1
|
Harima H, Qiu Y, Sasaki M, Ndebe J, Penjaninge K, Simulundu E, Kajihara M, Ohnuma A, Matsuno K, Nao N, Orba Y, Takada A, Ishihara K, Hall WW, Hang'ombe BM, Sawa H. A first report of rotavirus B from Zambian pigs leading to the discovery of a novel VP4 genotype P[9]. Virol J 2024; 21:263. [PMID: 39449113 PMCID: PMC11515359 DOI: 10.1186/s12985-024-02533-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Rotavirus B (RVB) causes diarrhea in humans and pigs. Although various RVB strains were identified in humans and various animals globally, little is known about the epidemiology RVB infection in Africa. In this study, we attempted to examine the prevalence of RVB infection in pig populations in Zambia. METHODS Metagenomic analyses were conducted on pig feces collected in Zambia to detect double stranded RNA viruses, including RVB. To clarify the prevalence of RVB infection in pig populations in Zambia, 147 fecal samples were screened for the RVB detection by RT-qPCR. Full genome sequence of a detected RVB was determined by Sanger sequencing and genetically analyzed. RESULTS The metagenomic analyses revealed that RVB sequence reads and contigs of RVB were detected from one fecal sample collected from pigs in Zambia. RT-qPCR screening detected RVB genomes in 36.7% (54/147) of fecal samples. Among 54 positive samples, 13 were positive in non-diarrheal samples (n = 48, 27.1%) and 41 in diarrheal samples (n = 99, 41.4%). Genetic analyses demonstrated that all the segments of ZP18-18, except for VP4, had high nucleotide sequence identities (80.6-92.6%) with all other known RVB strains detected in pigs. In contrast, the VP4 sequence of ZP18-18 was highly divergent from other RVB strains (< 64.6% identities) and formed a distinct lineage in the phylogenetic tree. Notably, the VP8 subunit of the VP4 showed remarkably low amino acid identities (33.3%) to those of known RVB strains, indicating that the VP8 subunit of ZP18-18 was unique among RVB strains. According to the whole genome classification for RVB, ZP18-18 was assigned to a genotype constellation, G18-P[9]-I12-R4-C4-M4-A8-N10-T5-E4-H7 with the newly established VP4 genotype P[9]. CONCLUSIONS This current study updates the geographical distribution and the genetic diversity of RVB. Given the lack of information regarding RVB in Africa, further RVB surveillance is required to assess the potential risk to humans and animals.
Collapse
Affiliation(s)
- Hayato Harima
- Laboratory of Veterinary Public Health, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, 183-8509, Tokyo, Japan
| | - Yongjin Qiu
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
- Laboratory of Parasitology, Department of Disease Control, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Michihito Sasaki
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
- Institute for Vaccine Research and Development, Hokkaido University, North 21 West 11, Kita-ku, Sapporo, 001-0021, Japan
| | - Joseph Ndebe
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
- Department of Disease Control, School of Veterinary Medicine, the University of Zambia, Lusaka, 10101, Zambia
| | - Kapila Penjaninge
- Department of Disease Control, School of Veterinary Medicine, the University of Zambia, Lusaka, 10101, Zambia
| | - Edgar Simulundu
- Department of Disease Control, School of Veterinary Medicine, the University of Zambia, Lusaka, 10101, Zambia
- Macha Research Trust, Choma, 20100, Zambia
| | - Masahiro Kajihara
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
| | - Aiko Ohnuma
- Technical office, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001- 0020, Japan
| | - Keita Matsuno
- Division of Risk Analysis and Management, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
- One Health Research Center, Hokkaido University, Sapporo, 060-0818, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
| | - Naganori Nao
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
- One Health Research Center, Hokkaido University, Sapporo, 060-0818, Japan
| | - Yasuko Orba
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
- Institute for Vaccine Research and Development, Hokkaido University, North 21 West 11, Kita-ku, Sapporo, 001-0021, Japan
- One Health Research Center, Hokkaido University, Sapporo, 060-0818, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
| | - Ayato Takada
- Department of Disease Control, School of Veterinary Medicine, the University of Zambia, Lusaka, 10101, Zambia
- One Health Research Center, Hokkaido University, Sapporo, 060-0818, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
- Africa Center of Excellence for Infectious Diseases of Humans and Animals, the University of Zambia, Lusaka, 10101, Zambia
| | - Kanako Ishihara
- Laboratory of Veterinary Public Health, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, 183-8509, Tokyo, Japan
| | - William W Hall
- Institute for Vaccine Research and Development, Hokkaido University, North 21 West 11, Kita-ku, Sapporo, 001-0021, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
- National Virus Reference Laboratory, School of Medicine, University College Dublin, Dublin, Ireland
| | - Bernard M Hang'ombe
- Africa Center of Excellence for Infectious Diseases of Humans and Animals, the University of Zambia, Lusaka, 10101, Zambia
- Department of Para-clinical Studies, School of Veterinary Medicine, the University of Zambia, Lusaka, 10101, Zambia
| | - Hirofumi Sawa
- Institute for Vaccine Research and Development, Hokkaido University, North 21 West 11, Kita-ku, Sapporo, 001-0021, Japan.
- Department of Disease Control, School of Veterinary Medicine, the University of Zambia, Lusaka, 10101, Zambia.
- One Health Research Center, Hokkaido University, Sapporo, 060-0818, Japan.
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan.
- Africa Center of Excellence for Infectious Diseases of Humans and Animals, the University of Zambia, Lusaka, 10101, Zambia.
| |
Collapse
|
2
|
Strydom A, Segone N, Coertze R, Barron N, Strydom M, O’Neill HG. Phylogenetic Analyses of Rotavirus A, B and C Detected on a Porcine Farm in South Africa. Viruses 2024; 16:934. [PMID: 38932226 PMCID: PMC11209240 DOI: 10.3390/v16060934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Rotaviruses (RVs) are known to infect various avian and mammalian hosts, including swine. The most common RVs associated with infection in pigs are A, B, C and H (RVA-C; RVH). In this study we analysed rotavirus strains circulating on a porcine farm in the Western Cape province of South Africa over a two-year period. Whole genomes were determined by sequencing using Illumina MiSeq without prior genome amplification. Fifteen RVA genomes, one RVB genome and a partial RVC genome were identified. Phylogenetic analyses of the RVA data suggested circulation of one dominant strain (G5-P[6]/P[13]/P[23]-I5-R1-C1-M1-A8-N1-T7-E1-H1), typical of South African porcine strains, although not closely related to previously detected South African porcine strains. Reassortment with three VP4-encoding P genotypes was detected. The study also reports the first complete RVB genome (G14-P[5]-I13-R4-C4-M4-A10-T4-E4-H7) from Africa. The partial RVC (G6-P[5]-IX-R1-C1-MX-A9-N6-T6-EX-H7) strain also grouped with porcine strains. The study shows the continued circulation of an RVA strain, with a high reassortment rate of the VP4-encoding segment, on the porcine farm. Furthermore, incidents of RVB and RVC on this farm emphasize the complex epidemiology of rotavirus in pigs.
Collapse
Affiliation(s)
- Amy Strydom
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein 9300, South Africa; (A.S.); (N.S.); (R.C.); (N.B.)
| | - Neo Segone
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein 9300, South Africa; (A.S.); (N.S.); (R.C.); (N.B.)
| | - Roelof Coertze
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein 9300, South Africa; (A.S.); (N.S.); (R.C.); (N.B.)
- Department of Infectious Diseases, University of Gothenburg, Guldhedsgatan 10, SE-413 46 Göteborg, Sweden
| | - Nikita Barron
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein 9300, South Africa; (A.S.); (N.S.); (R.C.); (N.B.)
| | | | - Hester G. O’Neill
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein 9300, South Africa; (A.S.); (N.S.); (R.C.); (N.B.)
| |
Collapse
|
3
|
Carossino M, Vissani MA, Barrandeguy ME, Balasuriya UBR, Parreño V. Equine Rotavirus A under the One Health Lens: Potential Impacts on Public Health. Viruses 2024; 16:130. [PMID: 38257830 PMCID: PMC10819593 DOI: 10.3390/v16010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/29/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Group A rotaviruses are a well-known cause of viral gastroenteritis in infants and children, as well as in many mammalian species and birds, affecting them at a young age. This group of viruses has a double-stranded, segmented RNA genome with high genetic diversity linked to point mutations, recombination, and, importantly, reassortment. While initial molecular investigations undertaken in the 1900s suggested host range restriction among group A rotaviruses based on the fact that different gene segments were distributed among different animal species, recent molecular surveillance and genome constellation genotyping studies conducted by the Rotavirus Classification Working Group (RCWG) have shown that animal rotaviruses serve as a source of diversification of human rotavirus A, highlighting their zoonotic potential. Rotaviruses occurring in various animal species have been linked with contributing genetic material to human rotaviruses, including horses, with the most recent identification of equine-like G3 rotavirus A infecting children. The goal of this article is to review relevant information related to rotavirus structure/genomic organization, epidemiology (with a focus on human and equine rotavirus A), evolution, inter-species transmission, and the potential zoonotic role of equine and other animal rotaviruses. Diagnostics, surveillance and the current status of human and livestock vaccines against RVA are also reviewed.
Collapse
Affiliation(s)
- Mariano Carossino
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Maria Aldana Vissani
- Escuela de Veterinaria, Facultad de Ciencias Agrarias y Veterinarias, Universidad del Salvador, Pilar, Buenos Aires B1630AHU, Argentina; (M.A.V.); (M.E.B.)
- Instituto de Virología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires B1686LQF, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1033AAJ, Argentina
| | - Maria E. Barrandeguy
- Escuela de Veterinaria, Facultad de Ciencias Agrarias y Veterinarias, Universidad del Salvador, Pilar, Buenos Aires B1630AHU, Argentina; (M.A.V.); (M.E.B.)
- Instituto de Virología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires B1686LQF, Argentina;
| | - Udeni B. R. Balasuriya
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Viviana Parreño
- Instituto de Virología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires B1686LQF, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1033AAJ, Argentina
| |
Collapse
|