1
|
Boctor J, Pandey G, Xu W, Murphy DV, Hoyle FC. Nature's Plastic Predators: A Comprehensive and Bibliometric Review of Plastivore Insects. Polymers (Basel) 2024; 16:1671. [PMID: 38932021 PMCID: PMC11207432 DOI: 10.3390/polym16121671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Unprecedented plastic production has resulted in over six billion tons of harmful waste. Certain insect taxa emerge as potential agents of plastic biodegradation. Through a comprehensive manual and bibliometric literature analysis, this review analyses and consolidates the growing literature related to insect-mediated plastic breakdown. Over 23 insect species, representing Coleoptera, Lepidoptera, and 4 other orders, have been identified for their capacity to consume plastic polymers. Natural and synthetic polymers exhibit high-level similarities in molecular structure and properties. Thus, in conjunction with comparative genomics studies, we link plastic-degrading enzymatic capabilities observed in certain insects to the exaptation of endogenous enzymes originally evolved for digesting lignin, cellulose, beeswax, keratin and chitin from their native dietary substrates. Further clarification is necessary to distinguish mineralisation from physicochemical fragmentation and to differentiate microbiome-mediated degradation from direct enzymatic reactions by insects. A bibliometric analysis of the exponentially growing body of literature showed that leading research is emerging from China and the USA. Analogies between natural and synthetic polymer's degradation pathways will inform engineering robust enzymes for practical plastic bioremediation applications. By aggregating, analysing, and interpreting published insights, this review consolidates our mechanistic understanding of insects as a potential natural solution to the escalating plastic waste crisis.
Collapse
Affiliation(s)
- Joseph Boctor
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (W.X.); (D.V.M.); (F.C.H.)
| | - Gunjan Pandey
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Environment, Acton, ACT 2601, Australia;
| | - Wei Xu
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (W.X.); (D.V.M.); (F.C.H.)
| | - Daniel V. Murphy
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (W.X.); (D.V.M.); (F.C.H.)
- SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Frances C. Hoyle
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (W.X.); (D.V.M.); (F.C.H.)
- SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
2
|
Dobrosielska M, Dobrucka R, Brząkalski D, Pajewska-Szmyt M, Kurzydłowski KJ, Przekop RE. The Influence of Environmental Factors on the Degradation of PLA/Diatomaceous Earth Composites. Polymers (Basel) 2024; 16:1450. [PMID: 38891398 PMCID: PMC11175028 DOI: 10.3390/polym16111450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
In the present study, tests were carried out on composite samples on a polylactide matrix containing 25% by weight of mineral filler in the form of diatomaceous earth, base, and silanized with GPTMOS (3-glycidoxypropyltrimethoxysilane), OTES (n-octyltriethoxysilane), and MTMOS (methyltrimethoxysilane) silanes. The addition of two types of waxes, synthetic polyamide wax and natural beeswax, were used as a factor to increase the rheological properties of the composites. The obtained samples were characterized in terms of the effect of filler silanization on the degradation rate of the composites. The tests were conducted under different conditioning conditions, i.e., after exposure to strong UV radiation for 250 and 500 h, and under natural sunlight for 21 days. The conditioning carried out under natural conditions showed that the modified samples exhibit up to twice the degradation rate of pure polylactide. The addition of synthetic wax to the composites increases the tendency to agglomerate diatomaceous earth, while natural wax has a positive effect on filler dispersion. For composites modified with GPTMOS and OTES silanes, it was noted that the addition of natural wax inhibited the degree of surface degradation, compared to the addition of synthetic wax, while the addition of MTMOS silane caused the opposite effect and samples with natural wax degraded more strongly. It was shown that, despite the high degree of surface degradation, the process does not occur significantly deep into the composite and stops at a certain depth.
Collapse
Affiliation(s)
- Marta Dobrosielska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, ul. Wołoska 141, 02-507 Warsaw, Poland;
| | - Renata Dobrucka
- Faculty of Materials Science and Engineering, Warsaw University of Technology, ul. Wołoska 141, 02-507 Warsaw, Poland;
- Department of Non-Food Products Quality and Packaging Development, Institute of Quality Science, Poznań University of Economics and Business, al. Niepodległości 10, 61-875 Poznań, Poland
| | - Dariusz Brząkalski
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskigo 10, 61-614 Poznan, Poland; (D.B.); (M.P.-S.)
| | - Martyna Pajewska-Szmyt
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskigo 10, 61-614 Poznan, Poland; (D.B.); (M.P.-S.)
| | - Krzysztof J. Kurzydłowski
- Faculty of Mechanical Engineering, Bialystok University of Technology, ul. Wiejska 45c, 15-351 Bialystok, Poland;
| | - Robert E. Przekop
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskigo 10, 61-614 Poznan, Poland; (D.B.); (M.P.-S.)
| |
Collapse
|
3
|
Przekop RE, Sztorch B, Głowacka J, Martyła A, Romańczuk-Ruszuk E, Jałbrzykowski M, Derpeński Ł. OH End-Capped Silicone as an Effective Nucleating Agent for Polylactide-A Robotizing Method for Evaluating the Mechanical Characteristics of PLA/Silicone Blends. Polymers (Basel) 2024; 16:1142. [PMID: 38675061 PMCID: PMC11053881 DOI: 10.3390/polym16081142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Current research on materials engineering focuses mainly on bio-based materials. One of the most frequently studied materials in this group is polylactide (PLA), which is a polymer derived from starch. PLA does not have a negative impact on the natural environment and additionally, it possesses properties comparable to those of industrial polymers. The aim of the work was to investigate the potential of organosilicon compounds as modifiers of the mechanical and rheological properties of PLA, as well as to develop a new method for conducting mechanical property tests through innovative high-throughput technologies. Precise dosing methods were utilized to create PLA/silicone polymer blends with varying mass contents, allowing for continuous characterization of the produced blends. To automate bending tests and achieve comprehensive characterization of the blends, a self-created workstation setup has been used. The tensile properties of selected blend compositions were tested, and their ability to withstand dynamic loads was studied. The blends were characterized through various methods, including rheological (MFI), X-ray (XRD), spectroscopic (FTIR), and thermal properties analysis (TG, DSC, HDT), and they were evaluated using microscopic methods (MO, SEM) to examine their structures.
Collapse
Affiliation(s)
- Robert E. Przekop
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznań, 10 Uniwersytetu Poznańskiego, 61-614 Poznań, Poland; (R.E.P.); (J.G.); (A.M.)
| | - Bogna Sztorch
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznań, 10 Uniwersytetu Poznańskiego, 61-614 Poznań, Poland; (R.E.P.); (J.G.); (A.M.)
| | - Julia Głowacka
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznań, 10 Uniwersytetu Poznańskiego, 61-614 Poznań, Poland; (R.E.P.); (J.G.); (A.M.)
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, 8 Uniwersytetu Poznańskiego, 61-614 Poznań, Poland
| | - Agnieszka Martyła
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznań, 10 Uniwersytetu Poznańskiego, 61-614 Poznań, Poland; (R.E.P.); (J.G.); (A.M.)
| | - Eliza Romańczuk-Ruszuk
- Institute of Biomedical Engineering, Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska 45C Street, 15-351 Bialystok, Poland;
| | - Marek Jałbrzykowski
- Institute of Mechanical Engineering, Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska 45C Street, 15-351 Bialystok, Poland;
| | - Łukasz Derpeński
- Institute of Mechanical Engineering, Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska 45C Street, 15-351 Bialystok, Poland;
| |
Collapse
|
4
|
Pop MA, Croitoru C, Matei S, Zaharia SM, Coșniță M, Spîrchez C. Thermal and Sound Insulation Properties of Organic Biocomposite Mixtures. Polymers (Basel) 2024; 16:672. [PMID: 38475356 DOI: 10.3390/polym16050672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Sustainable building materials with excellent thermal stability and sound insulation are crucial for eco-friendly construction. This study investigates biocomposites made from cellulose pulp reinforced with beeswax, fir resin, and natural fillers like horsetail, rice flour, and fir needles. Eight formulations were obtained, and their thermal resistance, oxidation temperature, and acoustic properties were evaluated. Biocomposites exhibited significant improvements compared to conventional materials. Oxidation temperature onset increased by 60-70 °C compared to polyurethane foam or recycled textiles, reaching 280-290 °C. Sound absorption coefficients ranged from 0.15 to 0.78, with some formulations exceeding 0.5 across mid-frequencies, indicating good sound-dampening potential. These findings demonstrate the promise of these biocomposites for sustainable construction, offering a balance of thermal and acoustic performance alongside environmental and health benefits.
Collapse
Affiliation(s)
- Mihai Alin Pop
- Department of Materials Science, Transilvania University of Brasov, 500036 Brasov, Romania
| | - Cătălin Croitoru
- Materials Engineering and Welding Department, Transilvania University of Brasov, 500036 Brasov, Romania
| | - Simona Matei
- Department of Materials Science, Transilvania University of Brasov, 500036 Brasov, Romania
| | - Sebastian-Marian Zaharia
- Department of Manufacturing Engineering, Transilvania University of Brasov, 500036 Brasov, Romania
| | - Mihaela Coșniță
- Department of Product Design, Mechatronics and Environment, Transilvania University of Brasov, 500036 Brasov, Romania
| | - Cosmin Spîrchez
- Wood Processing and Design Wooden Product Department, Transilvania University of Brasov, 500036 Brasov, Romania
| |
Collapse
|
5
|
Dobrosielska M, Dobrucka R, Brząkalski D, Kozera P, Martyła A, Gabriel E, Kurzydłowski KJ, Przekop RE. Polyamide 11 Composites Reinforced with Diatomite Biofiller-Mechanical, Rheological and Crystallization Properties. Polymers (Basel) 2023; 15:polym15061563. [PMID: 36987343 PMCID: PMC10053006 DOI: 10.3390/polym15061563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Amorphic diatomaceous earth is derived from natural sources, and polyamide 11 (PA11) is produced from materials of natural origin. Both of these materials show a low harmfulness to the environment and a reduced carbon footprint. This is why the combination of these two constituents is beneficial not only to improve the physicochemical and mechanical properties of polyamide 11 but also to produce a biocomposite. For the purpose of this paper, the test biocomposite was produced by combining polyamide 11, as well as basic and pre-fractionated diatomaceous earth, which had been subjected to silanization. The produced composites were used to carry out rheological (melt flow rate-MFR), mechanical (tensile strength, bending strength, impact strength), crystallographic (X-ray Diffraction-XRD), thermal and thermo-mechanical (differential scanning calorimetry-DSC, dynamic mechanical thermal analysis-DMTA) analyses, as well as a study of hydrophobic-hydrophilic properties of the material surface (wetting angle) and imaging of the surface of the composites and the fractured specimens. The tests showed that the additive 3-aminopropyltriethoxysilane (APTES) acted as an agent that improved the elasticity of composites and the melt flow rate. In addition, the produced composites showed a hydrophilic surface profile compared to pure polylactide and polyamide 11.
Collapse
Affiliation(s)
- Marta Dobrosielska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, ul. Wołoska 141, 02-507 Warsaw, Poland
| | - Renata Dobrucka
- Faculty of Materials Science and Engineering, Warsaw University of Technology, ul. Wołoska 141, 02-507 Warsaw, Poland
- Department of Non-Food Products Quality and Packaging Development, Institute of Quality Science, Poznań University of Economics and Business, al. Niepodległości 10, 61-875 Poznań, Poland
| | - Dariusz Brząkalski
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Paulina Kozera
- Faculty of Materials Science and Engineering, Warsaw University of Technology, ul. Wołoska 141, 02-507 Warsaw, Poland
| | - Agnieszka Martyła
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Ewa Gabriel
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Krzysztof J Kurzydłowski
- Faculty of Mechanical Engineering, Bialystok University of Technology, ul. Wiejska 45c, 15-351 Bialystok, Poland
| | - Robert E Przekop
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| |
Collapse
|