1
|
Rahimpoor R, Soleymani-Ghoozhdi D, Firoozichahak A, Alizadeh S. Needle trap device technique: From fabrication to sampling. Talanta 2024; 276:126255. [PMID: 38776771 DOI: 10.1016/j.talanta.2024.126255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/17/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
Needle Trap Device (NTD) as a novel, versatile, and eco-friendly technique has played an important role in analytical and environmental chemistry. The distinctive role of this interdisciplinary technique can be defended through the sampling and analysis of biological samples and industrial pollutants in gaseous and liquid environments. In recent years, significant efforts have been made to enhance the performance of the needle trap device resulting in the development of novel extraction routes by various packing materials with improved selectivity and enhanced adsorption characteristics. These achievements can lead to the facilitated pre-concentration of desired analytes. This review tries to have a comparative and comprehensive survey of the three important areas of NTD technique: I) Fabrication and preparation procedures of NTDs; II) Sampling techniques of pollutants using NTDs; and III) Employed materials as adsorbents in NTDs. In the packing-material section, the commercial and synthetic adsorbents such as carbon materials, metal-organic frameworks, aerogel, and polymers are considered. Furthermore, the limitations and potential areas for future development of the NTD technique are presented.
Collapse
Affiliation(s)
- Razzagh Rahimpoor
- Department of Occupational Health Engineering, Research Center for Health Sciences, School of Health, Larestan University of Medical Sciences, Larestan, Iran
| | | | - Ali Firoozichahak
- Department of Occupational Health, Faculty of Health, Social Determinants of Health Research Center, Gonabad University of Medical Science, Gonabad, Iran.
| | - Saber Alizadeh
- Department of Chemistry, Bu-Ali-Sina University, Hamedan, Iran
| |
Collapse
|
2
|
Cao Z, Zhou J. Research progress on pretreatment technology for the analysis of amphetamine biological samples. J Sep Sci 2024; 47:e2400337. [PMID: 39189599 DOI: 10.1002/jssc.202400337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 08/28/2024]
Abstract
Sample pretreatment technology is crucial for drug analysis and detection, because the effect of sample pretreatment directly determinates the final analysis results. In recent years, with the continuous innovation of microextraction and other technologies like material preparation technologies and assistant technologies for extraction, the sample pretreatment techniques in the process of drug analysis have become more and more mature and diverse. This article takes amphetamine (AM) or methamphetamine as an example to review the recent development of pretreatment methods for AM-containing biological samples from the perspectives of extraction techniques, extraction media and auxiliary technologies. Extraction techniques are summarized with the categories of contact microextraction, separate microextraction and membrane-based microextraction for better guidance of application according to their features. Prevailing and innovative extraction media including carbon-based material, silicon-based material, metal organic framework, molecularly selective materials, supramolecular solvents and ionic liquids are reviewed. Auxiliary technologies like magnetic field, electric field, microwave, ultrasound and so on which can enhance extraction efficiency and accuracy are also reviewed. In the last, prospects of the future development of pretreatment technology for the analysis of AM biological samples are provided.
Collapse
Affiliation(s)
- Zebin Cao
- College of Biological and Chemical Engineering, Zhe Jiang University of Science and Technology, Hangzhou, China
| | - Jianping Zhou
- Key Laboratory of Agro-products Chemistry and Bioprocessing Technology of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, China
| |
Collapse
|
3
|
Sohrabi Y, Rahimian F, Yousefinejad S, Aliasghari F, Soleimani E. Microextraction techniques for occupational biological monitoring: Basic principles, current applications and future perspectives. Biomed Chromatogr 2024; 38:e5883. [PMID: 38712625 DOI: 10.1002/bmc.5883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/01/2024] [Accepted: 04/01/2024] [Indexed: 05/08/2024]
Abstract
The application of green microextraction techniques (METs) is constantly being developed in different areas including pharmaceutical, forensic, food and environmental analysis. However, they are less used in biological monitoring of workers in occupational settings. Developing valid extraction methods and analytical techniques for the determination of occupational indicators plays a critical role in the management of workers' exposure to chemicals in workplaces. Microextraction techniques have become increasingly important because they are inexpensive, robust and environmentally friendly. This study aimed to provide a comprehensive review and interpret the applications of METs and novel sorbents and liquids in biological monitoring. Future perspectives and occupational indicators that METs have not yet been developed for are also discussed.
Collapse
Affiliation(s)
- Younes Sohrabi
- Department of Occupational Health and Safety Engineering, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
| | - Fatemeh Rahimian
- Department of Occupational Health and Safety Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Yousefinejad
- Department of Occupational Health and Safety Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fereshteh Aliasghari
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Esmaeel Soleimani
- Department of Occupational Health and Safety Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Żuchowska K, Filipiak W. Modern approaches for detection of volatile organic compounds in metabolic studies focusing on pathogenic bacteria: Current state of the art. J Pharm Anal 2024; 14:100898. [PMID: 38634063 PMCID: PMC11022102 DOI: 10.1016/j.jpha.2023.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/03/2023] [Accepted: 11/15/2023] [Indexed: 04/19/2024] Open
Abstract
Pathogenic microorganisms produce numerous metabolites, including volatile organic compounds (VOCs). Monitoring these metabolites in biological matrices (e.g., urine, blood, or breath) can reveal the presence of specific microorganisms, enabling the early diagnosis of infections and the timely implementation of targeted therapy. However, complex matrices only contain trace levels of VOCs, and their constituent components can hinder determination of these compounds. Therefore, modern analytical techniques enabling the non-invasive identification and precise quantification of microbial VOCs are needed. In this paper, we discuss bacterial VOC analysis under in vitro conditions, in animal models and disease diagnosis in humans, including techniques for offline and online analysis in clinical settings. We also consider the advantages and limitations of novel microextraction techniques used to prepare biological samples for VOC analysis, in addition to reviewing current clinical studies on bacterial volatilomes that address inter-species interactions, the kinetics of VOC metabolism, and species- and drug-resistance specificity.
Collapse
Affiliation(s)
- Karolina Żuchowska
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-089 Bydgoszcz, Poland
| | - Wojciech Filipiak
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-089 Bydgoszcz, Poland
| |
Collapse
|
5
|
Mahmoodzadeh F, Navidjouy N, Alizadeh S, Rahimnejad M. Investigation of microbial fuel cell performance based on the nickel thin film modified electrodes. Sci Rep 2023; 13:20755. [PMID: 38007521 PMCID: PMC10676379 DOI: 10.1038/s41598-023-48290-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/24/2023] [Indexed: 11/27/2023] Open
Abstract
Microbial fuel cells (MFCs) are a self-sustaining and environmentally friendly system for the simultaneous was tewater treatment and bioelectricity generation. The type and material of the electrode are critical factors that can influence the efficiency of this treatment process. In this study, graphite plates and carbon felt were modified through the electrodeposition of nickel followed by the formation of a biofilm, resulting in conductive bio-anode thin film electrodes with enhanced power generation capacity. The structural and morphological properties of the electrode surfaces were characterized using X-ray diffraction, energy-dispersive X-ray spectroscopy, elemental mapping, and field-emission scanning electron microscopy techniques. Maximum voltage, current density, and power generation were investigated using a dual-chamber MFC equipped with a Nafion 117 membrane and bio-nickel-doped carbon felt (bio-Ni@CF) and bio-nickel-doped graphite plate (bio-Ni@GP) electrodes under constant temperature conditions. The polarization and power curves obtained using different anode electrodes revealed that the maximum voltage, power and current density achieved with the bio-Ni@CF electrode were 468.0 mV, 130.72 mW/m2 and 760.0 mA/m2 respectively. Moreover, the modified electrodes demonstrated appropriate stability and resistance during successful runs. These results suggest that nickel-doped carbon-based electrodes can serve as suitable and stable supported catalysts and conductors for improving efficiency and increasing power generation in MFCs.
Collapse
Affiliation(s)
- Fatemeh Mahmoodzadeh
- Department of Environmental Health Engineering, Urmia University of Medical Sciences, Urmia, Iran
| | - Nahid Navidjouy
- Department of Environmental Health Engineering, Urmia University of Medical Sciences, Urmia, Iran.
| | - Saber Alizadeh
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 65174-38683, Iran
| | - Mostafa Rahimnejad
- Department of Chemical Engineering, Biofuel and Renewable Energy Research Center, Babol Noshirvani University of Technology, Babol, Iran
| |
Collapse
|
6
|
Raynie DE. Overview of Recent Development of Needle-Trap Devices for Analysis of Volatile Compounds. LCGC NORTH AMERICA 2023. [DOI: 10.56530/lcgc.na.pa9869s8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Needle-trap devices (NTDs) are another sorbent-based tool in the haystack of methods used in analytical extractions. Syringe needles, similar to those used for gas chromatography (GC) injection, can be partially filled with suitable sorbents and are used for extracting and collecting volatile organics, followed by injection into a GC instrument via thermal desorption. Although NTDs share many similarities and advantages of solid-phase microextraction (SPME), the larger sorbent bed provides robustness and offers potentially exhaustive extractions. This month, we take a look at the principles and applications of NTDs, and recent developments in their use.
Collapse
|
7
|
Rahimpoor R, Firoozichahak A, Alizadeh S, Serkan H, Nematollahi D. Application of MIL-53(Al)-NH 2 as a Dispersive Microsolid-Phase Extraction Material for Determination of Cyclophosphamide in Urine by High-Performance Liquid Chromatography. ACS OMEGA 2022; 7:36643-36652. [PMID: 36278040 PMCID: PMC9583078 DOI: 10.1021/acsomega.2c04660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
In this paper, an aluminum-based metal-organic framework (MIL-53(Al)-NH2) was synthesized and employed as a well-known and efficient dispersive microsolid-phase extraction (Dμ-SPE) sorbent for reliable determination of cyclophosphamide in urine samples by the high-performance liquid chromatography (HPLC) technique. The synthesized MIL-53(Al)-NH2 was characterized by FT-IR, PXRD, FE-SEM, and EDS for more details. Then, the effective parameters of the preconcentration and extraction of urinary cyclophosphamide including the amount of the solid sorbent, the pH of the sample, sample volume, extraction and desorption time, and the type and volume of elution solvent were thoroughly investigated and optimized. According to the results, a linear dynamic range of 0.14-120 μg mL-1 with a good correlation coefficient (R 2 = 0.998) and a limit of detection (LOD) of 0.05 μg mL-1 were obtained with intra- and interday relative standard deviations (n = 9) of 3.13 and 3.99% in optimized conditions, respectively. Furthermore, the absolute recovery of urinary cyclophosphamide at three concentrations (0.5, 50.0, and 100.0 μg mL-1) was 94.0%. Finally, the optimal condition of the developed method was successfully applied to the extraction and analysis of cyclophosphamide from the real urine samples with satisfactory recovery (94.0-97.0%) and acceptable precision (<4.1%). The findings proved that MIL-53(Al)-NH2 can be utilized as a suitable adsorbent for highly reliable extraction of cyclophosphamide in biological matrices.
Collapse
Affiliation(s)
- Razzagh Rahimpoor
- Department
of Occupational Health Engineering, Research Center for Health Sciences,
School of Health, Larestan University of
Medical Sciences, Larestan74319-75566, Iran
| | - Ali Firoozichahak
- Department
of Occupational Health, Faculty of Health, Social Determinants of
Health Research Center, Gonabad University
of Medical Science, Gonabad96917-93718, Iran
| | - Saber Alizadeh
- Department
of Chemistry, Bu-Ali-Sina University, Hamedan65178-38695, Iran
| | - Houman Serkan
- Department
of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran19585-466, Iran
| | - Davood Nematollahi
- Department
of Chemistry, Bu-Ali-Sina University, Hamedan65178-38695, Iran
| |
Collapse
|