1
|
Zhang SL, McGann CM, Duranova T, Strysko J, Steenhoff AP, Gezmu A, Nakstad B, Arscott-Mills T, Bayani O, Moorad B, Tlhako N, Richard-Greenblatt M, Hu W, Planet PJ, Coffin SE, Silverman MA. Maternal and neonatal IgG against Klebsiella pneumoniae are associated with lower risk of neonatal sepsis: A case-control study of hospitalized neonates in Botswana. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0003350. [PMID: 39637243 PMCID: PMC11620667 DOI: 10.1371/journal.pgph.0003350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/23/2024] [Indexed: 12/07/2024]
Abstract
Sepsis is the leading postnatal cause of neonatal mortality worldwide. Globally Klebsiella pneumoniae is the leading cause of sepsis in hospitalized neonates. This study reports the development and evaluation of an ELISA for anti-Klebsiella IgG using dried blood spot (DBS) samples and evaluates the association of anti-Klebsiella IgG (anti-Kleb IgG) antibodies in maternal and neonatal samples with the risk of neonatal sepsis. Neonates and their mothers were enrolled at 0-96 hours of life in the neonatal unit of a tertiary referral hospital in Gaborone, Botswana and followed until death or discharge to assess for episodes of blood culture-confirmed neonatal sepsis. Neonates with sepsis had significantly lower levels of Kleb-IgG compared to neonates who did not develop sepsis (Mann-Whitney U, p = 0.012). Similarly, samples from mothers of neonates who developed sepsis tended to have less Kleb-IgG compared to mothers of controls. The inverse correlation between Kleb-IgG levels and all-cause bacteremia suggests that maternal Kleb-IgG may be protective through cross-reactivity with common bacterial epitopes. These data support the continued use of immunoglobulin assays using DBS samples to explore the role of passive immunity on neonatal sepsis risk and reaffirm the critical need for research supporting the development of maternal vaccines for neonatal sepsis.
Collapse
Affiliation(s)
- Siqi Linsey Zhang
- Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Carolyn M. McGann
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Tereza Duranova
- Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Jonathan Strysko
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Paediatric & Adolescent Health, Faculties of Medicine & Health Sciences, University of Botswana, Gaborone, Botswana
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Andrew P. Steenhoff
- Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana
| | - Alemayehu Gezmu
- Department of Paediatric & Adolescent Health, Faculties of Medicine & Health Sciences, University of Botswana, Gaborone, Botswana
| | - Britt Nakstad
- Department of Paediatric & Adolescent Health, Faculties of Medicine & Health Sciences, University of Botswana, Gaborone, Botswana
| | - Tonya Arscott-Mills
- Department of Paediatric & Adolescent Health, Faculties of Medicine & Health Sciences, University of Botswana, Gaborone, Botswana
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - One Bayani
- Department of Paediatric & Adolescent Health, Faculties of Medicine & Health Sciences, University of Botswana, Gaborone, Botswana
| | - Banno Moorad
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana
| | - Nametso Tlhako
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana
| | - Melissa Richard-Greenblatt
- Hospital for Sick Children, Toronto, Canada
- Department of Laboratory and Pathobiology, University of Toronto, Toronto, Canada
| | - Weiming Hu
- Division of Gastroenterology, Hepatology and Nutrition Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- CHOP Microbiome Center, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Paul J. Planet
- Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Susan E. Coffin
- Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michael A. Silverman
- Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
2
|
Wessel RE, Dolatshahi S. Regulators of placental antibody transfer through a modeling lens. Nat Immunol 2024; 25:2024-2036. [PMID: 39379658 DOI: 10.1038/s41590-024-01971-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/03/2024] [Indexed: 10/10/2024]
Abstract
Infants are vulnerable to infections owing to a limited ability to mount a humoral immune response and their tolerogenic immune phenotype, which has impeded the success of newborn vaccination. Transplacental transfer of IgG from mother to fetus provides crucial protection in the first weeks of life, and maternal immunization has recently been implemented as a public health strategy to protect newborns against serious infections. Despite their early success, current maternal vaccines do not provide comparable protection across pregnancies with varying gestational lengths and placental and maternal immune features, and they do not account for the dynamic interplay between the maternal immune response and placental transfer. Moreover, progress toward the rational design of maternal vaccines has been hindered by inadequacies of existing experimental models and safety challenges of investigating longitudinal dynamics of IgG transfer in pregnant humans. Alternatively, in silico mechanistic models are a logical framework to disentangle the processes regulating placental antibody transfer. This Review synthesizes current literature through a mechanistic modeling lens to identify placental and maternal regulators of antibody transfer, their clinical covariates, and knowledge gaps to guide future research. We also describe opportunities to use integrated modeling and experimental approaches toward the rational design of vaccines against existing and emerging neonatal pathogen threats.
Collapse
Affiliation(s)
- Remziye E Wessel
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Virginia, Charlottesville, VA, USA
| | - Sepideh Dolatshahi
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Virginia, Charlottesville, VA, USA.
- Carter Immunology Center, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
3
|
Tijani MK, Saleh BH, Lugaajju A, Danielsson L, Persson KEM. Acquisition of anti-phosphatidylserine IgM and IgG antibodies by infants and their mothers over time in Uganda. Front Immunol 2024; 15:1416669. [PMID: 39131160 PMCID: PMC11310174 DOI: 10.3389/fimmu.2024.1416669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024] Open
Abstract
Background Production of anti-phosphatidylserine (anti-PS) antibodies has been associated with malaria and can aggravate pathology. How these autoantibodies develop during early childhood in a malaria context is not known. We examined levels of anti-PS IgG and IgM antibodies in a longitudinal cohort of mother-baby pairs during birth, in the infants at 2.5, 6 months, and in mothers and their babies at 9 months postpartum. Results There was no difference between levels of anti-PS IgG in cord blood and the mothers' peripheral blood at birth. However, anti-PS IgM levels were significantly higher in the mothers compared to the infants' cord blood, and IgM levels were steadily increasing during the first 9 months of the infants' life. In infants that had the highest anti-PS IgM levels at birth, there was a decline until 6 months with a rise at 9 months. Infants that possessed high anti-PS IgG at birth also exhibited a progressive decline in levels. When anti-PS were correlated to different fractions of B-cells, there were several correlations with P. falciparum specific atypical B cells both at birth and at 2.5 months for the infants, especially for anti-PS IgM. Anti-PS also correlated strongly to C1q-fixing antibodies at birth. Conclusion These results show that anti-PS IgG acquired by mothers could be transferred transplacentally and that IgM antibodies targeting PS are acquired during the first year of life. These results have increased the knowledge about autoimmune responses associated with infections in early life and is critical for a comprehensive understanding of malaria vaccine functionality in endemic areas.
Collapse
Affiliation(s)
- Muyideen Kolapo Tijani
- Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Bandar Hassan Saleh
- Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Clinical Microbiology and Immunology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Allan Lugaajju
- College of Health Sciences, Makerere University, Kampala, Uganda
| | - Lena Danielsson
- Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Kristina E. M. Persson
- Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Clinical Chemistry and Pharmacology, Laboratory Medicine, Office for Medical Services, Region Skåne, Lund, Sweden
| |
Collapse
|
4
|
Pirker AL, Vogl T. Development of systemic and mucosal immune responses against gut microbiota in early life and implications for the onset of allergies. FRONTIERS IN ALLERGY 2024; 5:1439303. [PMID: 39086886 PMCID: PMC11288972 DOI: 10.3389/falgy.2024.1439303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/05/2024] [Indexed: 08/02/2024] Open
Abstract
The early microbial colonization of human mucosal surfaces is essential for the development of the host immune system. Already during pregnancy, the unborn child is prepared for the postnatal influx of commensals and pathogens via maternal antibodies, and after birth this protection is continued with antibodies in breast milk. During this critical window of time, which extends from pregnancy to the first year of life, each encounter with a microorganism can influence children's immune response and can have a lifelong impact on their life. For example, there are numerous links between the development of allergies and an altered gut microbiome. However, the exact mechanisms behind microbial influences, also extending to how viruses influence host-microbe interactions, are incompletely understood. In this review, we address the impact of infants' first microbial encounters, how the immune system develops to interact with gut microbiota, and summarize how an altered immune response could be implied in allergies.
Collapse
Affiliation(s)
| | - Thomas Vogl
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Wolska M, Wypych TP, Rodríguez-Viso P. The Influence of Premature Birth on the Development of Pulmonary Diseases: Focus on the Microbiome. Metabolites 2024; 14:382. [PMID: 39057705 PMCID: PMC11279213 DOI: 10.3390/metabo14070382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Globally, around 11% of neonates are born prematurely, comprising a highly vulnerable population with a myriad of health problems. Premature births are often accompanied by an underdeveloped immune system biased towards a Th2 phenotype and microbiota dysbiosis. Typically, a healthy gut microbiota interacts with the host, driving the proper maturation of the host immunity. However, factors like cesarean section, formula milk feeding, hospitalization in neonatal intensive care units (NICU), and routine antibiotic treatments compromise microbial colonization and increase the risk of developing related diseases. This, along with alterations in the innate immune system, could predispose the neonates to the development of respiratory diseases later in life. Currently, therapeutic strategies are mainly focused on restoring gut microbiota composition using probiotics and prebiotics. Understanding the interactions between the gut microbiota and the immature immune system in premature neonates could help to develop novel therapeutic strategies for treating or preventing gut-lung axis disorders.
Collapse
Affiliation(s)
| | - Tomasz Piotr Wypych
- Laboratory of Host-Microbiota Interactions, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Ludwika Pasteura 3, 02-093 Warsaw, Poland; (M.W.); (P.R.-V.)
| | | |
Collapse
|
6
|
Canderan G, Muehling LM, Kadl A, Ladd S, Bonham C, Cross CE, Lima SM, Yin X, Sturek JM, Wilson JM, Keshavarz B, Bryant N, Murphy DD, Cheon IS, McNamara CA, Sun J, Utz PJ, Dolatshahi S, Irish JM, Woodfolk JA. Distinct Type 1 Immune Networks Underlie the Severity of Restrictive Lung Disease after COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.587929. [PMID: 38617217 PMCID: PMC11014603 DOI: 10.1101/2024.04.03.587929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The variable etiology of persistent breathlessness after COVID-19 have confounded efforts to decipher the immunopathology of lung sequelae. Here, we analyzed hundreds of cellular and molecular features in the context of discrete pulmonary phenotypes to define the systemic immune landscape of post-COVID lung disease. Cluster analysis of lung physiology measures highlighted two phenotypes of restrictive lung disease that differed by their impaired diffusion and severity of fibrosis. Machine learning revealed marked CCR5+CD95+ CD8+ T-cell perturbations in mild-to-moderate lung disease, but attenuated T-cell responses hallmarked by elevated CXCL13 in more severe disease. Distinct sets of cells, mediators, and autoantibodies distinguished each restrictive phenotype, and differed from those of patients without significant lung involvement. These differences were reflected in divergent T-cell-based type 1 networks according to severity of lung disease. Our findings, which provide an immunological basis for active lung injury versus advanced disease after COVID-19, might offer new targets for treatment.
Collapse
|
7
|
Borghesi A. Life-threatening infections in human newborns: Reconciling age-specific vulnerability and interindividual variability. Cell Immunol 2024; 397-398:104807. [PMID: 38232634 DOI: 10.1016/j.cellimm.2024.104807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
In humans, the interindividual variability of clinical outcome following exposure to a microorganism is immense, ranging from silent infection to life-threatening disease. Age-specific immune responses partially account for the high incidence of infection during the first 28 days of life and the related high mortality at population level. However, the occurrence of life-threatening disease in individual newborns remains unexplained. By contrast, inborn errors of immunity and their immune phenocopies are increasingly being discovered in children and adults with life-threatening viral, bacterial, mycobacterial and fungal infections. There is a need for convergence between the fields of neonatal immunology, with its in-depth population-wide characterization of newborn-specific immune responses, and clinical immunology, with its investigations of infections in patients at the cellular and molecular levels, to facilitate identification of the mechanisms of susceptibility to infection in individual newborns and the design of novel preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Alessandro Borghesi
- Neonatal Intensive Care Unit, San Matteo Research Hospital, Pavia, EU, Italy; School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland.
| |
Collapse
|
8
|
Adhikari EH, Lu P, Kang YJ, McDonald AR, Pruszynski JE, Bates TA, McBride SK, Trank-Greene M, Tafesse FG, Lu LL. Diverging Maternal and Cord Antibody Functions From SARS-CoV-2 Infection and Vaccination in Pregnancy. J Infect Dis 2024; 229:462-472. [PMID: 37815524 PMCID: PMC10873180 DOI: 10.1093/infdis/jiad421] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/27/2023] [Accepted: 09/29/2023] [Indexed: 10/11/2023] Open
Abstract
Maternal immunity impacts the infant, but how is unclear. To understand the implications of the immune exposures of vaccination and infection in pregnancy for neonatal immunity, we evaluated antibody functions in paired peripheral maternal and cord blood. We compared those who in pregnancy received mRNA coronavirus disease 2019 (COVID-19) vaccine, were infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the combination. We found that vaccination enriched a subset of neutralizing activities and Fc effector functions that was driven by IgG1 and was minimally impacted by antibody glycosylation in maternal blood. In paired cord blood, maternal vaccination also enhanced IgG1. However, Fc effector functions compared to neutralizing activities were preferentially transferred. Moreover, changes in IgG posttranslational glycosylation contributed more to cord than peripheral maternal blood antibody functional potency. These differences were enhanced with the combination of vaccination and infection as compared to either alone. Thus, Fc effector functions and antibody glycosylation highlight underexplored maternal opportunities to safeguard newborns.
Collapse
Affiliation(s)
- Emily H Adhikari
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Parkland Health, Dallas Texas, USA
| | - Pei Lu
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ye Jin Kang
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ann R McDonald
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jessica E Pruszynski
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Timothy A Bates
- Department of Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, USA
| | - Savannah K McBride
- Department of Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, USA
| | - Mila Trank-Greene
- Department of Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, USA
| | - Fikadu G Tafesse
- Department of Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, USA
| | - Lenette L Lu
- Parkland Health, Dallas Texas, USA
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
9
|
Sereme Y, Toumi E, Saifi E, Faury H, Skurnik D. Maternal immune factors involved in the prevention or facilitation of neonatal bacterial infections. Cell Immunol 2024; 395-396:104796. [PMID: 38104514 DOI: 10.1016/j.cellimm.2023.104796] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Newborns, whether born prematurely or at term, have a fully formed but naive immune system that must adapt to the extra-uterine environment to prevent infections. Maternal immunity, transmitted through the placenta and breast milk, protects newborns against infections, primarily via immunoglobulins (IgG and IgA) and certain maternal immune cells also known as microchimeric cells. Recently, it also appeared that the maternal gut microbiota played a vital role in neonatal immune maturation via microbial compounds impacting immune development and the establishment of immune tolerance. In this context, maternal vaccination is a powerful tool to enhance even more maternal and neonatal health. It involves the transfer of vaccine-induced antibodies to protect both mother and child from infectious diseases. In this work we review the state of the art on maternal immune factors involved in the prevention of neonatal bacterial infections, with particular emphasis on the role of maternal vaccination in protecting neonates against bacterial disease.
Collapse
Affiliation(s)
- Youssouf Sereme
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades, F-75015 Paris, France
| | - Eya Toumi
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades, F-75015 Paris, France
| | - Estelle Saifi
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades, F-75015 Paris, France
| | - Helène Faury
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades, F-75015 Paris, France; Department of Microbiology, Necker Hospital, University de Paris, Paris, France
| | - David Skurnik
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades, F-75015 Paris, France; Department of Microbiology, Necker Hospital, University de Paris, Paris, France; FHU PREMA, Paris, France.
| |
Collapse
|
10
|
Mahant AM, Trejo FE, Aguilan JT, Sidoli S, Permar SR, Herold BC. Antibody attributes, Fc receptor expression, gestation and maternal SARS-CoV-2 infection modulate HSV IgG placental transfer. iScience 2023; 26:107648. [PMID: 37670782 PMCID: PMC10475509 DOI: 10.1016/j.isci.2023.107648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/30/2023] [Accepted: 08/11/2023] [Indexed: 09/07/2023] Open
Abstract
Antibody-dependent cellular cytotoxicity (ADCC) is associated with protection against neonatal herpes. We hypothesized that placental transfer of ADCC-mediating herpes simplex virus (HSV) immunoglobulin G (IgG) is influenced by antigenic target, function, glycans, gestational age, and maternal severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Maternal and cord blood were collected from HSV-seropositive (HSV+) mothers pre-COVID and HSV+/SARS-CoV-2+ mothers during the pandemic. Transfer of HSV neutralizing IgG was significantly lower in preterm versus term dyads (transfer ratio [TR] 0.84 vs. 2.44) whereas the TR of ADCC-mediating IgG was <1.0 in both term and preterm pre-COVID dyads. Anti-glycoprotein D IgG, which had only neutralizing activity, and anti-glycoprotein B (gB) IgG, which displayed neutralizing and ADCC activity, exhibited different relative affinities for the neonatal Fc receptor (FcRn) and expressed different glycans. The transfer of ADCC-mediating IgG increased significantly in term SARS-CoV-2+ dyads. This was associated with greater placental colocalization of FcRn with FcγRIIIa. These findings have implications for strategies to prevent neonatal herpes.
Collapse
Affiliation(s)
- Aakash Mahant Mahant
- Departments of Microbiology and Immunology, Obstetrics-Gynecology and Women’s Health, and Biochemistry Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Fatima Estrada Trejo
- Departments of Microbiology and Immunology, Obstetrics-Gynecology and Women’s Health, and Biochemistry Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jennifer T. Aguilan
- Departments of Microbiology and Immunology, Obstetrics-Gynecology and Women’s Health, and Biochemistry Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Simone Sidoli
- Departments of Microbiology and Immunology, Obstetrics-Gynecology and Women’s Health, and Biochemistry Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Sallie R. Permar
- Department of Pediatrics, Weil Cornell Medicine, New York, NY 10021, USA
| | - Betsy C. Herold
- Departments of Microbiology and Immunology, Obstetrics-Gynecology and Women’s Health, and Biochemistry Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
11
|
Purcell RA, Theisen RM, Arnold KB, Chung AW, Selva KJ. Polyfunctional antibodies: a path towards precision vaccines for vulnerable populations. Front Immunol 2023; 14:1183727. [PMID: 37600816 PMCID: PMC10433199 DOI: 10.3389/fimmu.2023.1183727] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/30/2023] [Indexed: 08/22/2023] Open
Abstract
Vaccine efficacy determined within the controlled environment of a clinical trial is usually substantially greater than real-world vaccine effectiveness. Typically, this results from reduced protection of immunologically vulnerable populations, such as children, elderly individuals and people with chronic comorbidities. Consequently, these high-risk groups are frequently recommended tailored immunisation schedules to boost responses. In addition, diverse groups of healthy adults may also be variably protected by the same vaccine regimen. Current population-based vaccination strategies that consider basic clinical parameters offer a glimpse into what may be achievable if more nuanced aspects of the immune response are considered in vaccine design. To date, vaccine development has been largely empirical. However, next-generation approaches require more rational strategies. We foresee a generation of precision vaccines that consider the mechanistic basis of vaccine response variations associated with both immunogenetic and baseline health differences. Recent efforts have highlighted the importance of balanced and diverse extra-neutralising antibody functions for vaccine-induced protection. However, in immunologically vulnerable populations, significant modulation of polyfunctional antibody responses that mediate both neutralisation and effector functions has been observed. Here, we review the current understanding of key genetic and inflammatory modulators of antibody polyfunctionality that affect vaccination outcomes and consider how this knowledge may be harnessed to tailor vaccine design for improved public health.
Collapse
Affiliation(s)
- Ruth A. Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Robert M. Theisen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Kelly B. Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Amy W. Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Kevin J. Selva
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
12
|
LeMaster C, Pierce SH, Geanes ES, Khanal S, Elliott SS, Scott AB, Louiselle DA, McLennan R, Maulik D, Lewis T, Pastinen T, Bradley T. The cellular and immunological dynamics of early and transitional human milk. Commun Biol 2023; 6:539. [PMID: 37202439 DOI: 10.1038/s42003-023-04910-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 05/03/2023] [Indexed: 05/20/2023] Open
Abstract
Human milk is essential for infant nutrition and immunity, providing protection against infections and other immune-mediated diseases during the lactation period and beyond in later childhood. Milk contains a broad range of bioactive factors such as nutrients, hormones, enzymes, immunoglobulins, growth factors, cytokines, and antimicrobial factors, as well as heterogeneous populations of maternal cells. The soluble and cellular components of milk are dynamic over time to meet the needs of the growing infant. In this study, we utilize systems-approaches to define and characterize 62 analytes of the soluble component, including immunoglobulin isotypes, as well as the cellular component of human milk during the first two weeks postpartum from 36 mothers. We identify soluble immune and growth factors that are dynamic over time and could be utilized to classify milk into different phenotypic groups. We identify 24 distinct populations of both epithelial and immune cells by single-cell transcriptome analysis of 128,016 human milk cells. We found that macrophage populations have shifting inflammatory profiles during the first two weeks of lactation. This analysis provides key insights into the soluble and cellular components of human milk and serves as a substantial resource for future studies of human milk.
Collapse
Affiliation(s)
- Cas LeMaster
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Stephen H Pierce
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Eric S Geanes
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Santosh Khanal
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Staci S Elliott
- Division of Neonatology, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Allison B Scott
- Division of Neonatology, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Daniel A Louiselle
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Rebecca McLennan
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Devika Maulik
- Fetal Health Center, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Tamorah Lewis
- Division of Neonatology, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
- Department of Pediatrics, UMKC School of Medicine, Kansas City, MO, 64108, USA
| | - Tomi Pastinen
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
- Department of Pediatrics, UMKC School of Medicine, Kansas City, MO, 64108, USA
| | - Todd Bradley
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA.
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
- Department of Pediatrics, UMKC School of Medicine, Kansas City, MO, 64108, USA.
- Department of Pediatrics, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
13
|
Nziza N, Jung W, Mendu M, Chen T, McNamara RP, Fortune SM, Franken KLMC, Ottenhoff THM, Bryson B, Ngonzi J, Bebell LM, Alter G. Maternal HIV infection drives altered placental Mtb-specific antibody transfer. Front Microbiol 2023; 14:1171990. [PMID: 37228375 PMCID: PMC10203169 DOI: 10.3389/fmicb.2023.1171990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction Placental transfer of maternal antibodies is essential for neonatal immunity over the first months of life. In the setting of maternal HIV infection, HIV-exposed uninfected (HEU) infants are at higher risk of developing severe infections, including active tuberculosis (TB). Given our emerging appreciation for the potential role of antibodies in the control of Mycobacterium tuberculosis (Mtb), the bacteria that causes TB, here we aimed to determine whether maternal HIV status altered the quality of Mtb-specific placental antibody transfer. Methods Antigen-specific antibody systems serology was performed to comprehensively characterize the Mtb-specific humoral immune response in maternal and umbilical cord blood from HIV infected and uninfected pregnant people in Uganda. Results Significant differences were noted in overall antibody profiles in HIV positive and negative maternal plasma, resulting in heterogeneous transfer of Mtb-specific antibodies. Altered antibody transfer in HIV infected dyads was associated with impaired binding to IgG Fc-receptors, which was directly linked to HIV viral loads and CD4 counts. Conclusions These results highlight the importance of maternal HIV status on antibody transfer, providing clues related to alterations in transferred maternal immunity that may render HEU infants more vulnerable to TB than their HIV-unexposed peers.
Collapse
Affiliation(s)
- Nadege Nziza
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
| | - Wonyeong Jung
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
| | - Maanasa Mendu
- Department of Molecular and Cellular Biology, Harvard University, Boston, MA, United States
| | - Tina Chen
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
| | - Ryan P. McNamara
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
| | - Sarah M. Fortune
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Kees L. M. C. Franken
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Tom H. M. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Bryan Bryson
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Joseph Ngonzi
- Department of Obstetrics and Gynecology, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Lisa M. Bebell
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, United States
- Medical Practice Evaluation Center, Massachusetts General Hospital, Boston, MA, United States
- Center for Global Health, Massachusetts General Hospital, Boston, MA, United States
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
14
|
Adhikari EH, Lu P, Kang YJ, McDonald AR, Pruszynski JE, Bates TA, McBride SK, Trank-Greene M, Tafesse FG, Lu LL. Diverging maternal and infant cord antibody functions from SARS-CoV-2 infection and vaccination in pregnancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.01.538955. [PMID: 37205338 PMCID: PMC10187183 DOI: 10.1101/2023.05.01.538955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Immunization in pregnancy is a critical tool that can be leveraged to protect the infant with an immature immune system but how vaccine-induced antibodies transfer to the placenta and protect the maternal-fetal dyad remains unclear. Here, we compare matched maternal-infant cord blood from individuals who in pregnancy received mRNA COVID-19 vaccine, were infected by SARS-CoV-2, or had the combination of these two immune exposures. We find that some but not all antibody neutralizing activities and Fc effector functions are enriched with vaccination compared to infection. Preferential transport to the fetus of Fc functions and not neutralization is observed. Immunization compared to infection enriches IgG1-mediated antibody functions with changes in antibody post-translational sialylation and fucosylation that impact fetal more than maternal antibody functional potency. Thus, vaccine enhanced antibody functional magnitude, potency and breadth in the fetus are driven more by antibody glycosylation and Fc effector functions compared to maternal responses, highlighting prenatal opportunities to safeguard newborns as SARS-CoV-2 becomes endemic.
Collapse
Affiliation(s)
- Emily H. Adhikari
- Division of Maternal-Fetal Medicine and Department of Obstetrics and Gynecology, UTSW Medical Center, Dallas, TX
- Parkland Health, Dallas TX
| | - Pei Lu
- Division of Infectious Diseases and Geographic Medicine and Department of Internal Medicine, UTSW Medical Center, Dallas, TX
| | - Ye jin Kang
- Division of Infectious Diseases and Geographic Medicine and Department of Internal Medicine, UTSW Medical Center, Dallas, TX
| | - Ann R. McDonald
- Division of Infectious Diseases and Geographic Medicine and Department of Internal Medicine, UTSW Medical Center, Dallas, TX
| | - Jessica E. Pruszynski
- Division of Maternal-Fetal Medicine and Department of Obstetrics and Gynecology, UTSW Medical Center, Dallas, TX
| | - Timothy A. Bates
- Department of Microbiology and Immunology, Oregon Health and Science University, Portland, OR
| | - Savannah K. McBride
- Department of Microbiology and Immunology, Oregon Health and Science University, Portland, OR
| | - Mila Trank-Greene
- Department of Microbiology and Immunology, Oregon Health and Science University, Portland, OR
| | - Fikadu G. Tafesse
- Department of Microbiology and Immunology, Oregon Health and Science University, Portland, OR
| | - Lenette L. Lu
- Parkland Health, Dallas TX
- Division of Infectious Diseases and Geographic Medicine and Department of Internal Medicine, UTSW Medical Center, Dallas, TX
- Department of Immunology, UTSW Medical Center, Dallas, TX
| |
Collapse
|
15
|
Tegenge MA, Mahmood I, Struble EB, Sauna Z. Pharmacokinetics of antibodies during pregnancy: General pharmacokinetics and pregnancy related physiological changes (Part 1). Int Immunopharmacol 2023; 117:109914. [PMID: 36841154 DOI: 10.1016/j.intimp.2023.109914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/27/2023]
Abstract
Pharmacokinetics (PK) studies are important to determine a safe and effective dose of both small and large molecule drugs. Intrinsic factors such as pregnancy can substantially alter the PK of a drug. Several PK studies have been published for small molecules administered during pregnancy, but such investigations are scarce for macromolecules including monoclonal and polyclonal antibodies. In this part 1 of 2 reviews, we first provide a general description of macromolecule drugs, the PK differences with small molecules, and current knowledge on their absorption, distribution, metabolism and elimination in non-pregnant subjects. We then review in detail the physiological changes during pregnancy. While some of the physiologic adaptions of pregnancy, for example increased plasma volume and cardiac output, are expected to impact PK of antibody therapeutics, the effects of others, such as increased GFR and altered immune responses are not fully understood. We conclude that further investigations are needed to fully elucidate how pregnancy can impact PK properties of macromolecules.
Collapse
Affiliation(s)
- Million A Tegenge
- Division of Clinical Evaluation and Pharmacology/Toxicology, Office of Tissue and Advanced Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA.
| | - Iftekhar Mahmood
- Mahmood Clinical Pharmacology Consultancy LLC, Rockville, MD, USA
| | - Evi B Struble
- Division of Plasma Protein Therapeutics, Office of Tissue and Advanced Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Zuben Sauna
- Division of Plasma Protein Therapeutics, Office of Tissue and Advanced Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|