3
|
Aglago EK, Qu C, Harlid S, Phipps AI, Steinfelder RS, Ogino S, Thomas CE, Hsu L, Toland AE, Brenner H, Berndt SI, Buchanan DD, Campbell PT, Cao Y, Chan AT, Drew DA, Figueiredo JC, French AJ, Gallinger S, Georgeson P, Giannakis M, Goode EL, Gruber SB, Gunter MJ, Harrison TA, Hoffmeister M, Huang WY, Hullar MA, Huyghe JR, Jenkins MA, Lynch BM, Moreno V, Murphy N, Newton CC, Nowak JA, Obón-Santacana M, Sun W, Ugai T, Um CY, Zaidi SH, Tsilidis KK, van Guelpen B, Peters U. Folate intake and colorectal cancer risk according to genetic subtypes defined by targeted tumor sequencing. Am J Clin Nutr 2024; 120:664-673. [PMID: 39025327 PMCID: PMC11393398 DOI: 10.1016/j.ajcnut.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 07/06/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Folate is involved in multiple genetic, epigenetic, and metabolic processes, and inadequate folate intake has been associated with an increased risk of cancer. OBJECTIVE We examined whether folate intake is differentially associated with colorectal cancer (CRC) risk according to somatic mutations in genes linked to CRC using targeted sequencing. DESIGN Participants within 2 large CRC consortia with available information on dietary folate, supplemental folic acid, and total folate intake were included. Colorectal tumor samples from cases were sequenced for the presence of nonsilent mutations in 105 genes and 6 signaling pathways (IGF2/PI3K, MMR, RTK/RAS, TGF-β, WNT, and TP53/ATM). Multinomial logistic regression models were analyzed comparing mutated/nonmutated CRC cases to controls to compute multivariable-adjusted odds ratios (ORs) with 95% confidence interval (CI). Heterogeneity of associations of mutated compared with nonmutated CRC cases was tested in case-only analyses using logistic regression. Analyses were performed separately in hypermutated and nonhypermutated tumors, because they exhibit different clinical behaviors. RESULTS We included 4339 CRC cases (702 hypermutated tumors, 16.2%) and 11,767 controls. Total folate intake was inversely associated with CRC risk (OR = 0.93; 95% CI: 0.90, 0.96). Among hypermutated tumors, 12 genes (AXIN2, B2M, BCOR, CHD1, DOCK3, FBLN2, MAP3K21, POLD1, RYR1, TET2, UTP20, and ZNF521) showed nominal statistical significance (P < 0.05) for heterogeneity by mutation status, but none remained significant after multiple testing correction. Among these genetic subtypes, the associations between folate variables and CRC were mostly inverse or toward the null, except for tumors mutated for DOCK3 (supplemental folic acid), CHD1 (total folate), and ZNF521 (dietary folate) that showed positive associations. We did not observe differential associations in analyses among nonhypermutated tumors, or according to the signaling pathways. CONCLUSIONS Folate intake was not differentially associated with CRC risk according to mutations in the genes explored. The nominally significant differential mutation effects observed in a few genes warrants further investigation.
Collapse
Affiliation(s)
- Elom K Aglago
- Department of Epidemiology and Biostatistics, Imperial College London, School of Public Health, London, United Kingdom.
| | - Conghui Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Sophia Harlid
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
| | - Amanda I Phipps
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States; Department of Epidemiology, University of Washington, Seattle, WA, United States
| | - Robert S Steinfelder
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, United States; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Claire E Thomas
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States; Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - Amanda E Toland
- Department of Cancer Biology and Genetics and Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Parkville, VIC, Australia; University of Melbourne Centre for Cancer Research, The University of Melbourne, Parkville, VIC, Australia; Genomic Medicine and Family Cancer Clinic, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Peter T Campbell
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Yin Cao
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, MO, United States; Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO, United States; Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Andrew T Chan
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Broad Institute of MIT and Harvard, Cambridge, MA, United States; Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States; Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | - David A Drew
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Jane C Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States; Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Amy J French
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Steven Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Peter Georgeson
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Parkville, VIC, Australia; University of Melbourne Centre for Cancer Research, The University of Melbourne, Parkville, VIC, Australia
| | - Marios Giannakis
- Broad Institute of MIT and Harvard, Cambridge, MA, United States; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Ellen L Goode
- Department of Quantitative Health Sciences, Division of Epidemiology, Mayo Clinic, Rochester, MN, United States
| | - Stephen B Gruber
- Department of Medical Oncology & Therapeutics Research and Center for Precision Medicine, City of Hope National Medical Center, Duarte, CA, United States
| | - Marc J Gunter
- Department of Epidemiology and Biostatistics, Imperial College London, School of Public Health, London, United Kingdom
| | - Tabitha A Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wen-Yi Huang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Meredith Aj Hullar
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Jeroen R Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Brigid M Lynch
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia; Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
| | - Victor Moreno
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Barcelona, Spain; ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain; Department of Clinical Sciences, Faculty of Medicine and health Sciences and Universitat de Barcelona Institute of Complex Systems (UBICS), University of Barcelona (UB), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Neil Murphy
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | | | - Jonathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Mireia Obón-Santacana
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Barcelona, Spain; ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Wei Sun
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Tomotaka Ugai
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Caroline Y Um
- Department of Population Science, American Cancer Society, Atlanta, Georgia
| | - Syed H Zaidi
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Konstantinos K Tsilidis
- Department of Epidemiology and Biostatistics, Imperial College London, School of Public Health, London, United Kingdom; Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Greece
| | - Bethany van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden; Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States; Department of Epidemiology, University of Washington, Seattle, WA, United States
| |
Collapse
|
6
|
Jankovic-Karasoulos T, Smith MD, Leemaqz S, Williamson J, McCullough D, Arthurs AL, Jones LA, Bogias KJ, Mol BW, Dalton J, Dekker GA, Roberts CT. Elevated Maternal Folate Status and Changes in Maternal Prolactin, Placental Lactogen and Placental Growth Hormone Following Folic Acid Food Fortification: Evidence from Two Prospective Pregnancy Cohorts. Nutrients 2023; 15:1553. [PMID: 37049394 PMCID: PMC10097170 DOI: 10.3390/nu15071553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 04/14/2023] Open
Abstract
Folic acid (FA) food fortification in Australia has resulted in a higher-than-expected intake of FA during pregnancy. High FA intake is associated with increased insulin resistance and gestational diabetes. We aimed to establish whether maternal one-carbon metabolism and hormones that regulate glucose homeostasis change in healthy pregnancies post-FA food fortification. Circulating folate, B12, homocysteine, prolactin (PRL), human placental lactogen (hPL) and placental growth hormone (GH2) were measured in early pregnancy maternal blood in women with uncomplicated pregnancies prior to (SCOPE: N = 604) and post (STOP: N = 711)-FA food fortification. FA food fortification resulted in 63% higher maternal folate. STOP women had lower hPL (33%) and GH2 (43%) after 10 weeks of gestation, but they had higher PRL (29%) and hPL (28%) after 16 weeks. FA supplementation during pregnancy increased maternal folate and reduced homocysteine but only in the SCOPE group, and it was associated with 54% higher PRL in SCOPE but 28% lower PRL in STOP. FA food fortification increased maternal folate status, but supplements no longer had an effect, thereby calling into question their utility. An altered secretion of hormones that regulate glucose homeostasis in pregnancy could place women post-fortification at an increased risk of insulin resistance and gestational diabetes, particularly for older women and those with obesity.
Collapse
Affiliation(s)
| | - Melanie D. Smith
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA 5000, Australia
| | - Shalem Leemaqz
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA 5000, Australia
| | - Jessica Williamson
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA 5000, Australia
| | - Dylan McCullough
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA 5000, Australia
| | - Anya L. Arthurs
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA 5000, Australia
| | - Lauren A. Jones
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA 5000, Australia
| | | | - Ben W. Mol
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3800, Australia
| | - Julia Dalton
- Lyell McEwin Hospital, Adelaide, SA 5112, Australia
| | - Gustaaf A. Dekker
- Lyell McEwin Hospital, Adelaide, SA 5112, Australia
- Lyell McEwin Hospital, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Claire T. Roberts
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA 5000, Australia
| |
Collapse
|