1
|
Secio-Silva A, Evangelista-Silva PH, Emrich F, Selvatici-Tolentino L, Ferreira M, Silva ABDP, Gomes BH, Figueira-Costa TN, Oliveira AG, Peliciari-Garcia RA, Goulart-Silva F, Bargi-Souza P. Hypothyroidism impairs the circadian rhythmicity of clock genes and proteins involved in gut nutrient absorption in female mice. Front Physiol 2025; 16:1515437. [PMID: 39958687 PMCID: PMC11825765 DOI: 10.3389/fphys.2025.1515437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/13/2025] [Indexed: 02/18/2025] Open
Abstract
Hypothyroidism is a common thyroid dysfunction with a higher prevalence in women. Impairments in the regulation of basal metabolism, small intestine nutrient transporter, dyslipidemia, and disruption in circadian clocks have been associated with the thyroid disorder. This study aimed to evaluate whether hypothyroidism affects the small intestine circadian clock and the daily expression pattern of gut nutrient transporters in female mice. Adult female C57BL/6J mice were subjected to hypothyroidism by the administration of methimazole (0.1%) and sodium perchlorate (1%) in drinking water for 45 days. After, the animals were subdivided and euthanized every 4 h over the 24 h period under deep anesthesia. The proximal small intestine segment was collected and immediately frozen for gene expression analysis of circadian core clock components (Bmal1, Per2, Cry1, and Nr1d1) and nutrient transporters by RT-qPCR. The daily protein content of nutrient transporters involved in the absorption of the products of hydrolysis of lipids, proteins, and carbohydrates was evaluated over 24 h in isolated small intestinal epithelium by Western blotting. The expression of clock genes and protein content of nutrients transporters in the jejunum of control female mice exhibited a well-defined circadian rhythmicity, while no rhythmic oscillation over 24 h was observed for the transporter transcripts. Hypothyroidism abolished the circadian rhythmicity of circadian clock, punctually reduced the transcript content of Slc2a5 (GLUT5) at ZT12 and Slc2a2 (GLUT2) at ZT4, and disrupted the circadian oscillation of L-FABP, CD36, PEPT1, and GLUT2 protein contents in the small intestine of female mice. In conclusion, our findings indicate that thyroid hormones modulate the circadian clock of small intestine and the daily rhythmicity of components related to absorptive processes in female mice. Moreover, our data suggest that the mechanisms triggered by thyroid hormones involve posttranscriptional and/or translational modifications of proteins related to lipid, protein, and carbohydrate absorption. Together, these data contribute to the general comprehension of metabolic alterations often observed in hypothyroidism and have far-reaching implications at clinical levels considering the higher worldwide prevalence of hypothyroidism in women and its association with obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Ayla Secio-Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | - Felipe Emrich
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Letícia Selvatici-Tolentino
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Maíza Ferreira
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ana Bárbara de Paula Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Bruno Henrique Gomes
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | - André Gustavo Oliveira
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Rodrigo Antonio Peliciari-Garcia
- Department of Biological Sciences, Morphophysiology and Pathology Sector, Federal University of São Paulo (UNIFESP), Diadema, Brazil
| | - Francemilson Goulart-Silva
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Paula Bargi-Souza
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
2
|
Yamauchi I, Sugawa T, Hakata T, Yoshizawa A, Kita T, Kishimoto Y, Kimura S, Sakurai A, Kosugi D, Fujita H, Okamoto K, Ueda Y, Fujii T, Taura D, Sakane Y, Yasoda A, Inagaki N. Transcriptomic landscape of hyperthyroidism in mice overexpressing thyroid-stimulating hormone. iScience 2025; 28:111565. [PMID: 39811643 PMCID: PMC11730581 DOI: 10.1016/j.isci.2024.111565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/06/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
Activation of thyroid-stimulating hormone receptor (TSHR) fundamentally leads to hyperthyroidism. To elucidate TSHR signaling, we conducted transcriptome analyses for hyperthyroid mice that we generated by overexpressing TSH. TSH overexpression drastically changed their thyroid transcriptome. In particular, enrichment analyses identified the cell cycle, phosphatidylinositol 3-kinase/Akt pathway, and Ras-related protein 1 pathway as possibly associated with goiter development. Regarding hyperthyroidism, Slc26a4 was exclusively upregulated with TSH overexpression among genes crucial to thyroid hormone secretion. To verify its significance, we overexpressed TSH in Slc26a4 knockout mice. TSH overexpression caused hyperthyroidism in Slc26a4 knockout mice, equivalent to that in control mice. Thus, we did not observe significant changes in known genes and pathways involved in thyroid hormone secretion with TSH overexpression. Our datasets might include candidate genes that have not yet been identified as regulators of thyroid function. Our transcriptome datasets regarding hyperthyroidism can contribute to future research on TSHR signaling.
Collapse
Affiliation(s)
- Ichiro Yamauchi
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Taku Sugawa
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takuro Hakata
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Akira Yoshizawa
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Tomoko Kita
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yo Kishimoto
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Sadahito Kimura
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Aya Sakurai
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Daisuke Kosugi
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Haruka Fujita
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kentaro Okamoto
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yohei Ueda
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Toshihito Fujii
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Daisuke Taura
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yoriko Sakane
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
- Sugawa Clinic, Nakagyo-ku, Kyoto 604-8105, Japan
| | - Akihiro Yasoda
- Clinical Research Center, National Hospital Organization Kyoto Medical Center, Fushimi-ku, Kyoto 612-8555, Japan
| | - Nobuya Inagaki
- Medical Research Institute KITANO HOSPITAL, PIIF Tazuke-kofukai, Kita-ku, Osaka 530-8480, Japan
| |
Collapse
|
3
|
Sinha RA, Bruinstroop E, Yen PM. Actions of thyroid hormones and thyromimetics on the liver. Nat Rev Gastroenterol Hepatol 2025; 22:9-22. [PMID: 39420154 PMCID: PMC7616774 DOI: 10.1038/s41575-024-00991-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/19/2024]
Abstract
Thyroid hormones (triiodothyronine and thyroxine) are pivotal for metabolic balance in the liver and entire body. Dysregulation of the hypothalamus-pituitary-thyroid axis can contribute to hepatic metabolic disturbances, affecting lipid metabolism, glucose regulation and protein synthesis. In addition, reductions in circulating and intrahepatic thyroid hormone concentrations increase the risk of metabolic dysfunction-associated steatotic liver disease by inducing lipotoxicity, inflammation and fibrosis. Amelioration of hepatic metabolic disease by thyroid hormones in preclinical and clinical studies has spurred the development of thyromimetics that target THRB (the predominant thyroid hormone receptor isoform in the liver) and/or the liver itself to provide more selective activation of hepatic thyroid hormone-regulated metabolic pathways while reducing thyrotoxic side effects in tissues that predominantly express THRA such as the heart and bone. Resmetirom, a liver and THRB-selective thyromimetic, recently became the first FDA-approved drug for metabolic dysfunction-associated steatohepatitis (MASH). Thus, a better understanding of the metabolic actions of thyroid hormones and thyromimetics in the liver is timely and clinically relevant. Here, we describe the roles of thyroid hormones in normal liver function and pathogenesis of MASH, as well as some potential clinical issues that might arise when treating patients with MASH with thyroid hormone supplementation or thyromimetics.
Collapse
Affiliation(s)
- Rohit A Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Eveline Bruinstroop
- Department of Endocrinology and Metabolism, Amsterdam UMC, Location University of Amsterdam, Amsterdam, Netherlands
| | - Paul M Yen
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore.
- Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
4
|
Lincoln K, Zhou J, Oster H, de Assis LVM. Circadian Gating of Thyroid Hormone Action in Hepatocytes. Cells 2024; 13:1038. [PMID: 38920666 PMCID: PMC11202020 DOI: 10.3390/cells13121038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Thyroid hormones, thyroxin (T4) and the biologically active triiodothyronine (T3), play important roles in liver metabolic regulation, including fatty acid biosynthesis, beta-oxidation, and cholesterol homeostasis. These functions position TH signaling as a potential target for the treatment of metabolic dysfunction-associated steatotic liver disease (MASLD). Elevated T3 levels in the circulation are associated with increased hepatic lipid turnover, which is also under the control of the circadian clock system. In this study, we developed a cell system to study the impact of hepatocyte circadian rhythms on the metabolic response to T3 treatment under control and steatotic conditions. Synchronized AML-12 circadian reporter hepatocytes were treated with T3 at different circadian phases and metabolic conditions. T3 treatment increased metabolic activity in a dose-independent fashion and had no significant effect on circadian rhythms in AML-12 cells. T3 had marked time-of-treatment-dependent effects on metabolic transcript expression. Steatosis induction altered metabolic transcript expression in AML-12 cells. In this condition, the circadian rhythm period was lengthened, and this effect was independent of T3. Under steatotic conditions, T3 had marked time-of-treatment dependent effects on metabolic transcript expression, which differed from those observed under control conditions. These findings reveal a time-of-day-dependent response of hepatocytes to T3, which is further modulated by the metabolic state. Our data suggest that time has a strong influence on liver TH action, which might be considered when treating MASLD.
Collapse
Affiliation(s)
- Karla Lincoln
- Institute of Neurobiology, Center of Brain Behavior & Metabolism, University of Lübeck, 23562 Lübeck, Germany; (K.L.); (J.Z.)
| | - Jingxuan Zhou
- Institute of Neurobiology, Center of Brain Behavior & Metabolism, University of Lübeck, 23562 Lübeck, Germany; (K.L.); (J.Z.)
| | - Henrik Oster
- Institute of Neurobiology, Center of Brain Behavior & Metabolism, University of Lübeck, 23562 Lübeck, Germany; (K.L.); (J.Z.)
- University Hospital Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Germany
| | - Leonardo Vinicius Monteiro de Assis
- Institute of Neurobiology, Center of Brain Behavior & Metabolism, University of Lübeck, 23562 Lübeck, Germany; (K.L.); (J.Z.)
- University Hospital Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Germany
| |
Collapse
|
5
|
Wu Z, Martinez ME, Hernandez A. Mice lacking DIO3 exhibit sex-specific alterations in circadian patterns of corticosterone and gene expression in metabolic tissues. BMC Mol Cell Biol 2024; 25:11. [PMID: 38553695 PMCID: PMC10979634 DOI: 10.1186/s12860-024-00508-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/15/2024] [Indexed: 04/02/2024] Open
Abstract
Disruption of circadian rhythms is associated with neurological, endocrine and metabolic pathologies. We have recently shown that mice lacking functional type 3 deiodinase (DIO3), the enzyme that clears thyroid hormones, exhibit a phase shift in locomotor activity, suggesting altered circadian rhythm. To better understand the physiological and molecular basis of this phenotype, we used Dio3+/+ and Dio3-/- mice of both sexes at different zeitgeber times (ZTs) and analyzed corticosterone and thyroxine (T4) levels, hypothalamic, hepatic, and adipose tissue expression of clock genes, as well as genes involved in the thyroid hormone action or physiology of liver and adipose tissues. Wild type mice exhibited sexually dimorphic circadian patterns of genes controlling thyroid hormone action, including Dio3. Dio3-/- mice exhibited altered hypothalamic expression of several clock genes at ZT12, but did not disrupt the overall circadian profile. Expression of clock genes in peripheral tissues was not disrupted by Dio3 deficiency. However, Dio3 loss in liver and adipose tissues disrupted circadian profiles of genes that determine tissue thyroid hormone action and physiology. We also observed circadian-specific changes in serum T4 and corticosterone as a result of DIO3 deficiency. The circadian alterations manifested sexual dimorphism. Most notable, the time curve of serum corticosterone was flattened in Dio3-/- females. We conclude that Dio3 exhibits circadian variations, influencing the circadian rhythmicity of thyroid hormone action and physiology in liver and adipose tissues in a sex-specific manner. Circadian disruptions in tissue physiology may then contribute to the metabolic phenotypes of DIO3-deficient mice.
Collapse
Affiliation(s)
- Zhaofei Wu
- MaineHealth Institute for Research, MaineHealth, 04074, Scarborough, ME,, USA.
| | - M Elena Martinez
- MaineHealth Institute for Research, MaineHealth, 04074, Scarborough, ME,, USA
| | - Arturo Hernandez
- MaineHealth Institute for Research, MaineHealth, 04074, Scarborough, ME,, USA
- Department of Medicine, Tufts University School of Medicine, 02111, Boston, MA, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, 04469, Orono, Maine, USA
| |
Collapse
|