1
|
Wu CH, Liao WH, Chu YC, Hsiao MY, Kung Y, Wang JL, Chen WS. Very Low-Intensity Ultrasound Facilitates Glymphatic Influx and Clearance via Modulation of the TRPV4-AQP4 Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2401039. [PMID: 39494466 DOI: 10.1002/advs.202401039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 10/18/2024] [Indexed: 11/05/2024]
Abstract
Recently, the glymphatic system has been proposed as a mechanism for waste clearance from the brain parenchyma. Glymphatic dysfunction has previously been shown to be associated with several neurological diseases, including Alzheimer's disease, traumatic brain injury, and stroke. As such, it may serve as an important target for therapeutic interventions. In the present study, very low-intensity ultrasound (VLIUS) (center frequency, 1 MHz; pulse repetition frequency, 1 kHz; duty factor, 1%; spatial peak temporal average intensity [Ispta] = 3.68 mW cm2; and duration, 5 min) is found to significantly enhance the influx of cerebrospinal fluid tracers into the paravascular spaces of the brain, and further facilitate interstitial substance clearance from the brain parenchyma, including exogenous β-amyloid. Notably, no evidence of brain damage is observed following VLIUS stimulation. VLIUS may enhance glymphatic influx via the transient receptor potential vanilloid-4-aquaporin-4 pathway in astrocytes. This mechanism may provide insights into VLIUS-regulated glymphatic function that modifies the natural course of central nervous system disorders related to waste clearance dysfunction.
Collapse
Affiliation(s)
- Chueh-Hung Wu
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, 100, Taiwan
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, 300, Taiwan
| | - Wei-Hao Liao
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, 100, Taiwan
| | - Ya-Cherng Chu
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, 106, Taiwan
| | - Ming-Yen Hsiao
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, 100, Taiwan
| | - Yi Kung
- Department of Biomechatronic Engineering, National Chiayi University, Chiayi, 600, Taiwan
| | - Jaw-Lin Wang
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, 106, Taiwan
| | - Wen-Shiang Chen
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, 100, Taiwan
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, 350, Taiwan
| |
Collapse
|
2
|
Choi S, Kum J, Hyun SY, Park TY, Kim H, Kim SK, Kim J. Transcranial focused ultrasound stimulation enhances cerebrospinal fluid movement: Real-time in vivo two-photon and widefield imaging evidence. Brain Stimul 2024; 17:1119-1130. [PMID: 39277129 DOI: 10.1016/j.brs.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Cerebrospinal fluid (CSF) flow is crucial for brain homeostasis and its dysfunction is highly associated with neurodegenerative diseases. Restoring CSF circulation is proposed as a key strategy for the treatment of the diseases. Among the methods to improve CSF circulation, focused ultrasound (FUS) stimulation has emerged as a promising non-invasive brain stimulation technique, with effectiveness evidenced by ex vivo studies. However, due to technical disturbances in in vivo imaging combined with FUS, direct evidence of real-time in vivo CSF flow enhancement by FUS remains elusive. OBJECTIVE To investigate whether FUS administered through the skull base can enhance CSF influx in living animals with various real-time imaging techniques. METHODS We demonstrate a novel method of applying FUS through the skull base, facilitating cortical CSF influx, evidenced by diverse in vivo imaging techniques. Acoustic simulation confirmed effective sonication of our approach through the skull base. After injecting fluorescent CSF tracers into cisterna magna, FUS was administered at the midline of the jaw through the skull base for 30 min, during which imaging was performed concurrently. RESULTS Enhanced CSF influx was observed in macroscopic imaging, demonstrated by the influx area and intensity of the fluorescent dyes after FUS. In two-photon imaging, increased fluorescence was observed in the perivascular space (PVS) after stimulation. Moreover, particle tracking of microspheres showed more microspheres entering the imaging field, with increased mean speed after FUS. CONCLUSION Our findings provide direct real-time in vivo imaging evidence that FUS promotes CSF influx and flow in the PVS.
Collapse
Affiliation(s)
- Seunghwan Choi
- Department of East-West Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jeungeun Kum
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Seon Young Hyun
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Tae Young Park
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Hyungmin Kim
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Sun Kwang Kim
- Department of East-West Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Jaeho Kim
- Department of Neurology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong-si, Gyeonggi-do, 18450, Republic of Korea.
| |
Collapse
|
3
|
Kim E, Van Reet J, Yoo SS. Enhanced transport of brain interstitial solutes mediated by stimulation of sensorimotor area in rats. Neuroreport 2024; 35:729-733. [PMID: 38829951 DOI: 10.1097/wnr.0000000000002065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
OBJECTIVE Solute transport in the brain is essential for maintaining cerebral homeostasis. Recent studies have shown that neuronal activity enhances the transport of cerebrospinal fluid solutes, but its impact on interstitial solute transport has not been established. In this study, we investigated whether neuronal activity affects the transport of interstitial solutes. METHODS Fluorescent Texas Red ovalbumin was injected intracortically into the unilateral sensorimotor area of the Sprague-Dawley rats. Regional neuronal activity around the injection site was elicited by transdermal electrical stimulation of a corresponding forelimb for 90 min ( n = 6). The control group of rats ( n = 6) did not receive any electrical stimulation. Subsequently, the spatial distributions of the tracer over the cortical surface and from the brain sections were imaged and compared between two groups. The ovalbumin fluorescence from the cervical lymph nodes was also compared between the groups to evaluate the effect of neuronal activity on solute clearance from the brain. RESULTS Tracer distribution over the brain surface/sections revealed a significantly higher uptake of ovalbumin in the hemisphere ipsilateral to the injection among the stimulated animals compared to the unstimulated group. This difference, however, was not seen in the hemisphere contralateral to injection. A trace amount of ovalbumin in the lymph nodes was equivalent between the groups, which indicated a considerable time needed for interstitial solutes to be drained from the brain. CONCLUSION The results suggest that neuronal activity enhances interstitial solute transport, calling for further examination of ultimate routes and mechanisms for brain solute clearance.
Collapse
Affiliation(s)
- Evgenii Kim
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
4
|
Azadian MM, Macedo N, Yu BJ, Fame RM, Airan RD. Ultrasonic cerebrospinal fluid clearance improves outcomes in hemorrhagic brain injury models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.02.597001. [PMID: 38895304 PMCID: PMC11185536 DOI: 10.1101/2024.06.02.597001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Impaired clearance of the byproducts of aging and neurologic disease from the brain exacerbates disease progression and severity. We have developed a noninvasive, low intensity transcranial focused ultrasound protocol that facilitates the removal of pathogenic substances from the cerebrospinal fluid (CSF) and the brain interstitium. This protocol clears neurofilament light chain (NfL) - an aging byproduct - in aged mice and clears red blood cells (RBCs) from the central nervous system in two mouse models of hemorrhagic brain injury. Cleared RBCs accumulate in the cervical lymph nodes from both the CSF and interstitial compartments, indicating clearance through meningeal lymphatics. Treating these hemorrhagic brain injury models with this ultrasound protocol reduced neuroinflammatory and neurocytotoxic profiles, improved behavioral outcomes, decreased morbidity and, importantly, increased survival. RBC clearance efficacy was blocked by mechanosensitive channel antagonism and was effective when applied in anesthetized subjects, indicating a mechanosensitive channel mediated mechanism that does not depend on sensory stimulation or a specific neural activity pattern. Notably, this protocol qualifies for an FDA non-significant risk designation given its low intensity, making it readily clinically translatable. Overall, our results demonstrate that this low-intensity transcranial focused ultrasound protocol clears hemorrhage and other harmful substances from the brain via the meningeal lymphatic system, potentially offering a novel therapeutic tool for varied neurologic disorders.
Collapse
Affiliation(s)
- Matine M. Azadian
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States
| | - Nicholas Macedo
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States
| | - Brenda J. Yu
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States
| | - Ryann M. Fame
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Raag D. Airan
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States
- Department of Materials Science and Engineering, Stanford University School of Medicine, Stanford, CA, United States
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
5
|
Eleni Karakatsani M, Estrada H, Chen Z, Shoham S, Deán-Ben XL, Razansky D. Shedding light on ultrasound in action: Optical and optoacoustic monitoring of ultrasound brain interventions. Adv Drug Deliv Rev 2024; 205:115177. [PMID: 38184194 PMCID: PMC11298795 DOI: 10.1016/j.addr.2023.115177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/27/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
Monitoring brain responses to ultrasonic interventions is becoming an important pillar of a growing number of applications employing acoustic waves to actuate and cure the brain. Optical interrogation of living tissues provides a unique means for retrieving functional and molecular information related to brain activity and disease-specific biomarkers. The hybrid optoacoustic imaging methods have further enabled deep-tissue imaging with optical contrast at high spatial and temporal resolution. The marriage between light and sound thus brings together the highly complementary advantages of both modalities toward high precision interrogation, stimulation, and therapy of the brain with strong impact in the fields of ultrasound neuromodulation, gene and drug delivery, or noninvasive treatments of neurological and neurodegenerative disorders. In this review, we elaborate on current advances in optical and optoacoustic monitoring of ultrasound interventions. We describe the main principles and mechanisms underlying each method before diving into the corresponding biomedical applications. We identify areas of improvement as well as promising approaches with clinical translation potential.
Collapse
Affiliation(s)
- Maria Eleni Karakatsani
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Héctor Estrada
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Zhenyue Chen
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Shy Shoham
- Department of Ophthalmology and Tech4Health and Neuroscience Institutes, NYU Langone Health, NY, USA
| | - Xosé Luís Deán-Ben
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland.
| | - Daniel Razansky
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland.
| |
Collapse
|
6
|
Van Reet J, Tunnell K, Anderson K, Kim HC, Kim E, Kowsari K, Yoo SS. Evaluation of advective solute infiltration into porous media by pulsed focused ultrasound-induced acoustic streaming effects. Ultrasonography 2024; 43:35-46. [PMID: 38029736 PMCID: PMC10766883 DOI: 10.14366/usg.23037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 12/01/2023] Open
Abstract
PURPOSE Acoustic streaming induced by applying transcranial focused ultrasound (FUS) promotes localized advective solute transport in the brain and has recently garnered research interest for drug delivery and enhancement of brain waste clearance. The acoustic streaming behavior in brain tissue is difficult to model numerically and thus warrants an in vitro examination of the effects of using different sonication parameters, in terms of frequency, intensity, and pulse duration (PD). METHODS Melamine and polyvinyl alcohol (PVA) foams were used to mimic the porous brain tissue, which contains leptomeningeal fenestrations and perivascular space, while agar hydrogel was used to emulate denser neuropil. FUS was delivered to these media, which were immersed in a phosphate-buffered saline containing toluidine blue O dye, across various frequencies (400, 500, and 600 kHz; applicable to transcranial delivery) in a pulsed mode at two different spatialpeak pulse-average intensities (3 and 4 W/cm2). RESULTS Image analysis showed that the use of 400 kHz yielded the greatest dye infiltration in melamine foam, while sonication had no impact on infiltration in the agar hydrogel due to the dominance of diffusional transport. Using a fixed spatial-peak temporal-average intensity of 0.4 W/cm2 at 400 kHz, a PD of 75 ms resulted in the greatest infiltration depth in both melamine and PVA foams among the tested range (50-150 ms). CONCLUSION These findings suggest the existence of a specific frequency and PD that induce greater enhancement of solute/fluid movement, which may contribute to eventual in vivo applications in promoting waste clearance from the brain.
Collapse
Affiliation(s)
- Jared Van Reet
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kate Tunnell
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kara Anderson
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hyun-Chul Kim
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Artificial Intelligence, Kyungpook National University, Daegu, Korea
| | - Evgenii Kim
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kavin Kowsari
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Seung-Schik Yoo
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|