1
|
Adly ME, Taher AT, Ahmed FM, Mahmoud AM, Salem MA, El-Masry RM. New series of fluoroquinolone derivatives as potential anticancer Agents: Design, Synthesis, in vitro biological Evaluation, and Topoisomerase II Inhibition. Bioorg Chem 2025; 156:108163. [PMID: 39827653 DOI: 10.1016/j.bioorg.2025.108163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 01/04/2025] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
A series of fluoroquinolone analogs (II, IIIa-g) derived from Ciprofloxacin hydrazide were designed, and synthesized. The NCI-60 Human Tumor Cell Line Screening assay indicated that compounds II, IIIb, and IIIf are the most potent among the series and were further selected for five-dose evaluation, where they exhibited potent cytotoxicity with mean GI50 values of 3.30, 2.45, and 9.06 µM, respectively, where they reduced the cell proliferation of most of the tested cell lines with IC50 values significantly lower than the reference drug Etoposide. A selectivity study demonstrated the high selective cytotoxicity of IIIf towards cancerous cells over normal mammalian Vero cells, presenting it as a potent and selective antitumor agent. Cell cycle analysis revealed that treatment with II, IIIb, or IIIf induced cell cycle arrest at the G2/M phase in MCF-7 cells. Topoisomerase II enzyme inhibition assay showed that the three tested compounds are potent topo II inhibitors where compound II (IC50 = 51.66 µM) displayed more potent inhibitory activity compared to the well-known topo II inhibitor Etoposide (IC50 = 58.96 µM), while compounds IIIb and IIIf showed comparable activity to the reference drug. Molecular modeling study suggested that the topoisomerase inhibitory activity may be attributed to the binding to the Merbarone binding site and chelation with Mg2+.
Collapse
Affiliation(s)
- Mina E Adly
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11565, Egypt
| | - Azza T Taher
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11565, Egypt; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, October 6 University (O6U), October 6 City 12585, Egypt
| | - Fakher M Ahmed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, October 6 University (O6U), October 6 City 12585, Egypt
| | - Ashraf M Mahmoud
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, October 6 University (O6U), October 6 City 12585, Egypt
| | - Mohamed A Salem
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, October 6 University (O6U), October 6 City 12585, Egypt
| | - Rana M El-Masry
- Department of Organic Chemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), October 6 City 12451, Egypt.
| |
Collapse
|
2
|
Oancea OL, Gâz ȘA, Marc G, Lungu IA, Rusu A. In Silico Evaluation of Some Computer-Designed Fluoroquinolone-Glutamic Acid Hybrids as Potential Topoisomerase II Inhibitors with Anti-Cancer Effect. Pharmaceuticals (Basel) 2024; 17:1593. [PMID: 39770435 PMCID: PMC11679884 DOI: 10.3390/ph17121593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Fluoroquinolones (FQs) are topoisomerase II inhibitors with antibacterial activity, repositioned recently as anti-cancer agents. Glutamic acid (GLA) is an amino acid that affects human metabolism. Since an anti-cancer mechanism of FQs is human topoisomerase II inhibition, it is expected that FQ-GLA hybrids can act similarly. Methods: We designed 27 hypothetical hybrids of 6 FQs and GLA through amide bonds at the 3- and 7-position groups of FQs or via ethylenediamine/ethanolamine linkers at the carboxyl group of the FQ. Hydroxamic acid derivatives were also theoretically formulated. Computational methods were used to predict their physicochemical, pharmacokinetic, or toxicological properties and their anti-cancer activity. For comparison, etoposide was used as an anti-cancer agent inhibiting topoisomerase II. Molecular docking assessed whether the hybrids could interact with the human topoisomerase II beta in the same binding site and interaction sites as etoposide. Results: All the hybrids acted as potential topoisomerase II inhibitors, demonstrating possible anti-cancer activity on several cancer cell lines. Among all the proposed hybrids, MF-7-GLA would be the ideal candidate as a lead compound. The hybrid OF-3-EDA-GLA and the hydroxamic acid derivatives also stood out. Conclusions: Both FQs and GLA have advantageous structures for obtaining hybrids with favourable properties. Improvements in the hybrids' structure could lead to promising results.
Collapse
Affiliation(s)
- Octavia-Laura Oancea
- Organic Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Șerban Andrei Gâz
- Organic Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Gabriel Marc
- Organic Chemistry Department, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
| | - Ioana-Andreea Lungu
- Medicine and Pharmacy Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Aura Rusu
- Pharmaceutical and Therapeutic Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| |
Collapse
|
3
|
Kassab AE, Gomaa RM, Gedawy EM. Drug repurposing of fluoroquinolones as anticancer agents in 2023. RSC Adv 2024; 14:37114-37130. [PMID: 39569131 PMCID: PMC11578043 DOI: 10.1039/d4ra03571b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024] Open
Abstract
Drug developers are currently focusing on investigating alternative strategies, such as "drug repositioning", to address issues associated with productivity, regulatory obstacles, and the steadily rising cost of pharmaceuticals. Repositioning is the best strategy to stop searching for new drugs because it takes less time and money to investigate new indications for already approved or unsuccessful drugs. Although there are several potent Topo II inhibitors available on the market as important drugs used in the therapy of many types of cancer, more may be required in the future. The current inhibitors have drawbacks including acquired resistance and unfavorable side effects such as cardiotoxicity and subsequent malignancy. A substantial body of research documented the cytotoxic potential of experimental fluoroquinolones (FQs) on tumor cell lines and their remarkable efficacy against eukaryotic Topo II in addition to optimized physical and metabolic characteristics. The FQ scaffold has a unique ability to potentially resolve every major issue associated with traditional Topo II inhibitors while maintaining a highly desirable profile in crucial drug-likeness parameters; therefore, there is a significant chance that FQs will be repositioned as anticancer candidates. This review offers a summary of the most recent research on the anticancer potential of FQs that was published in 2023. Along with discussing structural activity relationship studies and the mechanism underlying their antiproliferative activity, this review aims to provide up-to-date information that will spur the development of more potent FQs as viable cancer treatment candidates.
Collapse
Affiliation(s)
- Asmaa E Kassab
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University Kasr El-Aini Street, P. O. Box 11562 Cairo Egypt
| | - Rania M Gomaa
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University P. O. Box 35516 Mansoura Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC) Badr City, P. O. Box 11829 Cairo Egypt +2023635140 +2023639307
| | - Ehab M Gedawy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University Kasr El-Aini Street, P. O. Box 11562 Cairo Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC) Badr City, P. O. Box 11829 Cairo Egypt +2023635140 +2023639307
| |
Collapse
|
4
|
Nandakumar V, Selvi Ramasamy S, Adhigaman K, Arumugam D, Ramasamy S, Vivek R, Athimoolam S, Thangaraj S. Investigating the Antiproliferative Activity of Novel 4-Chloro-8-Nitro-1,2-Dihydro-3-Quinoline Acylhydrazones on Human Cervical Cancer Cell Lines. Chem Biodivers 2024:e202401636. [PMID: 39543828 DOI: 10.1002/cbdv.202401636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/17/2024]
Abstract
A new series of acyl hydrazones have been synthesized from 4-chloro-8-nitro-1,2-dihydroquinoline-3-carbaldehyde. These compounds were characterized using various spectroscopic techniques. Density functional theoretical (DFT) studies were conducted to understand the correlation between electronic parameters and biological activity. The biological activity of the compounds was theoretically examined through molecular docking and ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) analysis. The compounds demonstrated high absorption rates and were found to be non-hepatotoxic. Preliminary cytotoxicity screenings against HeLa cell lines identified compound 7 as the most potent, with an IC50 value of 18.8 μM. This compound was further selected for bioimaging studies. The results indicate that compound 7 induces apoptosis at its IC50 concentration, suggesting its potential as an anticancer agent.
Collapse
Affiliation(s)
- Vandana Nandakumar
- Department of Chemistry, Bharathiar University, 641046, Coimbatore, Tamilnadu, India
| | | | - Kaviyarasu Adhigaman
- Department of Chemistry, Bharathiar University, 641046, Coimbatore, Tamilnadu, India
| | - Deepak Arumugam
- Department of Physics, Bharathiar University, 641046, Coimbatore, Tamilnadu, India
| | - Shankar Ramasamy
- Department of Physics, Bharathiar University, 641046, Coimbatore, Tamilnadu, India
| | - Raju Vivek
- Department of Zoology, Bharathiar University, 641046, Coimbatore, Tamilnadu, India
| | | | - Suresh Thangaraj
- Department of Chemistry, Bharathiar University, 641046, Coimbatore, Tamilnadu, India
| |
Collapse
|
5
|
Wu X, Xu G, Lu C, Shen Y. Synthesis of 2-phenylnaphthalenoid amide derivatives and their topoisomerase IIα inhibitory and antiproliferative activities. Arch Pharm (Weinheim) 2024; 357:e2400175. [PMID: 38922999 DOI: 10.1002/ardp.202400175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/01/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Topoisomerases are highly associated with cell proliferation, becoming an important target for the development of antitumor drugs. 2-Phenylnaphthalenoids (2PNs) have been identified as human DNA topoisomerase IIα (TopoIIα) inhibitors. In this study, based on the 2PN scaffold, 20 amide derivatives (J1-J10, K1-K10) were synthesized. Among them, K10 showed high TopoIIα inhibitory activity and stronger antiproliferation activity against HepG-2 and MDA-MB-231 cells (IC50 0.33 and 0.63 μM, respectively) than the positive control VP-16 (IC50 9.19 and 10.86 μM) and the lead F2 (IC50 0.64 and 1.51 μM). Meanwhile, K10 could also inhibit migration and promote apoptosis of HepG-2 and MDA-MB-231 cells. Therefore, K10 can be developed into a potent TopoIIα inhibitor as an antitumor agent. The structure-activity relationship was also discussed.
Collapse
Affiliation(s)
- Xiaoxia Wu
- Department of Natural Pharmaceutical Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Guangsen Xu
- Department of Natural Pharmaceutical Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Chunhua Lu
- Department of Natural Pharmaceutical Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Yuemao Shen
- Department of Natural Pharmaceutical Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
6
|
Elsebaie HA, Abdulla MH, Elsayed ZM, Shaldam MA, Tawfik HO, Morsy SN, Vaali Mohammed MA, Bin Traiki T, Elkaeed EB, Abdel-Aziz HA, Eldehna WM. Unveiling the potential of isatin-grafted phenyl-1,2,3-triazole derivatives as dual VEGFR-2/STAT-3 inhibitors: Design, synthesis and biological assessments. Bioorg Chem 2024; 151:107626. [PMID: 39013242 DOI: 10.1016/j.bioorg.2024.107626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024]
Abstract
The use of VEGFR-2 inhibitors as a stand-alone treatment has proven to be ineffective in clinical trials due to the robustness of cellular response loops that lead to treatment resistance when only targeting VEGFR-2. The over-activation of the signal transducer/activator of transcription 3 (STAT-3) is expected to significantly impact treatment failure and resistance to VEGFR-2 inhibitors. In this study, we propose the concept of combined inhibition of VEGFR-2 and STAT-3 to combat induced STAT-3-mediated resistance to VEGFR-2 inhibition therapy. To explore this, we synthesized new isatin-grafted phenyl-1,2,3-triazole derivatives "6a-n" and "9a-f". Screening on PANC1 and PC3 cancer cell lines revealed that compounds 6b, 6 k, 9c, and 9f exhibited sub-micromolar ranges. The most promising molecules, 6b, 6 k, 9c, and 9f, demonstrated the highest inhibition when tested as dual inhibitors on VEGFR-2 (with IC50 range 53-82 nM, respectively) and STAT-3 (with IC50 range 5.63-10.25 nM). In particular, triazole 9f showed the best results towards both targets. Inspired by these findings, we investigated whether 9f has the ability to trigger apoptosis in prostate cancer PC3 cells via the assessment of the expression levels of the apoptotic markers Caspase-8, Bcl-2, Bax, and Caspase-9. Treatment of the PC3 cells with compound 9f significantly inhibited the protein expression levels of VEGFR-2 and STAT-3 kinases compared to the control.
Collapse
Affiliation(s)
- Heba A Elsebaie
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Maha-Hamadien Abdulla
- Colorectal Research Chair, Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | - Zainab M Elsayed
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Samar N Morsy
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mansoor-Ali Vaali Mohammed
- Colorectal Research Chair, Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Thamer Bin Traiki
- Colorectal Research Chair, Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Cairo 12622, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Canal El Mahmoudia St., Alexandria 21648, Egypt.
| |
Collapse
|
7
|
Faizan S, Wali AF, Talath S, Rehman MU, Sivamani Y, Nilugal KC, Shivangere NB, Attia SM, Nadeem A, Elayaperumal S, Kumar BRP. Novel dihydropyrimidines as promising EGFR & HER2 inhibitors: Insights from experimental and computational studies. Eur J Med Chem 2024; 275:116607. [PMID: 38908102 DOI: 10.1016/j.ejmech.2024.116607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 06/24/2024]
Abstract
Dihydropyrimidines are widely recognized for their diverse biological properties and are often synthesized by the Biginelli reactions. In this backdrop, a novel series of Biginelli dihydropyrimidines were designed, synthesized, purified, and analyzed by FT-IR, 1H NMR, 13C NMR, and mass spectrometry. Anticancer activity against MCF-7 breast cancer cells was evaluated as part of their cytotoxicity in comparison with the normal Vero cells. The cytotoxicity of dihydropyrimidines ranges from moderate to significant. Among the 38 dihydropyrimidines screened, compounds 16, 21, and 39 exhibited significant cytotoxicity. These 3 compounds were subjected to flow cytometry studies and EGFRwt Kinase inhibition assay using lapatinib as a standard. The study included evaluation for the inhibition of EGFR and HER2 expression at five different concentrations. At a concentration of 1000 nM compound 21 showed 98.51 % and 96.79 % inhibition of EGFR and HER2 expression. Moreover, compounds 16, 21 and 39 significantly inhibited EGFRwt activity with IC50 = 69.83, 37.21 and 76.79 nM, respectively. In addition, 3D-QSAR experiments were conducted to elucidate Structure activity relationships in a 3D grid space by comparing the experimental and predicted cytotoxic activities. Molecular docking studies were performed to validate the results by in silico method. All together, we developed a new series of Biginelli dihydropyrimidines as dual EGFR/HER2 inhibitors.
Collapse
Affiliation(s)
- Syed Faizan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru 570015, Constituent College of the JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Adil Farooq Wali
- Department of Pharmaceutical Chemistry, RAK College of Pharmacy, RAK Medical & Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK College of Pharmacy, RAK Medical & Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Yuvaraj Sivamani
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru 570015, Constituent College of the JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Kiran C Nilugal
- School of Pharmacy, Management and Science University, Selangor, 40100, Malaysia
| | | | - Sabry M Attia
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sumitha Elayaperumal
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | - B R Prashantha Kumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru 570015, Constituent College of the JSS Academy of Higher Education & Research, Mysuru, 570015, India.
| |
Collapse
|
8
|
Baz MM, Selim AM, Radwan IT, Alkhaibari AM, Gattan HS, Alruhaili MH, Alasmari SM, Gad ME. Evaluating larvicidal, ovicidal and growth inhibiting activity of five medicinal plant extracts on Culex pipiens (Diptera: Culicidae), the West Nile virus vector. Sci Rep 2024; 14:19660. [PMID: 39191818 PMCID: PMC11350158 DOI: 10.1038/s41598-024-69449-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
Mosquitoes, one of the deadliest animals on the planet, cause millions of fatalities each year by transmitting several human illnesses. Synthetic pesticides were previously used to prevent the spread of diseases by mosquitoes, which was effective in protecting humans but caused serious human health problems, environmental damage, and developed mosquito pesticide resistance. This research focuses on exploring new, more effective, safer, and environmentally friendly compounds to improve mosquito vector management. Phytochemicals are possible biological agents for controlling pests and many are target-specific, rapidly biodegradable, and eco-friendly. The potential of extracts of Lantana camara, Melia azedarach, Nerium oleander, Ricinus communis, and Withania somnifera against 3rd instar Culex pipiens (Common house mosquito) larvae was evaluated. Methanol extracts had more toxic effects against Cx. pipiens larvae (95-100%, 24 h post-treatment) than aqueous extracts (63-91%, 24 h post-treatment). The methanol extracts of Nerium oleander (LC50 = 158.92 ppm) and Ricinus communis (LC50 = 175.04 ppm) were very effective at killing mosquito larvae, 24 h after treatment. N. oleander (LC50 = 373.29 ppm) showed high efficacy in aqueous plant extracts. Among the different extracts of the five plants screened, the methanol extract of R. communis recorded the highest ovicidal activity of 5% at 800 ppm concentration. Total developmental duration and growth index were highly affected by R. communis and M. azedarach methanol extracts. In field tests it was clear that plant extracts decreased mosquito larval density, especially when mixed with mosquito Bti briquette, with stability up to seven days for N. oleander. GC-MS results showed that the methanol extract had a higher number of chemical compounds, particularly with more terpene compounds. A high-performance liquid chromatography (HPLC) technique was used to detect the existence of non-volatile polyphenols and flavonoids. All five methanol extracts showed high concentrations of active ingredients such as gallic acid, chlorogenic acid (more than 100 μg/ml) and the rosmarinic acid was also found in all the five extracts in addition to 17 active polyphenols and flavonoids presented at moderate to low concentrations. Molecular modeling of 18 active ingredients detected by the HPLC were performed to the vicinity of one of the fatty acid binding proteins of lm-FABP (PDB code: 2FLJ). Rutin, Caffeic acid, coumaric acid and rosmarinic acid which presented densely in R. communis and N. oleander showed multiple and stable intermolecular hydrogen bonding and π-π stacking interactions. The inhibition ability of the fatty acid binding protein, FABP4, was evaluated with remarkable receptor inhibition evident, especially with R. communis and N. oleander having inhibitory concentrations of IC50 = 0.425 and 0.599 µg/mL, respectively. The active phytochemical compounds in the plants suggest promising larvicidal and ovicidal activity, and have potential as a safe and effective alternative to synthetic insecticides.
Collapse
Affiliation(s)
- Mohamed M Baz
- Entomology Department, Faculty of Science, Benha University, Benha, 13518, Qalyubiya, Egypt
| | - Abdelfattah M Selim
- Department of Animal Medicine (Infectious Diseases), College of Veterinary Medicine, Benha University, Toukh, 13736, Egypt.
| | - Ibrahim Taha Radwan
- Supplementary General Sciences Department, Faculty of Oral and Dental Medicine, Future University in Egypt, Cairo, 11835, Egypt.
| | - Abeer Mousa Alkhaibari
- Department of Biology, Faculty of Science, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Hattan S Gattan
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Mohammed H Alruhaili
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King AbdulAziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Saeed M Alasmari
- Department of Biology, Faculty of Science and Arts, Najran University, 1988, Najran, Saudi Arabia
| | - Mohammed E Gad
- Department of Zoology and Entomology, Faculty of Science, Al Azhar University, Nasr City, 11884, Cairo, Egypt
| |
Collapse
|
9
|
Baz MM, El-Shourbagy NM, Alkhaibari AM, Gattan HS, Alruhaili MH, Selim A, Radwan IT. Larvicidal activity of Acacia nilotica extracts against Culex pipiens and their suggested mode of action by molecular simulation docking. Sci Rep 2024; 14:6248. [PMID: 38486053 PMCID: PMC10940718 DOI: 10.1038/s41598-024-56690-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/09/2024] [Indexed: 03/17/2024] Open
Abstract
Mosquitoes are one of the deadliest and most hazardous animals on Earth, where they transmit several diseases that kill millions of people annually. There is an ongoing search almost everywhere in the world for more effective and contemporary ways to control mosquitoes other than pesticides. Phytochemicals are affordable, biodegradable biological agents that specialize in eliminating pests that represent a risk to public health. The effectiveness of Acacia nilotica methanol and aqueous leaf extracts against 4th instar larvae was evaluated. The results revealed that the methanol extract of A. nilotica had a noticeable influence on the mortality rate of mosquito larvae, especially at high concentrations. Not only did the mortality rate rise significantly, but the hatching of the mosquito eggs was potentially suppressed.Terpenes, fatty acids, esters, glycosides, pyrrolidine alkane, piperazine, and phenols were the most prevalent components in the methanol extract, while the aqueous extract of A. nilotica exclusively showed the presence of fatty acids. The insecticidal susceptibility tests of both aqueous and alcoholic extract of A. nilotica confirmed that the Acacia plant could serves as a secure and efficient substitute for chemical pesticides because of its promising effect on killing larvae and egg hatching delaying addition to their safety as one of the natural pesticides. Molecular docking study was performed using one of the crucial and life-controlling protein targets, fatty acid binding protein (FABP) and the most active ingredients as testing ligands to describe their binding ability. Most of the structurally related compounds to the co-crystallized ligand, OLA, like hexadecanoic acid furnished high binding affinity to the target protein with very strong and stable intermolecular hydrogen bonding and this is quite similar to OLA itself. Some other structural non-related compounds revealed extraordinarily strong binding abilities like Methoxy phenyl piperazine. Most of the binding reactivities of the majortested structures are due to high structure similarity between the positive control, OLA, and tested compounds. Such structure similarity reinforced with the binding abilities of some detected compounds in the A. nilotica extract could present a reasonable interpretation for its insecticidal activity via deactivating the FABP protein. The FABP4 enzyme inhibition activity was assessed for of both methanolic and aqueous of acacia plant extract and the inhibition results of methanol extract depicted noticeable potency if compared to orlistat, with half-maximal inhibitory concentration (IC50) of 0.681, and 0.535 µg/ml, respectively.
Collapse
Affiliation(s)
- Mohamed M Baz
- Entomology Department, Faculty of Science, Benha University, Benha, 13518, Egypt.
| | - Nancy M El-Shourbagy
- Entomology Department, Faculty of Science, Benha University, Benha, 13518, Egypt
| | - Abeer Mousa Alkhaibari
- Department of Biology, Faculty of Science, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Hattan S Gattan
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Mohammed H Alruhaili
- Special Infectious Agents Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah, Saudi Arabia
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Abdelfattah Selim
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Toukh, 13736, Egypt.
| | - Ibrahim Taha Radwan
- Supplementary General Sciences Department, Faculty of Oral and Dental Medicine, Future University in Egypt, Cairo, 11835, Egypt.
| |
Collapse
|
10
|
Elsebaie HA, El-Moselhy TF, El-Bastawissy EA, Elberembally KM, Badi RM, Elkaeed EB, Shaldam MA, Eldehna WM, Tawfik HO. Development of new thieno[2,3-d]pyrimidines as dual EGFR and STAT3 inhibitors endowed with anticancer and pro-apoptotic activities. Bioorg Chem 2024; 143:107101. [PMID: 38183682 DOI: 10.1016/j.bioorg.2024.107101] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/20/2023] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
In part due to the resilience of cellular feedback pathways that develop therapeutic resistance to targeting the EGFR alone, using EGFR inhibitors alone was demonstrated to be unsuccessful in clinical trials. The over-activation of the signal transducer/activator of transcription 3 (STAT3) during the administration of an EGFR inhibitor is expected to play a substantial part in the failure and resistance of EGFR inhibitor treatment. Therein, we proposed a hypothesis that induced STAT3-mediated resistance to EGFR inhibition therapy could be addressed by a dual inhibition of EGFR and STAT3 method. To this end, we tried to discover new thieno[2,3-d]pyrimidine derivatives "5a-o". Results from the screening on A549 and MCF7 cancer cell lines revealed that compounds 5j and 5k showed two-digit nanomolar with appropriate safety towards the WI-38 cell line. The best molecules, 5j and 5k, were subjected to γ-radiation, and their cytotoxic efficacy didn't change after irradiation, demonstrating that not having to use it avoided its side effects. Compounds 5j and 5k demonstrated the highest inhibition when their potency was tested as dual inhibitors on EGFR 67 and 41 nM, respectively, and STAT3 5.52 and 3.34 nM, respectively, proved with in silico molecular docking and dynamic simulation. In light of the results presented above, the capacity of both powerful compounds to alter the cell cycle and initiate the apoptotic process in breast cancer MCF7 cells was investigated. Caspase-8, Bcl-2, Bax and Caspase-9 apoptotic indicators were studied.
Collapse
Affiliation(s)
- Heba A Elsebaie
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Tarek F El-Moselhy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Eman A El-Bastawissy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Kamel M Elberembally
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Rehab Mustafa Badi
- Department of Medical Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia.
| | - Eslam B Elkaeed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt; Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia.
| | - Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| | - Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| |
Collapse
|
11
|
Santos MB, de Azevedo Teotônio Cavalcanti M, de Medeiros E Silva YMS, Dos Santos Nascimento IJ, de Moura RO. Overview of the New Bioactive Heterocycles as Targeting Topoisomerase Inhibitors Useful Against Colon Cancer. Anticancer Agents Med Chem 2024; 24:236-262. [PMID: 38038012 DOI: 10.2174/0118715206269722231121173311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/14/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023]
Abstract
Colorectal cancer (CRC) is the third most common cancer globally, with high mortality. Metastatic CRC is incurable in most cases, and multiple drug therapy can increase patients' life expectancy by 2 to 3 years. Efforts are being made to understand the relationship between topoisomerase enzymes and colorectal cancer. Some studies have shown that higher expression of these enzymes is correlated to a poor prognosis for this type of cancer. One of the primary drugs used in the treatment of CRC is Irinotecan, which can be used in monotherapy or, more commonly, in therapeutic schemes such as FOLFIRI (Fluorouracil, Leucovorin, and Irinotecan) and CAPIRI (Capecitabine and Irinotecan). Like Camptothecin, Irinotecan and other compounds have a mechanism of action based on the formation of a ternary complex with topoisomerase I and DNA providing damage to it, therefore leading to cell death. Thus, this review focused on the principal works published in the last ten years that demonstrate a correlation between the inhibition of different isoforms of topoisomerase and in vitro cytotoxic activity against CRC by natural products, semisynthetic and synthetic compounds of pyridine, quinoline, acridine, imidazoles, indoles, and metal complexes. The results revealed that natural compounds, semisynthetic and synthetic derivatives showed potential in vitro cytotoxicity against several colon cancer cell lines, and this activity was often accompanied by the ability to inhibit both isoforms of topoisomerase (I and II), highlighting that these enzymes can be promising targets for the development of new chemotherapy against CRC. Pyridine analogs were considered the most promising for this study, while the evaluation of the real potential of natural products was limited by the lack of information in their work. Moreover, the complexes, although promising, presented as the main limitation the lack of selectivity.
Collapse
Affiliation(s)
- Mirelly Barbosa Santos
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil
| | - Misael de Azevedo Teotônio Cavalcanti
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil
| | - Yvnni Maria Sales de Medeiros E Silva
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil
| | - Igor José Dos Santos Nascimento
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil
- Departament of Pharmacy, Cesmac University Center, Maceió, Brazil
| | - Ricardo Olimpio de Moura
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil
| |
Collapse
|
12
|
Peter S, Aderibigbe BA. Ciprofloxacin and Norfloxacin Hybrid Compounds: Potential Anticancer Agents. Curr Top Med Chem 2024; 24:644-665. [PMID: 38357952 DOI: 10.2174/0115680266288319240206052223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND The concept of utilizing drug repurposing/repositioning in the development of hybrid molecules is an important strategy in drug discovery. Fluoroquinolones, a class of antibiotics, have been reported to exhibit anticancer activities. Although anticancer drug development is achieving some positive outcomes, there is still a need to develop new and effective anticancer drugs. Some limitations associated with most of the available anticancer drugs are drug resistance and toxicity, poor bio-distribution, poor solubility, and lack of specificity, thereby reducing their therapeutic outcomes. OBJECTIVES Fluoroquinolones, a known class of antibiotics, have been explored by hybridizing them with other pharmacophores and evaluating their anticancer activity in silico and in vitro. Hence, this review provides an update on new anticancer drugs containing fluoroquinolones moiety, Ciprofloxacin and Norfloxacin between 2020 and 2023, their structural relationship activity, and the future strategies to develop potent chemotherapeutic agents. METHODS Fluoroquinolones were mostly hybridized via the N-4 of the piperazine ring on position C-7 with known pharmacophores characterized, followed by biological studies to evaluate their anticancer activity. RESULTS The hybrid molecules displayed promising and interesting anticancer activities. Factors such as the nature of the linker, the presence of electron-withdrawing groups, nature, and position of the substituents influenced the anticancer activity of the synthesized compounds. CONCLUSION The hybrids were selective towards some cancer cells. However, further in vivo studies are needed to fully understand their mode of action.
Collapse
Affiliation(s)
- Sijongesonke Peter
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Private Bag X1314, Alice, Eastern Cape, South Africa
| | - Blessing A Aderibigbe
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Private Bag X1314, Alice, Eastern Cape, South Africa
| |
Collapse
|