- Laboratory of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Liora Kaho Takagi
- Laboratory of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Toshiharu Yamashita
- Laboratory of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Mana Obata-Yasuoka
- Department of Obstetrics and Gynecology, University of Tsukuba, Tsukuba, Japan
| | - Hiromi Hamada
- Department of Obstetrics and Gynecology, University of Tsukuba, Tsukuba, Japan
| | - Motoo Osaka
- Department of Cardiovascular Surgery, University of Tsukuba, Tsukuba, Japan
| | - Toru Tsukada
- Department of Cardiovascular Surgery, University of Tsukuba, Tsukuba, Japan
| | - Yuji Hiramatsu
- Department of Cardiovascular Surgery, University of Tsukuba, Tsukuba, Japan
| | - Osamu Ohneda
- Laboratory of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
3
|
Adhikary S, Pathak S, Palani V, Acar A, Banerjee A, Al-Dewik NI, Essa MM, Mohammed SGAA, Qoronfleh MW. Current Technologies and Future Perspectives in Immunotherapy towards a Clinical Oncology Approach. Biomedicines 2024; 12:217. [PMID: 38255322 PMCID: PMC10813720 DOI: 10.3390/biomedicines12010217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Immunotherapy is now established as a potent therapeutic paradigm engendering antitumor immune response against a wide range of malignancies and other diseases by modulating the immune system either through the stimulation or suppression of immune components such as CD4+ T cells, CD8+ T cells, B cells, monocytes, macrophages, dendritic cells, and natural killer cells. By targeting several immune checkpoint inhibitors or blockers (e.g., PD-1, PD-L1, PD-L2, CTLA-4, LAG3, and TIM-3) expressed on the surface of immune cells, several monoclonal antibodies and polyclonal antibodies have been developed and already translated clinically. In addition, natural killer cell-based, dendritic cell-based, and CAR T cell therapies have been also shown to be promising and effective immunotherapeutic approaches. In particular, CAR T cell therapy has benefited from advancements in CRISPR-Cas9 genome editing technology, allowing the generation of several modified CAR T cells with enhanced antitumor immunity. However, the emerging SARS-CoV-2 infection could hijack a patient's immune system by releasing pro-inflammatory interleukins and cytokines such as IL-1β, IL-2, IL-6, and IL-10, and IFN-γ and TNF-α, respectively, which can further promote neutrophil extravasation and the vasodilation of blood vessels. Despite the significant development of advanced immunotherapeutic technologies, after a certain period of treatment, cancer relapses due to the development of resistance to immunotherapy. Resistance may be primary (where tumor cells do not respond to the treatment), or secondary or acquired immune resistance (where tumor cells develop resistance gradually to ICIs therapy). In this context, this review aims to address the existing immunotherapeutic technologies against cancer and the resistance mechanisms against immunotherapeutic drugs, and explain the impact of COVID-19 on cancer treatment. In addition, we will discuss what will be the future implementation of these strategies against cancer drug resistance. Finally, we will emphasize the practical steps to lay the groundwork for enlightened policy for intervention and resource allocation to care for cancer patients.
Collapse
Affiliation(s)
- Subhamay Adhikary
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Surajit Pathak
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Vignesh Palani
- Faculty of Medicine, Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Ahmet Acar
- Department of Biological Sciences, Middle East Technical University, 06800 Ankara, Türkiye;
| | - Antara Banerjee
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Nader I. Al-Dewik
- Department of Pediatrics, Women’s Wellness and Research Center, Hamad Medical Corporation, Doha 00974, Qatar;
| | - Musthafa Mohamed Essa
- College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat 123, Oman
| | | | - M. Walid Qoronfleh
- Research & Policy Division, Q3 Research Institute (QRI), Ypsilanti, MI 48917, USA
| |
Collapse
|
4
|
Lear TB, Boudreau ÁN, Lockwood KC, Chu E, Camarco DP, Cao Q, Nguyen M, Evankovich JW, Finkel T, Liu Y, Chen BB. E3 ubiquitin ligase ZBTB25 suppresses beta coronavirus infection through ubiquitination of the main viral protease MPro. J Biol Chem 2023; 299:105388. [PMID: 37890782 PMCID: PMC10679490 DOI: 10.1016/j.jbc.2023.105388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The main protease of severe acute respiratory syndrome coronavirus 2, Mpro, is a key viral protein essential for viral infection and replication. Mpro has been the target of many pharmacological efforts; however, the host-specific regulation of Mpro protein remains unclear. Here, we report the ubiquitin-proteasome-dependent degradation of Mpro protein in human cells, facilitated by the human E3 ubiquitin ligase ZBTB25. We demonstrate that Mpro has a short half-life that is prolonged via proteasomal inhibition, with its Lys-100 residue serving as a potential ubiquitin acceptor. Using in vitro binding assays, we observed ZBTB25 and Mpro bind to each other in vitro, and using progressive deletional mapping, we further uncovered the required domains for this interaction. Finally, we used an orthologous beta-coronavirus infection model and observed that genetic ablation of ZBTB25 resulted in a more highly infective virus, an effect lost upon reconstitution of ZBTB25 to deleted cells. In conclusion, these data suggest a new mechanism of Mpro protein regulation as well as identify ZBTB25 as an anticoronaviral E3 ubiquitin ligase.
Collapse
Affiliation(s)
- Travis B Lear
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, Pennsylvania, USA; Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Áine N Boudreau
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, Pennsylvania, USA
| | - Karina C Lockwood
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, Pennsylvania, USA
| | - Elise Chu
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, Pennsylvania, USA
| | - Daniel P Camarco
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, Pennsylvania, USA
| | - Qing Cao
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, Pennsylvania, USA; Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Matthew Nguyen
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, Pennsylvania, USA
| | - John W Evankovich
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, Pennsylvania, USA; Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Toren Finkel
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, Pennsylvania, USA; Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yuan Liu
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, Pennsylvania, USA; Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Bill B Chen
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, Pennsylvania, USA; Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
5
|
Zheng Y, Yang H, Zhang X, Gao C. Regulation of SARS-CoV-2 infection and antiviral innate immunity by ubiquitination and ubiquitin-like conjugation. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194984. [PMID: 37717938 DOI: 10.1016/j.bbagrm.2023.194984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
A global pandemic COVID-19 resulting from SARS-CoV-2 has affected a significant portion of the human population. Antiviral innate immunity is critical for controlling and eliminating the viral infection. Ubiquitination is extensively involved in antiviral signaling, and recent studies suggest that ubiquitin-like proteins (Ubls) modifications also participate in innate antiviral pathways such as RLR and cGAS-STING pathways. Notably, virus infection harnesses ubiquitination and Ubls modifications to facilitate viral replication and counteract innate antiviral immunity. These observations indicate that ubiquitination and Ubls modifications are critical checkpoints for the tug-of-war between virus and host. This review discusses the current progress regarding the modulation of the SARS-CoV-2 life cycle and antiviral innate immune pathways by ubiquitination and Ubls modifications. This paper emphasizes the arising concept that ubiquitination and Ubls modifications are powerful modulators of virus and host interaction and potential drug targets for treating the infection of SARS-CoV-2.
Collapse
Affiliation(s)
- Yi Zheng
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China.
| | - Huiyu Yang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Xuejing Zhang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Chengjiang Gao
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
6
|
Chen S, Wang S. The immune mechanism of the nasal epithelium in COVID-19-related olfactory dysfunction. Front Immunol 2023; 14:1045009. [PMID: 37529051 PMCID: PMC10387544 DOI: 10.3389/fimmu.2023.1045009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 06/29/2023] [Indexed: 08/03/2023] Open
Abstract
During the first waves of the coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, olfactory dysfunction (OD) was reported as a frequent clinical sign. The nasal epithelium is one of the front-line protections against viral infections, and the immune responses of the nasal mucosa may be associated with OD. Two mechanisms underlying OD occurrence in COVID-19 have been proposed: the infection of sustentacular cells and the inflammatory reaction of the nasal epithelium. The former triggers OD and the latter likely prolongs OD. These two alternative mechanisms may act in parallel; the infection of sustentacular cells is more important for OD occurrence because sustentacular cells are more likely to be the entry point of SARS-CoV-2 than olfactory neurons and more susceptible to early injury. Furthermore, sustentacular cells abundantly express transmembrane protease, serine 2 (TMPRSS2) and play a major role in the olfactory epithelium. OD occurrence in COVID-19 has revealed crucial roles of sustentacular cells. This review aims to elucidate how immune responses of the nasal epithelium contribute to COVID-19-related OD. Understanding the underlying immune mechanisms of the nasal epithelium in OD may aid in the development of improved medical treatments for COVID-19-related OD.
Collapse
Affiliation(s)
| | - Shufen Wang
- Biomedical Engineering Research Institute, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
7
|
Zhao M, Zhang M, Yang Z, Zhou Z, Huang J, Zhao B. Role of E3 ubiquitin ligases and deubiquitinating enzymes in SARS-CoV-2 infection. Front Cell Infect Microbiol 2023; 13:1217383. [PMID: 37360529 PMCID: PMC10288995 DOI: 10.3389/fcimb.2023.1217383] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
Ever since its emergence in 2019, COVID-19 has rapidly disseminated worldwide, engendering a pervasive pandemic that has profoundly impacted healthcare systems and the socio-economic milieu. A plethora of studies has been conducted targeting its pathogenic virus, SARS-CoV-2, to find ways to combat COVID-19. The ubiquitin-proteasome system (UPS) is widely recognized as a crucial mechanism that regulates human biological activities by maintaining protein homeostasis. Within the UPS, the ubiquitination and deubiquitination, two reversible modifications, of substrate proteins have been extensively studied and implicated in the pathogenesis of SARS-CoV-2. The regulation of E3 ubiquitin ligases and DUBs(Deubiquitinating enzymes), which are key enzymes involved in the two modification processes, determines the fate of substrate proteins. Proteins associated with the pathogenesis of SARS-CoV-2 may be retained, degraded, or even activated, thus affecting the ultimate outcome of the confrontation between SARS-CoV-2 and the host. In other words, the clash between SARS-CoV-2 and the host can be viewed as a battle for dominance over E3 ubiquitin ligases and DUBs, from the standpoint of ubiquitin modification regulation. This review primarily aims to clarify the mechanisms by which the virus utilizes host E3 ubiquitin ligases and DUBs, along with its own viral proteins that have similar enzyme activities, to facilitate invasion, replication, escape, and inflammation. We believe that gaining a better understanding of the role of E3 ubiquitin ligases and DUBs in COVID-19 can offer novel and valuable insights for developing antiviral therapies.
Collapse
Affiliation(s)
- Mingjiu Zhao
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Mengdi Zhang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhou Yang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jiaqi Huang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Xiangya School of Public Health, Central South University, Changsha, China
| | - Bin Zhao
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Furong Laboratory, Central South University, Changsha, China
| |
Collapse
|
8
|
Acar A. Pan-Cancer Analysis of the COVID-19 Causal Gene SLC6A20. ACS OMEGA 2023; 8:13153-13161. [PMID: 37041751 PMCID: PMC10081573 DOI: 10.1021/acsomega.3c00407] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Genome-wide association studies demonstrated that the chromosome 3p31.21 locus was linked to the severity of COVID-19 disease. The SLC6A20 gene was reported to be one of the critical causal genes regulated by this locus. Various studies focused on demonstrating the severity of COVID-19 in cancer patients and reported that elevated SARS-CoV-2-associated gene expression might contribute to increased susceptibility for COVID-19 in cancer patients. Given that pan-cancer association for the COVID-19 causal gene SLC6A20 is lacking, we aimed to perform systematic profiling of SLC6A20 in different malignancies. Human Protein Atlas, UALCAN, and Hepatocellular Carcinoma (HCCDB) databases were used to assess SLC6A20 gene expression changes in The Cancer Genome Atlas samples with respect to their normal counterparts. GEPIA and TIMER2.0 databases were used to determine the correlation between SLC6A20 and COVID-19-associated genes. Different databases were used for identification of the correlation of SCL6A20 with infiltrating immune cells. The canSAR database was utilized to determine the association of SCL6A20 with immune profiling in different malignancies. The STRING database was utilized to determine the protein network interacting with SLC6A20. Here, we showed SLC6A20 mRNA expression in pan-cancer samples and their normal counterparts. Increased SCL6A20 expression was associated with tumor grade, and there was a positive correlation with SARS-CoV-2-associated genes. Furthermore, SLC6A20 expression was positively correlated with infiltrating neutrophils and immune-related signatures. Lastly, SLC6A20 expression was found to be associated with the angiotensin converting enzyme 2 homologue, TMEM27, suggesting a potential link between SLC6A20 and COVID-19. Taken together, these results suggest that elevated SLC6A20 levels might be partly responsible for increased susceptibility of cancer patients to COVID-19 disease. Therapeutic intervention strategies against SLC6A20 in cancer patients, alongside other treatment modalities, might offer a benefit in delaying COVID-19 disease.
Collapse
|
9
|
Jiang C, Feng D, Zhang Y, Yang K, Hu X, Xie Q. SCAT8/miR-125b-5p axis triggers malignant progression of nasopharyngeal carcinoma through SCARB1. BMC Mol Cell Biol 2023; 24:15. [PMID: 37009875 PMCID: PMC10069050 DOI: 10.1186/s12860-023-00477-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/20/2023] [Indexed: 04/04/2023] Open
Abstract
Nasopharyngeal carcinoma is a tumor with high malignancy and poor prognosis, which severely affects the health of the patients. LncRNAs and microRNAs are crucial for the occurrence and development of nasopharyngeal carcinoma, which regulate the progression of nasopharyngeal carcinoma through the ceRNA network. SCARB1 plays an essential role in nasopharyngeal carcinoma. However, the mechanism underlying the regulation of SCARB1 in nasopharyngeal carcinoma through non-coding RNAs remains unclear. Our findings indicated that the SCAT8/miR-125b-5p axis promoted the malignant progression of nasopharyngeal carcinoma by driving the expression of SCARB1. Mechanistically, the expression of SCARB1 could be regulated by the lncRNA, SCAT8 and the microRNA, miR-125b-5p. Moreover, as a ceRNA of miR-125b-5p, SCAT8 can not only regulate the expression of SCARB1, but also regulate the malignant progression of nasopharyngeal carcinoma. Notably, our results reveal a novel ceRNA regulatory network in nasopharyngeal carcinoma, which could serve as a potential target for the diagnosis and treatment of nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Chunmao Jiang
- Department of Health Management, Daping Hospital, Army Medical University, Chongqing, 400010, China
| | - Dandan Feng
- Department of Otolaryngology Head and Neck Surgery, Daping Hospital, Army Medical University, Chongqing, 400010, China
| | - Yu Zhang
- Department of Otolaryngology Head and Neck Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Kun Yang
- Department of Health Management Center, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Xiaotong Hu
- Department of Health Management, Daping Hospital, Army Medical University, Chongqing, 400010, China
| | - Qian Xie
- Department of Health Management, Daping Hospital, Army Medical University, Chongqing, 400010, China.
| |
Collapse
|
10
|
Guo Y, Lin P, Hua Y, Wang C. TRIM31: A molecule with a dual role in cancer. Front Oncol 2022; 12:1047177. [PMID: 36620540 PMCID: PMC9815508 DOI: 10.3389/fonc.2022.1047177] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
Tripartite motif (TRIM) 31 is a new member of the TRIM family and functions as an E3 ubiquitin ligase. Abnormal TRIM31 expression leads to a variety of pathological conditions, such as cancer, innate immunity diseases, sepsis-induced myocardial dysfunction, cerebral ischemic injury, nonalcoholic fatty liver disease and hypertensive nephropathy. In this review, we comprehensively overview the structure, expression and regulation of TRIM31 in cancer. Moreover, we discuss the dual role of TRIM31 in human cancer, and this dual role may be linked to its involvement in the selective regulation of several pivotal cellular signaling pathways: the p53 tumor suppressor, mTORC1, PI3K-AKT, NF-κB and Wnt/β-catenin pathways. In addition, we also discuss the emerging role of TRIM31 in innate immunity, autophagy and its growing sphere of influence across multiple human pathologies. Finally, a better understanding of the dual role of TRIM31 in cancer may provide new therapeutic strategies aimed at inhibiting the cancer-promoting effects of TRIM31 without affecting its tumor suppressor effects.
Collapse
Affiliation(s)
- Yafei Guo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China,The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ping Lin
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Ping Lin, ; Yimin Hua, ; Chuan Wang,
| | - Yimin Hua
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China,The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China,*Correspondence: Ping Lin, ; Yimin Hua, ; Chuan Wang,
| | - Chuan Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China,The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China,*Correspondence: Ping Lin, ; Yimin Hua, ; Chuan Wang,
| |
Collapse
|