1
|
Allain SJR, Leech DI, Hopkins K, Seilern-Moy K, Rodriguez-Ramos Fernandez J, Griffiths RA, Lawson B. Characterisation, prevalence and severity of skin lesions caused by ophidiomycosis in a population of wild snakes. Sci Rep 2024; 14:5162. [PMID: 38431688 PMCID: PMC10908839 DOI: 10.1038/s41598-024-55354-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/22/2024] [Indexed: 03/05/2024] Open
Abstract
Ophidiomycosis is an emerging infectious disease affecting wild snakes in the Northern Hemisphere. Recently confirmed in Great Britain, the prevalence, severity and significance of ophidiomycosis has yet to be characterised in free-living snakes at a population level in Europe. Therefore, a population of barred grass snakes (Natrix helvetica) in eastern England was monitored for three seasons (May 2019 to October 2021), to investigate the prevalence (25.5%; 191/750 snakes) and severity of skin lesions and their aetiology. The most frequently observed skin lesion characteristics were changes in scale colour, crusting, and scale margin erosion. The majority of such lesions (96.9%; 185/191 snakes) was observed on the ventral surface along the length of the body. The severity of skin lesions was considered mild in more than half of the cases (53.1%; 98/191 snakes). Predominantly, skin lesions were observed in adult snakes (72.8%; 139/191 snakes). Combined histological examinations and qPCR tests of skin lesions from N. helvetica sloughs and/or carcasses confirmed a diagnosis of ophidiomycosis. Further targeted surveillance, supported by molecular and histological examinations to confirm skin lesion aetiology, is required to determine the extent to which our findings reflect the occurrence of ophidiomycosis in populations within wider landscapes.
Collapse
Affiliation(s)
- Steven J R Allain
- Durrell Institute of Ecology and Conservation, School of Anthropology and Conservation, University of Kent, Canterbury, Kent, CT2 7NR, UK
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
| | - David I Leech
- British Trust for Ornithology, The Nunnery, Thetford, Norfolk, IP24 2PU, UK
| | - Kevin Hopkins
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
| | - Katharina Seilern-Moy
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
| | | | - Richard A Griffiths
- Durrell Institute of Ecology and Conservation, School of Anthropology and Conservation, University of Kent, Canterbury, Kent, CT2 7NR, UK.
| | - Becki Lawson
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
| |
Collapse
|
2
|
Haskins DL, Brown MK, Meichner K, Coleman AL, Allender MC, Tuberville TD. Factors Predicting Apparent Ophidiomycosis in Wild Brown Watersnakes (Nerodia taxispilota). J Wildl Dis 2024; 60:64-76. [PMID: 37823517 DOI: 10.7589/jwd-d-23-00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/21/2023] [Indexed: 10/13/2023]
Abstract
Ophidiomycosis, also known as snake fungal disease, is caused by Ophidiomyces ophidiicola and is a threat to snake conservation worldwide. Ophidiomycosis has been reported throughout much of the eastern US, and outbreaks have been associated with local population declines of already strained populations. Previous studies report significant variability in ophidiomycosis among species sampled, with higher prevalence typically observed in Nerodia spp. Although ophidiomycosis can lead to morbidity and mortality in affected individuals, little is known about disease dynamics in free-ranging populations. Herein, we examine how individual-specific factors (e.g., life stage [immature, mature], contaminant status, sex, hemograms) may be associated with ophidiomycosis status in the brown watersnake (Nerodia taxispilota). During 2018-19, we sampled 97 N. taxispilota from five locations along the Savannah River in South Carolina and Georgia, US. Ophidiomyces ophidiicola DNA was detected in 66 snakes for a prevalence of 68% (95% confidence interval, 59-77). Mature snakes had a significantly higher risk of apparent ophidiomycosis (skin lesions present and quantitative PCR [qPCR], positive) relative to immature snakes. Snakes classified as having possible (skin lesions present, but qPCR negative) or apparent ophidiomycosis exhibited a relative azurophilia and heterophilia compared with individuals classified as negative (P≤0.037). Nerodia taxispilota in this region appear to have a high prevalence of apparent ophidiomycosis (22%; 95% CI, 14-31), similar to previous reports from the southeastern US. Additional epidemiologic investigations are warranted to further elucidate other individual-specific and environmental factors that may dictate disease risk and outcomes in affected populations.
Collapse
Affiliation(s)
- David L Haskins
- University of Georgia's Savannah River Ecology Laboratory, Aiken, South Carolina 29802, USA
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia 30602, USA
| | - M Kyle Brown
- University of Georgia's Savannah River Ecology Laboratory, Aiken, South Carolina 29802, USA
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia 30602, USA
| | - Kristina Meichner
- Department of Pathology, University of Georgia's College of Veterinary Medicine, Athens, Georgia 30602, USA
| | - Austin L Coleman
- University of Georgia's Savannah River Ecology Laboratory, Aiken, South Carolina 29802, USA
| | - Matthew C Allender
- Wildlife Epidemiology Laboratory, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, USA
- Brookfield Zoo, Chicago Zoological Society, Brookfield, Illinois 60513, USA
| | - Tracey D Tuberville
- University of Georgia's Savannah River Ecology Laboratory, Aiken, South Carolina 29802, USA
| |
Collapse
|
3
|
Marini D, Di Nicola MR, Crocchianti V, Notomista T, Iversen D, Coppari L, Di Criscio M, Brouard V, Dorne JLCM, Rüegg J, Marenzoni ML. Pilot survey reveals ophidiomycosis in dice snakes Natrix tessellata from Lake Garda, Italy. Vet Res Commun 2023; 47:1707-1719. [PMID: 37118129 PMCID: PMC10485108 DOI: 10.1007/s11259-023-10129-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/20/2023] [Indexed: 04/30/2023]
Abstract
Ophidiomycosis is an emerging infectious disease caused by the fungus Ophidiomyces ophidiicola (Oo). To date, Oo presence or associated disease condition has been recorded in wild and/or captive snakes from North America, Europe, Asia and Australia, but the data is still scarce outside the Nearctic. Although Italy is a country with a high snake biodiversity in the European panorama, and animals with clinical signs compatible with Oo infection have been documented, to date no investigations have reported the disease in the wild. Therefore, a pilot survey for the Italian territory was performed in conjunction with setting up a complete diagnostic workflow including SYBR Green-based real-time PCR assay for the detection of Oo genomic and mitochondrial DNA combined with histopathology of scale clips. Oo presence was investigated in 17 wild snake specimens from four different species. Four snakes were sampled in a targeted location where the mycosis was suspected via citizen science communications (i.e. North of the Lake Garda), whereas other ophidians were collected following opportunistic sampling. Oo genomic and mitochondrial DNA were detected and sequenced from all four Lake Garda Natrix tessellata, including three juveniles with macroscopic signs such as discolouration and skin crusts. From histopathological examination of scale clips, the three young positive individuals exhibited ulceration, inflammation and intralesional hyphae consistent with Oo infection, and two of them also showed the presence of arthroconidial tufts and solitary cylindrical arthrospores, allowing "Ophidiomycosis and Oo shedder" categorisation. For the remaining snake samples, the real-time PCR tested negative for Oo. This pilot survey permitted to localise for the first time Oo infection in free-ranging ophidians from Italy. Ophidiomycosis from Lake Garda highlights the need to increase sampling efforts in this area as well as in other northern Italian lakes to assess the occurrence of the pathogen, possible risk factors of the infection, its impact on host population fitness and the disease ecology of Oo in European snakes.
Collapse
Affiliation(s)
- Daniele Marini
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18A, Uppsala, 75236, Sweden.
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, Perugia, 06126, Italy.
| | - Matteo R Di Nicola
- Unit of Dermatology, IRCCS San Raffaele Hospital, Via Olgettina 60, Milan, 20132, Italy
- Asociación Herpetológica Española, Apartado de correos 191, Leganés, Madrid, 28911, Spain
| | - Veronica Crocchianti
- Service d'Anatomie Pathologique, VetAgro Sup, Campus Vétérinaire, 1 Avenue Bourgelat, Marcy l'Etoile, 69280, France
| | | | | | - Luca Coppari
- Studio Naturalistico Hyla s.r.l, Via Baroncino, 11, Tuoro sul Trasimeno, PG, 06069, Italy
| | - Michela Di Criscio
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18A, Uppsala, 75236, Sweden
| | - Vanessa Brouard
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18A, Uppsala, 75236, Sweden
| | - Jean-Lou C M Dorne
- Methodology and Scientific Support Unit, European Food Safety Authority (EFSA), Via Carlo Magno 1A, Parma, 43126, Italy
| | - Joëlle Rüegg
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18A, Uppsala, 75236, Sweden
| | - Maria Luisa Marenzoni
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, Perugia, 06126, Italy
| |
Collapse
|
4
|
Harding SF, Moretta‐Urdiales MDM, Nordmeyer SC, Wostl E, Rodriguez D. Leveraging preserved specimens of Nerodia to infer the spatiotemporal dynamics of Ophidiomyces ophidiicola via quantitative polymerase chain reaction. Ecol Evol 2023; 13:e9998. [PMID: 37082316 PMCID: PMC10111236 DOI: 10.1002/ece3.9998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/09/2023] [Accepted: 03/27/2023] [Indexed: 04/22/2023] Open
Abstract
Ophidiomyces ophidiicola (Oo) is a fungal pathogen and the causative agent of ophidiomycosis that has affected multiple snake taxa across the United States, Europe, and Asia. Ophidiomycosis has often been referred to as an emerging infectious disease (EID); however, its status as an EID has recently come under debate. Oo infections have been confirmed in wild snake populations in Texas; however, it is unknown if the pathogen is novel (i.e., invasive) or endemic to the state. To address this knowledge gap, we conducted surveys for Oo among preserved Nerodia deposited at three university museums in Texas. First, we visually assessed snakes for signs of infection (SOI), and if SOI were present, we sampled the affected area. We then used quantitative polymerase chain reaction to diagnose the presence of Oo DNA on areas with SOI and used these data to evaluate spatiotemporal patterns of Oo prevalence. We also tested for significant spatial clusters of Oo infenction using a Bernoulli probability model as implemented in the program SatScan. We found that the proportion of snakes exhibiting SOI was constant over time while the prevalence of Oo DNA among those SOI increased across space and time. Within these data, we detected an incidence pattern consistent with an introduction and then spread. We detected six spatial clusters of Oo infection, although only one was significant. Our results support the hypothesis that Oo is an emerging, novel pathogen to Texas snakes. These data narrow the knowledge gap regarding the history of Oo infections in Texas and establish a historical record of confirmed Oo detections in several counties across the state. Thus, our results will guide future research to those areas with evidence of past Oo infections but lacking confirmation in contemporary hosts.
Collapse
Affiliation(s)
| | | | - Stephanie C. Nordmeyer
- Department of Molecular Immunology and MicrobiologyUniversity of Texas at San AntonioSan AntonioTexasUSA
| | - Elijah Wostl
- Department of Biological SciencesSt. Edward's UniversityAustinTexasUSA
| | - David Rodriguez
- Department of BiologyTexas State UniversitySan MarcosTexasUSA
| |
Collapse
|
5
|
Lizarraga AJ, Hart L, Wright RM, Williams LR, Glavy JS. Incidents of snake fungal disease caused by the fungal pathogen Ophidiomyces ophidiicola in Texas. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1064939. [PMID: 37746129 PMCID: PMC10512329 DOI: 10.3389/ffunb.2023.1064939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 02/08/2023] [Indexed: 09/26/2023]
Abstract
The pathogen Ophidiomyces ophidiicola, widely known as the primary cause of snake fungal disease (SFD) has been detected in Texas's naïve snakes. Our team set out to characterize O. ophidiicola's spread in eastern Texas. From December 2018 until November 2021, we sampled and screened with ultraviolet (UV) light, 176 snakes across eastern Texas and detected 27. O. ophidiicola's positive snakes using qPCR and one snake in which SFD was confirmed via additional histological examination. Upon finding the ribbon snake with clear clinical display, we isolated and cultured what we believe to be the first culture from Texas. This cultured O. ophidiicola TX displays a ring halo formation when grown on a solid medium as well as cellular autofluorescence as expected. Imaging reveals individual cells within the septated hyphae branches contain a distinct nucleus separation from neighboring cells. Overall, we have found over 1/10 snakes that may be infected in East Texas, gives credence to the onset of SFD in Texas. These results add to the progress of the disease across the continental United States.
Collapse
Affiliation(s)
- Alan J. Lizarraga
- Biology Department, The University of Texas at Tyler, Tyler, TX, United States
| | - Lezley Hart
- Biology Department, The University of Texas at Tyler, Tyler, TX, United States
| | - R. Michele Wright
- Biology Department, The University of Texas at Tyler, Tyler, TX, United States
- The Department of Pharmaceutical Sciences, Fisch College of Pharmacy, The University of Texas at Tyler, Tyler, TX, United States
| | - Lance R. Williams
- Biology Department, The University of Texas at Tyler, Tyler, TX, United States
| | - Joseph S. Glavy
- Biology Department, The University of Texas at Tyler, Tyler, TX, United States
- The Department of Pharmaceutical Sciences, Fisch College of Pharmacy, The University of Texas at Tyler, Tyler, TX, United States
| |
Collapse
|
6
|
Simonis MC, Hartzler LK, Turner GG, Scafini MR, Johnson JS, Rúa MA. Long‐term exposure to an invasive fungal pathogen decreases
Eptesicus fuscus
body mass with increasing latitude. Ecosphere 2023. [DOI: 10.1002/ecs2.4426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Affiliation(s)
- Molly C. Simonis
- Department of Biology University of Oklahoma Norman Oklahoma USA
- Environmental Sciences PhD Program Wright State University Dayton Ohio USA
| | - Lynn K. Hartzler
- Environmental Sciences PhD Program Wright State University Dayton Ohio USA
- Department of Biological Sciences Wright State University Dayton Ohio USA
| | - Gregory G. Turner
- Bureau of Wildlife Management Pennsylvania Game Commission Harrisburg Pennsylvania USA
| | - Michael R. Scafini
- Bureau of Wildlife Management Pennsylvania Game Commission Harrisburg Pennsylvania USA
| | - Joseph S. Johnson
- School of Information Technology University of Cincinnati Cincinnati Ohio USA
| | - Megan A. Rúa
- Environmental Sciences PhD Program Wright State University Dayton Ohio USA
- Department of Biological Sciences Wright State University Dayton Ohio USA
| |
Collapse
|