1
|
Yi Y, Luan P, Fan M, Wu X, Sun Z, Shang Z, Yang Y, Li C. Antifungal efficacy of Bacillus amyloliquefaciens ZK-9 against Fusarium graminearum and analysis of the potential mechanism of its lipopeptides. Int J Food Microbiol 2024; 422:110821. [PMID: 38970998 DOI: 10.1016/j.ijfoodmicro.2024.110821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/22/2024] [Accepted: 06/29/2024] [Indexed: 07/08/2024]
Abstract
Fusarium graminearum is a destructive fungal pathogen that seriously threatens wheat production and quality. In the management of fungal infections, biological control is an environmentally friendly and sustainable approach. Here, the antagonistic strain ZK-9 with a broad antifungal activity was identified as Bacillus amyloliquefaciens. ZK-9 could produce extracellular enzymes such as pectinase, protease, cellulase, and amylase, as well as plant growth-promoting substances including IAA and siderophore. Lipopeptides extracted from strain ZK-9 had the high inhibitory effects on the mycelia of F. graminearum with the minimum inhibitory concentration (MIC) of 0.8 mg/mL. Investigation on the action mechanism of lipopeptides showed they could change the morphology of mycelia, damage the cell membrane, lower the content of ergosterol and increase the relative conductivity of membrane, cause nucleic acid and proteins leaking out from the cells, and disrupt the cell membrane permeability. Furthermore, metabolomic analysis of F. graminearum revealed the significant differences in the expression of 100 metabolites between the lipopeptides treatment group and the control group, which were associated with various metabolic pathways, mainly including amino acid biosynthesis, pentose, glucuronate and glycerophospholipid metabolism. In addition, strain ZK-9 inhibited Fusarium crown rot (FCR) with a biocontrol efficacy of 82.14 % and increased the plant height and root length by 24.23 % and 93.25 %, respectively. Moreover, the field control efficacy of strain ZK-9 on Fusarium head blight (FHB) was 71.76 %, and the DON content in wheat grains was significantly reduced by 69.9 %. This study puts valuable insights into the antifungal mechanism of lipopeptides against F. graminearum, and provides a promising biocontrol agent for controlling F. graminearum.
Collapse
Affiliation(s)
- Yanjie Yi
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; Food Laboratory of Zhongyuan, Luohe 462300, China; The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou 450001, China.
| | - Pengyu Luan
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; Food Laboratory of Zhongyuan, Luohe 462300, China; The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou 450001, China
| | - Minghao Fan
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou 450001, China
| | - Xingquan Wu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou 450001, China
| | - Zhongke Sun
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou 450001, China
| | - Zijun Shang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou 450001, China
| | - Yuzhen Yang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou 450001, China
| | - Chengwei Li
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou 450001, China.
| |
Collapse
|
2
|
Kumar D, Ali M, Sharma N, Sharma R, Manhas RK, Ohri P. Unboxing PGPR-mediated management of abiotic stress and environmental cleanup: what lies inside? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47423-47460. [PMID: 38992305 DOI: 10.1007/s11356-024-34157-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024]
Abstract
Abiotic stresses including heavy metal toxicity, drought, salt and temperature extremes disrupt the plant growth and development and lowers crop output. Presence of environmental pollutants further causes plants suffering and restrict their ability to thrive. Overuse of chemical fertilizers to reduce the negative impact of these stresses is deteriorating the environment and induces various secondary stresses to plants. Therefore, an environmentally friendly strategy like utilizing plant growth-promoting rhizobacteria (PGPR) is a promising way to lessen the negative effects of stressors and to boost plant growth in stressful conditions. These are naturally occurring inhabitants of various environments, an essential component of the natural ecosystem and have remarkable abilities to promote plant growth. Furthermore, multifarious role of PGPR has recently been widely exploited to restore natural soil against a range of contaminants and to mitigate abiotic stress. For instance, PGPR may mitigate metal phytotoxicity by boosting metal translocation inside the plant and changing the metal bioavailability in the soil. PGPR have been also reported to mitigate other abiotic stress and to degrade environmental contaminants remarkably. Nevertheless, despite the substantial quantity of information that has been produced in the meantime, there has not been much advancement in either the knowledge of the processes behind the alleged positive benefits or in effective yield improvements by PGPR inoculation. This review focuses on addressing the progress accomplished in understanding various mechanisms behind the protective benefits of PGPR against a variety of abiotic stressors and in environmental cleanups and identifying the cause of the restricted applicability in real-world.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Mohd Ali
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Nandni Sharma
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Roohi Sharma
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Rajesh Kumari Manhas
- Department of Microbiology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| |
Collapse
|
3
|
Nazarov A, Chetverikov S, Timergalin M, Ivanov R, Ryazanova N, Shigapov Z, Tuktarova I, Urazgildin R, Kudoyarova G. Improving Tree Seedling Quality Using Humates Combined with Bacteria to Address Decarbonization Challenges through Forest Restoration. PLANTS (BASEL, SWITZERLAND) 2024; 13:1452. [PMID: 38891262 PMCID: PMC11174758 DOI: 10.3390/plants13111452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024]
Abstract
Improving the quality of tree planting material for carbon sequestration through reforestation can help solve environmental problems, including the need to reduce the concentration of carbon dioxide in the atmosphere. The purpose of this study was to investigate the possibility of using humic substances in combination with rhizosphere microorganisms Pseudomonas protegens DA1.2 and Pseudomonas sp. 4CH as a means to stimulate the growth of seedlings of pine, poplar, large-leaved linden, red oak, horse chestnut, and rowan. Humic substances stimulated the growth of shoots and roots of pine, large-leaved linden, and horse chestnut seedlings. The effects of bacteria depended on both plant and bacteria species: Pseudomonas protegens DA1.2 showed a higher stimulatory effect than Pseudomonas sp. 4CH on pine and linden, and Pseudomonas sp. 4CH was more effective in the case of chestnut. An additive effect of humates and Pseudomonas protegens DA1.2 on the growth rate of pine and linden saplings was discovered. Poplar, red oak, and rowan seedlings were unresponsive to the treatments. The growth-stimulating effects of the treatments are discussed in connection with the changes in carbon, chlorophyll, and nitrogen contents in plants. The results show the need for further research in bacterial species capable of stimulating the growth of plant species that were unresponsive in the present experiments.
Collapse
Affiliation(s)
- Aleksey Nazarov
- Department of Environment and Rational Use of Natural Resources, Faculty of Business Ecosystem and Creative Technologies, Ufa State Petroleum Technological University, ul. Kosmonavtov 1, 450064 Ufa, Russia; (R.I.); (N.R.); (I.T.); (R.U.); (G.K.)
| | - Sergey Chetverikov
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya 69, 450054 Ufa, Russia; (S.C.); (M.T.)
| | - Maxim Timergalin
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya 69, 450054 Ufa, Russia; (S.C.); (M.T.)
| | - Ruslan Ivanov
- Department of Environment and Rational Use of Natural Resources, Faculty of Business Ecosystem and Creative Technologies, Ufa State Petroleum Technological University, ul. Kosmonavtov 1, 450064 Ufa, Russia; (R.I.); (N.R.); (I.T.); (R.U.); (G.K.)
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya 69, 450054 Ufa, Russia; (S.C.); (M.T.)
| | - Nadezhda Ryazanova
- Department of Environment and Rational Use of Natural Resources, Faculty of Business Ecosystem and Creative Technologies, Ufa State Petroleum Technological University, ul. Kosmonavtov 1, 450064 Ufa, Russia; (R.I.); (N.R.); (I.T.); (R.U.); (G.K.)
- South Ural Botanical Garden-Institute, Ufa Federal Research Center, Russian Academy of Sciences, 450080 Ufa, Russia;
| | - Zinnur Shigapov
- South Ural Botanical Garden-Institute, Ufa Federal Research Center, Russian Academy of Sciences, 450080 Ufa, Russia;
| | - Iren Tuktarova
- Department of Environment and Rational Use of Natural Resources, Faculty of Business Ecosystem and Creative Technologies, Ufa State Petroleum Technological University, ul. Kosmonavtov 1, 450064 Ufa, Russia; (R.I.); (N.R.); (I.T.); (R.U.); (G.K.)
| | - Ruslan Urazgildin
- Department of Environment and Rational Use of Natural Resources, Faculty of Business Ecosystem and Creative Technologies, Ufa State Petroleum Technological University, ul. Kosmonavtov 1, 450064 Ufa, Russia; (R.I.); (N.R.); (I.T.); (R.U.); (G.K.)
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya 69, 450054 Ufa, Russia; (S.C.); (M.T.)
| | - Guzel Kudoyarova
- Department of Environment and Rational Use of Natural Resources, Faculty of Business Ecosystem and Creative Technologies, Ufa State Petroleum Technological University, ul. Kosmonavtov 1, 450064 Ufa, Russia; (R.I.); (N.R.); (I.T.); (R.U.); (G.K.)
| |
Collapse
|
4
|
Eswaran SUD, Sundaram L, Perveen K, Bukhari NA, Sayyed RZ. Osmolyte-producing microbial biostimulants regulate the growth of Arachis hypogaea L. under drought stress. BMC Microbiol 2024; 24:165. [PMID: 38745279 PMCID: PMC11094965 DOI: 10.1186/s12866-024-03320-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
Globally, drought stress poses a significant threat to crop productivity. Improving the drought tolerance of crops with microbial biostimulants is a sustainable strategy to meet a growing population's demands. This research aimed to elucidate microbial biostimulants' (Plant Growth Promoting Rhizobacteria) role in alleviating drought stress in oil-seed crops. In total, 15 bacterial isolates were selected for drought tolerance and screened for plant growth-promoting (PGP) attributes like phosphate solubilization and production of indole-3-acetic acid, siderophore, hydrogen cyanide, ammonia, and exopolysaccharide. This research describes two PGPR strains: Acinetobacter calcoaceticus AC06 and Bacillus amyloliquefaciens BA01. The present study demonstrated that these strains (AC06 and BA01) produced abundant osmolytes under osmotic stress, including proline (2.21 and 1.75 µg ml- 1), salicylic acid (18.59 and 14.21 µg ml- 1), trehalose (28.35 and 22.74 µg mg- 1 FW) and glycine betaine (11.35 and 7.74 mg g- 1) respectively. AC06 and BA01 strains were further evaluated for their multifunctional performance by inoculating in Arachis hypogaea L. (Groundnut) under mild and severe drought regimes (60 and 40% Field Capacity). Inoculation with microbial biostimulants displayed distinct osmotic-adjustment abilities of the groundnut, such as growth parameters, plant biomass, photosynthetic pigments, relative water content, proline, and soluble sugar in respective to control during drought. On the other hand, plant sensitivity indexes such as electrolyte leakage and malondialdehyde (MDA) contents were decreased as well as cooperatively conferred plant drought tolerance by induced alterations in stress indicators such as catalase (CAT), ascorbate peroxidase (APX), and superoxide dismutase (SOD). Thus, Acinetobacter sp. AC06 and Bacillus sp. BA01 can be considered as osmolyte producing microbial biostimulants to simultaneously induce osmotic tolerance and metabolic changes in groundnuts under drought stress.
Collapse
Affiliation(s)
| | - Lalitha Sundaram
- Soil Biology and PGPR Lab, Department of Botany, Periyar University, Salem, 636011, India
| | - Kahkashan Perveen
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box-22452, Riyadh, 11495, Saudi Arabia
| | - Najat A Bukhari
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box-22452, Riyadh, 11495, Saudi Arabia
| | - R Z Sayyed
- Department of Microbiology, PSGVP Mandal's S I Arts, G B Patel Science and STKV Sangh Commerce College, Shahada, 425409, India.
| |
Collapse
|
5
|
Noureen S, Iqbal A, Muqeet HA. Potential of Drought Tolerant Rhizobacteria Amended with Biochar on Growth Promotion in Wheat. PLANTS (BASEL, SWITZERLAND) 2024; 13:1183. [PMID: 38732400 PMCID: PMC11085571 DOI: 10.3390/plants13091183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/13/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024]
Abstract
Drought stress is the prime obstacle for worldwide agricultural production and necessitates innovative strategies for enhancing crop resilience. This study explores the efficacy of plant growth-promoting rhizobacteria (PGPR) and biochar (BC) as sustainable amendments for mitigating the effects of drought on wheat growth. Multiple experiments were carried out on isolated strains to assess their drought tolerance potential and multiple plant growth-promoting attributes. Experiments in the laboratory and natural environment were conducted to assess the impact of plant growth-promoting rhizobacteria, biochar, and their synergistic application on various growth parameters of wheat. The results revealed that the drought-tolerant PGPR strains (Bacillus subtilis and Bacillus tequilensis), alongside biochar (rice husk), alleviated the phytotoxic impact of drought by increasing the root length from 17.0% to 70.0% and shoot length from 30.0% to 82.0% as compared to un-inoculated stressed controls. The total chlorophyll and carotenoid contents of the plants were substantially increased to 477% and 423%, respectively, when biochar and PGPR were applied synergistically. Significant enhancements in membrane stability index, relative water content, proline, and sugar level were achieved by combining biochar and bacterial strains, resulting in increases of 19.5%, 37.9%, 219%, and 300%, respectively. The yield of wheat in terms of plant height, spike length, number of spikelets per spike, and number of grains per spike was enhanced from 26.7% to 44.6%, 23.5% to 62.7%, 91.5% to 154%, and 137% to 182%, respectively. It was concluded that the biochar-based application of PGPR induced drought tolerance in wheat under water deficit conditions, ultimately improving the production and yield of wheat.
Collapse
Affiliation(s)
- Sidra Noureen
- Department of Microbiology and Molecular Genetics, The Women University, Multan 66000, Pakistan;
| | - Atia Iqbal
- Department of Microbiology and Molecular Genetics, The Women University, Multan 66000, Pakistan;
| | - Hafiz Abdul Muqeet
- Department of Electrical Engineering and Technology, Punjab Tianjin University of Technology, Lahore 53720, Pakistan
| |
Collapse
|
6
|
Chungloo D, Tisarum R, Pinruan U, Sotesaritkul T, Saimi K, Praseartkul P, Himanshu SK, Datta A, Cha-Um S. Alleviation of water-deficit stress in turmeric plant ( Curcuma longa L.) using phosphate solubilizing rhizo-microbes inoculation. 3 Biotech 2024; 14:69. [PMID: 38362591 PMCID: PMC10864243 DOI: 10.1007/s13205-024-03922-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/04/2024] [Indexed: 02/17/2024] Open
Abstract
The objective of this study was to assess the effects of phosphate solubilizing rhizo-microbes inoculants on nutrient balance, physiological adaptation, growth characteristics, and rhizome yield traits as well as curcuminoids yield at the secondary-rhizome initiation stage of turmeric plants, subsequently subjected to water-deficit (WD) stress. Phosphorus contents in the leaf tissues of Talaromyces aff. macrosporus and Burkholderia sp. (Bruk) inoculated plants peaked at 0.33 and 0.29 mg g-1 DW, respectively, under well-watered (WW) conditions; however, phosphorus contents declined when subjected to WD conditions (p ≤ 0.05). Similarly, potassium and calcium contents reached their maximum values at 5.33 and 3.47 mg g-1 DW, respectively, in Burk inoculated plants under WW conditions, which contributed to sustained rhizome fresh weight even when exposed to WD conditions (p ≤ 0.05). There was an increase in free proline content in T. aff. macrosporus and Burk inoculated plants under WD conditions, which played a crucial role in controlling leaf osmotic potential, thereby stabilizing leaf greenness and maximum quantum yield of PSII. As indicators of drought stress, there were noticeable restrictions in stomatal gas exchange parameters, including net photosynthetic rate, stomatal conductance, and transpiration rate, accompanied by an increase in leaf temperature. These changes resulted in reduced total soluble sugar levels. Interestingly, total curcuminoids and curcuminoids yield in Burk inoculated plants under WD conditions were retained, especially in relation to rhizome biomass. Burk inoculation in turmeric plants is recommended as a promising technique as it alleviates water-deficit stress, sustains rhizome biomass, and stabilizes curcuminoids yield. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03922-x.
Collapse
Affiliation(s)
- Daonapa Chungloo
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120 Thailand
| | - Rujira Tisarum
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120 Thailand
| | - Umpawa Pinruan
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120 Thailand
| | - Thanyaporn Sotesaritkul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120 Thailand
| | - Kewalee Saimi
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120 Thailand
| | - Patchara Praseartkul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120 Thailand
| | - Sushil Kumar Himanshu
- Agricultural Systems and Engineering, Department of Food, Agriculture and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology, Khlong Luang, Pathum Thani, 12120 Thailand
| | - Avishek Datta
- Agricultural Systems and Engineering, Department of Food, Agriculture and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology, Khlong Luang, Pathum Thani, 12120 Thailand
| | - Suriyan Cha-Um
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120 Thailand
| |
Collapse
|
7
|
Das T, Sen A, Mahapatra S. Characterization of plant growth-promoting bacteria isolated from rhizosphere of lentil (Lens culinaris L.) grown in two different soil orders of eastern India. Braz J Microbiol 2023; 54:3101-3111. [PMID: 37620686 PMCID: PMC10689660 DOI: 10.1007/s42770-023-01100-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/12/2023] [Indexed: 08/26/2023] Open
Abstract
Lentil, which is an important grain legume, can be co-inoculated with plant growth-promoting rhizobia and rhizobacteria to boost nitrogen fixation, increase biomass, and a possibility for early nodulation. The goal of the ongoing study was to identify plant growth-promoting rhizobacteria (PGPR) in the rhizosphere of lentil growing soils in eastern India. Sixteen rhizosphere bacteria were isolated from two different soil orders, and their capacity to solubilize phosphate and generate hydrogen cyanide (HCN), siderophore, and indole acetic acid (IAA) was assessed. The three best strains were selected for compatibility study with twenty Rhizobium isolated from lentil root nodules. The isolated rhizobacteria were able to produce ammonia and different mycolytic enzymes. Isolate B3 produced the highest amount of IAA and siderophore; the highest amount of phosphate solubilized by PSB1 strain; and isolates AB1, AB2, B3, PS2, and PSB2 produced considerable amount of HCN gas. Among all the isolates, B3, PSB1, and PS2 performed better based on different plant growth-promoting abilities. These three bacterial isolates showed compatible reaction with most of the Rhizobium strains. Isolates B3, PS2, and PSB1 were identified as Bacillus subtilis (MT729775), Pseudomonas palmensis (MT729782), and Paraburkholderia caribenis (MZ956803), respectively. Lentil shoot weight, root length, nodule number, N uptake, and P uptake were increased in the pot culture experiment when inoculated with these strains. PGPR strain B3 performed best among the three strains in the pot culture experiment. Strain B3 can be used as potential biofertilizer along with compatible Rhizobium species for better production of lentil.
Collapse
Affiliation(s)
- Tanusree Das
- Department of Plant Pathology, Bidhan Chandra KrishiViswavidyalaya, Mohanpur, Nadia, West Bengal, India
| | - Arup Sen
- Department of Agricultural Chemistry and Soil Science, Bidhan Chandra KrishiViswavidyalaya, Mohanpur, Nadia, West Bengal, India
| | - Sunita Mahapatra
- Department of Plant Pathology, Bidhan Chandra KrishiViswavidyalaya, Mohanpur, Nadia, West Bengal, India.
| |
Collapse
|
8
|
Upadhyay SK, Rajput VD, Kumari A, Espinosa-Saiz D, Menendez E, Minkina T, Dwivedi P, Mandzhieva S. Plant growth-promoting rhizobacteria: a potential bio-asset for restoration of degraded soil and crop productivity with sustainable emerging techniques. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9321-9344. [PMID: 36413266 DOI: 10.1007/s10653-022-01433-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
The rapid expansion of degraded soil puts pressure on agricultural crop yield while also increasing the likelihood of food scarcity in the near future at the global level. The degraded soil does not suit plants growth owing to the alteration in biogeochemical cycles of nutrients, soil microbial diversity, soil organic matter, and increasing concentration of heavy metals and organic chemicals. Therefore, it is imperative that a solution should be found for such emerging issues in order to establish a sustainable future. In this context, the importance of plant growth-promoting rhizobacteria (PGPR) for their ability to reduce plant stress has been recognized. A direct and indirect mechanism in plant growth promotion is facilitated by PGPR via phytostimulation, biofertilizers, and biocontrol activities. However, plant stress mediated by deteriorated soil at the field level is not entirely addressed by the implementation of PGPR at the field level. Thus, emerging methods such as CRISPR and nanotechnological approaches along with PGPR could manage degraded soil effectively. In the pursuit of the critical gaps in this respect, the present review discusses the recent advancement in PGPR action when used along with nanomaterials and CRISPR, impacting plant growth under degraded soil, thereby opening a new horizon for researchers in this field to mitigate the challenges of degraded soil.
Collapse
Affiliation(s)
- Sudhir K Upadhyay
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, 222003, India
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344090.
| | - Arpna Kumari
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344090
| | - Daniel Espinosa-Saiz
- Microbiology and Genetics Department, Universidad de Salamanca, Salamanca, Spain
- Institute for Agribiotechnology Research (CIALE), Villamayor, Salamanca, Spain
| | - Esther Menendez
- Microbiology and Genetics Department, Universidad de Salamanca, Salamanca, Spain
- Institute for Agribiotechnology Research (CIALE), Villamayor, Salamanca, Spain
- Mediterranean Institute for Agriculture, Environment and Development (MED), Institute for Advanced Studies and Research (IIFA), Universidade de Évora, Pólo da Mitra, Évora, Portugal
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344090
| | - Padmanabh Dwivedi
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, U.P., 221005, India
| | - Saglara Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344090
| |
Collapse
|
9
|
Luan P, Yi Y, Huang Y, Cui L, Hou Z, Zhu L, Ren X, Jia S, Liu Y. Biocontrol potential and action mechanism of Bacillus amyloliquefaciens DB2 on Bipolaris sorokiniana. Front Microbiol 2023; 14:1149363. [PMID: 37125175 PMCID: PMC10135310 DOI: 10.3389/fmicb.2023.1149363] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/16/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction Bipolaris sorokiniana is the popular pathogenic fungi fungus which lead to common root rot and leaf spot on wheat. Generally, chemical fungicides are used to control diseases. However, the environmental pollution resulting from fungicides should not be ignored. It is important to study the mode of antagonistic action between biocontrol microbes and plant pathogens to design efficient biocontrol strategies. Results An antagonistic bacterium DB2 was isolated and identified as Bacillus amyloliquefaciens. The inhibition rate of cell-free culture filtrate (CF, 20%, v/v) of DB2 against B. sorokiniana reached 92.67%. Light microscopy and scanning electron microscopy (SEM) showed that the CF significantly altered the mycelial morphology of B. sorokiniana and disrupted cellular integrity. Fluorescence microscopy showed that culture filtrate destroyed mycelial cell membrane integrity, decreased the mitochondrial transmembrane potential, induced reactive oxygen species (ROS) accumulation, and nuclear damage which caused cell death in B. sorokiniana. Moreover, the strain exhibited considerable production of protease and amylase, and showed a significant siderophore and indole-3-acetic acid (IAA) production. In the detached leaves and potted plants control assay, B. amyloliquefacien DB2 had remarkable inhibition activity against B. sorokiniana and the pot control efficacy was 75.22%. Furthermore, DB2 suspension had a significant promotion for wheat seedlings growth. Conclusion B. amyloliquefaciens DB2 can be taken as a potential biocontrol agent to inhibit B. sorokiniana on wheat and promote wheat growth.
Collapse
Affiliation(s)
- Pengyu Luan
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
| | - Yanjie Yi
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
- *Correspondence: Yanjie Yi,
| | - Yifan Huang
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
| | - Liuqing Cui
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
| | - Zhipeng Hou
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
| | - Lijuan Zhu
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
| | - Xiujuan Ren
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
| | - Shao Jia
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
| | - Yang Liu
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
| |
Collapse
|
10
|
Jagtap RR, Mali GV, Waghmare SR, Nadaf NH, Nimbalkar MS, Sonawane KD. Impact of plant growth promoting rhizobacteria Serratia nematodiphila RGK and Pseudomonas plecoglossicida RGK on secondary metabolites of turmeric rhizome. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|