1
|
Sau A, Mahapatra D, Maji A, Dey S, Roy A, Kundu S. Methyl Formate, an Alternative Transfer Hydrogenating Agent for Chemoselective Reduction of N-Heteroarenes and Azoarenes. Org Lett 2024; 26:4486-4491. [PMID: 38770879 DOI: 10.1021/acs.orglett.4c01293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The search for efficient molecular hydrogen precursors and their catalytic exploration is necessary for the evolution of catalytic transfer hydrogenation. Methyl formate (MF) having high hydrogen content still remains unexplored for such transformations. Herein, we disclosed a bifunctional Ir(III)-complex catalyzed chemoselective TH protocol for N-heteroarenes and azoarenes using MF. A variety of substrates including ten bioactive molecules have been synthesized under mild reaction conditions. A probable mechanistic pathway was proposed based on control experiments and mechanistic studies.
Collapse
Affiliation(s)
- Anirban Sau
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Divya Mahapatra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Ankur Maji
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Sadhan Dey
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Arkamitra Roy
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Sabuj Kundu
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
2
|
Liu C, Chen F, Zhao BH, Wu Y, Zhang B. Electrochemical hydrogenation and oxidation of organic species involving water. Nat Rev Chem 2024; 8:277-293. [PMID: 38528116 DOI: 10.1038/s41570-024-00589-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2024] [Indexed: 03/27/2024]
Abstract
Fossil fuel-driven thermochemical hydrogenation and oxidation using high-pressure H2 and O2 are still popular but energy-intensive CO2-emitting processes. At present, developing renewable energy-powered electrochemical technologies, especially those using clean, safe and easy-to-handle reducing agents and oxidants for organic hydrogenation and oxidation reactions, is urgently needed. Water is an ideal carrier of hydrogen and oxygen. Electrochemistry provides a powerful route to drive water splitting under ambient conditions. Thus, electrochemical hydrogenation and oxidation transformations involving water as the hydrogen source and oxidant, respectively, have been developed to be mild and efficient tools to synthesize organic hydrogenated and oxidized products. In this Review, we highlight the advances in water-participating electrochemical hydrogenation and oxidation reactions of representative organic molecules. Typical electrode materials, performance metrics and key characterization techniques are firstly introduced. General electrocatalyst design principles and controlling the microenvironment for promoting hydrogenation and oxygenation reactions involving water are summarized. Furthermore, paired hydrogenation and oxidation reactions are briefly introduced before finally discussing the challenges and future opportunities of this research field.
Collapse
Affiliation(s)
- Cuibo Liu
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, China
| | - Fanpeng Chen
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, China
| | - Bo-Hang Zhao
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, China
| | - Yongmeng Wu
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, China
| | - Bin Zhang
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, China.
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology, Tianjin University, Tianjin, China.
| |
Collapse
|
3
|
Sk M, Haldar S, Bera S, Banerjee D. Recent advances in the selective semi-hydrogenation of alkyne to ( E)-olefins. Chem Commun (Camb) 2024; 60:1517-1533. [PMID: 38251772 DOI: 10.1039/d3cc05395d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Considering the potential importance and upsurge in demand, the selective semi-hydrogenation of alkynes to (E)-olefins has attracted significant interest. This article highlights the recent advances in newer technologies and important methodologies directed to (E)-olefins from alkynes developed from 2015 to 2023. Notable features summarised include the catalyst or ligand design and control of product selectivity based on precious and nonprecious metal catalysts for semi-hydrogenation to (E)-olefins. Mechanistic studies for various catalytic transformations, including synthetic application to bioactive compounds, are summarised.
Collapse
Affiliation(s)
- Motahar Sk
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Shuvojit Haldar
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Sourajit Bera
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Debasis Banerjee
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| |
Collapse
|
4
|
Beaufils A, Melle P, Lentz N, Albrecht M. Air-Stable Coordinatively Unsaturated Ruthenium(II) Complex for Ligand Binding and Catalytic Transfer Hydrogenation of Ketones from Ethanol. Inorg Chem 2024; 63:2072-2081. [PMID: 38230574 DOI: 10.1021/acs.inorgchem.3c03859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Coordinatively unsaturated complexes are interesting from a fundamental level for their formally empty coordination site and, in particular, from a catalytic perspective as they provide opportunities for substrate binding and transformation. Here, we describe the synthesis of a novel underligated ruthenium complex [Ru(cym)(N,N')]+, 3, featuring an amide-functionalized pyridylidene amide (PYA) as the N,N'-bidentate coordinating ligand. In contrast to previously investigated underligated complexes, complex 3 offers potential for dynamic modifications, thanks to the flexible donor properties of the PYA ligand. Specifically, they allow both for stabilizing the formally underligated metal center in complex 3 through nitrogen π-donation and for facilitating through π-acidic bonding properties the coordination of a further ligand L to the ruthenium center to yield the formal 18 e- complexes [Ru(cym)(N,N')(L)]+ (4: L = P(OMe)3; 5: L = PPh3; 6: L = N-methylimidazole; 7: L = pyridine) and neutral complex [RuCl(cym)(N,N')] 8. Analysis by 1H NMR and UV-vis spectroscopies reveals an increasing Ru-L bond strength along the sequence pyridine <1-methylimidazole < PPh3 < P(OMe)3 with binding constants varying over 3 orders of magnitude with log(Keq) values between 2.8 and 5.7. The flexibility of the Ru(PYA) unit and the ensuing accessibility of saturated and unsaturated species with one and the same ligand are attractive from a fundamental point of view and also for catalytic applications, as catalytic transformations rely on the availability of transiently vacant coordination sites. Thus, while complex 3 does not form stable adducts with O-donors such as ketones or alcohols, it transiently binds these species, as evidenced by the considerable catalytic activity in the transfer hydrogenation of ketones. Notably, and as one of only a few catalysts, complex 3 is compatible with EtOH as a hydrogen source. Complex 3 shows excellent performance in the transfer hydrogenation of pyridyl-containing substrates, in agreement with the poor coordination strength of this functional group to the ruthenium center in 3.
Collapse
Affiliation(s)
- Alicia Beaufils
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Philipp Melle
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Nicolas Lentz
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Martin Albrecht
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| |
Collapse
|
5
|
Kusy R, Grela K. Protocol for (E)-selective semihydrogenation of alkynes using iridium-based catalyst. STAR Protoc 2023; 4:102579. [PMID: 37733598 PMCID: PMC10519852 DOI: 10.1016/j.xpro.2023.102579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/10/2023] [Accepted: 08/29/2023] [Indexed: 09/23/2023] Open
Abstract
In this protocol, we describe highly (E)-selective alkyne semihydrogenation employing commercially available iridium complex and a bidentate phosphine ligand. We provide steps for (E)-stilbene synthesis, remaining formic acid neutralization, and determination of the (Z)/(E) ratio using gas chromatography analysis. We then detail (E)-stilbene purification using a short pad of silica and NMR analysis. The protocol is compatible with a wide range of functionalities and different types of alkynes. For complete details on the use and execution of this protocol, please refer to Kusy et al. (2022).1.
Collapse
Affiliation(s)
- Rafał Kusy
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Karol Grela
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland.
| |
Collapse
|
6
|
Wang Y, Dana S, Long H, Xu Y, Li Y, Kaplaneris N, Ackermann L. Electrochemical Late-Stage Functionalization. Chem Rev 2023; 123:11269-11335. [PMID: 37751573 PMCID: PMC10571048 DOI: 10.1021/acs.chemrev.3c00158] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Indexed: 09/28/2023]
Abstract
Late-stage functionalization (LSF) constitutes a powerful strategy for the assembly or diversification of novel molecular entities with improved physicochemical or biological activities. LSF can thus greatly accelerate the development of medicinally relevant compounds, crop protecting agents, and functional materials. Electrochemical molecular synthesis has emerged as an environmentally friendly platform for the transformation of organic compounds. Over the past decade, electrochemical late-stage functionalization (eLSF) has gained major momentum, which is summarized herein up to February 2023.
Collapse
Affiliation(s)
| | | | | | - Yang Xu
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Yanjun Li
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Nikolaos Kaplaneris
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Lutz Ackermann
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| |
Collapse
|
7
|
Wang L, Xie ZL, Li X, Lynch VM, Mulfort KL. Optical detection of alcohols with a Cu(I)HETPHEN complex by reversible aldehyde to hemiacetal conversion. Analyst 2023; 148:4274-4278. [PMID: 37615298 DOI: 10.1039/d3an01005h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
A heteroleptic copper(I) bis(phenanthroline) complex with aldehyde groups at the 4,7 positions of the phenanthroline ligand was synthesized. The complex is responsive to alcohol, resulting in a distinct colour change caused by the facile reaction of the aldehyde group with alcohol, forming a hemiacetal product. The aldehyde species can be regenerated after heating the intermediate at 80 °C for 10 minutes, demonstrating the reusability of the complex for alcohol detection. This work presents a new strategy for applying transition metal complexes in small molecule sensing by installing functional groups in the secondary coordination sphere which reversibly react with analytes.
Collapse
Affiliation(s)
- Lei Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
- Division of Chemical Sciences and Engineering, Argonne National Laboratory, Lemont, IL 60439, USA.
| | - Zhu-Lin Xie
- Division of Chemical Sciences and Engineering, Argonne National Laboratory, Lemont, IL 60439, USA.
| | - Xin Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Vincent M Lynch
- Department of Chemistry, University of Texas Austin, Austin, TX, 78712, USA
| | - Karen L Mulfort
- Division of Chemical Sciences and Engineering, Argonne National Laboratory, Lemont, IL 60439, USA.
| |
Collapse
|
8
|
McGrory R, Clarke R, Marshall O, Sutherland A. Fluorescent α-amino acids via Heck-Matsuda reactions of phenylalanine-derived arenediazonium salts. Org Biomol Chem 2023; 21:6932-6939. [PMID: 37580965 DOI: 10.1039/d3ob01096a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
The Heck-Matsuda coupling reaction of arenediazonium salts derived from L-phenylalanine with various alkenes has been developed. A two-step process involving the preparation of a tetrafluoroborate diazonium salt from a 4-aminophenylalanine derivative, followed by a palladium(0)-catalysed Heck-Matsuda coupling reaction allowed access to a range of unnatural α-amino acids with cinnamate, vinylsulfone and stilbene side-chains. Analysis of the photophysical properties of these unnatural α-amino acids demonstrated that the (E)-stilbene analogues exhibited fluorescent properties with red-shifted absorption and emission spectra and larger quantum yields than L-phenylalanine.
Collapse
Affiliation(s)
- Rochelle McGrory
- School of Chemistry, University of Glasgow, The Joseph Black Building, Glasgow, G12 8QQ, UK.
| | - Rebecca Clarke
- School of Chemistry, University of Glasgow, The Joseph Black Building, Glasgow, G12 8QQ, UK.
| | - Olivia Marshall
- School of Chemistry, University of Glasgow, The Joseph Black Building, Glasgow, G12 8QQ, UK.
| | - Andrew Sutherland
- School of Chemistry, University of Glasgow, The Joseph Black Building, Glasgow, G12 8QQ, UK.
| |
Collapse
|
9
|
Liu C, Wu Y, Zhao B, Zhang B. Designed Nanomaterials for Electrocatalytic Organic Hydrogenation Using Water as the Hydrogen Source. Acc Chem Res 2023. [PMID: 37316974 DOI: 10.1021/acs.accounts.3c00192] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
ConspectusThe hydrogenation reaction is one of the most frequently used transformations in organic synthesis. Electrocatalytic hydrogenation by using water (H2O) as the hydrogen source offers an efficient and sustainable approach to synthesize hydrogenated products under ambient conditions. Such a technique can avoid the use of high-pressure and flammable hydrogen gas or other toxic/expensive hydrogen donors, which usually cause environmental, safety, and cost concerns. Interestingly, utilizing easily available heavy water (D2O) for deuterated syntheses is also attractive due to the widespread applications of deuterated molecules in organic synthesis and the pharmaceutical industry. Despite impressive achievements, electrode selection mainly relies on trial-and-error modes, and how electrodes dictate reaction outcomes remains elusive. Therefore, the rational design of nanostructured electrodes for driving the electrocatalytic hydrogenation of a series of organics via H2O electrolysis is developed.In this Account, we review recent advances in the electrocatalytic hydrogenation of different types of organic functional groups, including C≡C, C≡N, C═C, C═O, and C-Br/I bonds, -NO2, and N-heterocycles, with H2O over nanostructured cathodes. First, the general reaction steps (reactant/intermediate adsorption, active atomic hydrogen (H*) formation, surface hydrogenation reaction, product desorption) are analyzed, and key factors are proposed to optimize hydrogenation performance (e.g., selectivity, activity, Faradaic efficiency (FE), reaction rate, and productivity) and inhibit side reactions. Then, ex situ and in situ spectroscopic tools to study key intermediates and interpret mechanisms are introduced. Third, based on the knowledge of key reaction steps and mechanisms, we introduce catalyst design principles in detail on how to optimize the adoption of reactants and key intermediates, promote the formation of H* from water electrolysis, inhibit hydrogen evolution and side reactions, and improve the selectivity, reaction rate, FEs, and space-time productivity of products. We then introduce some typical examples. (i) P- and S-modified Pd can decrease C═C adsorption and promote H* formation, enabling semihydrogenation of alkynes with high selectivity and FEs at lower potentials. Then, creating high-curvature nanotips to concentrate the substrates further speeds up the hydrogenation process. (ii) By introducing low-coordination sites into Fe and combining low-coordination sites and surface fluorine to modify Co to optimize the adsorption of intermediates and facilitate H* formation, hydrogenation of nitriles and N-heterocycles with high activity and selectivity is obtained. (iii) By forming isolated Pd sites to induce a specific σ-alkynyl adsorption of alkynes and steering S vacancies of Co3S4-x to preferentially adsorb -NO2, hydrogenation of easily reduced group-decorated alkynes and nitroarenes with high chemoselectivity is realized. (iv) For gas reactant participated reactions, by designing hydrophobic gas diffusion layer-supported ultrasmall Cu nanoparticles to enhance mass transfer, improve H2O activation, inhibit H2 formation, and decrease ethylene adsorption, ampere-level ethylene production with a 97.7% FE is accomplished. Finally, we provide an outlook on the current challenges and promising opportunities in this area. We believe that the electrode selection principles summarized here provide a paradigm for designing highly active and selective nanomaterials to achieve electrocatalytic hydrogenation and other organic transformations with fascinating performances.
Collapse
Affiliation(s)
- Cuibo Liu
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, Tianjin 300072, China
| | - Yongmeng Wu
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, Tianjin 300072, China
| | - Bohang Zhao
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, Tianjin 300072, China
| | - Bin Zhang
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
10
|
Shi J, Ye T, Dong J, Liu A, Xu T, Tai M, Zhang L, Wang C. H 2O as the Hydrogen Donor: Stereo-Selective Synthesis of E- and Z-Alkenes by Palladium-Catalyzed Semihydrogenation of Alkynes. ACS OMEGA 2023; 8:11492-11502. [PMID: 37008091 PMCID: PMC10061537 DOI: 10.1021/acsomega.3c00287] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
It is very desirable to develop a facile controllable method for selective semihydrogenation of alkynes to alkenes with a cheap and safe hydrogen donor but remains a big challenge. H2O is one of the best choices of the transfer hydrogenation agent of the world, and the development of methods for synthesizing E- and Z-alkenes using H2O as the hydrogen source is worthwhile. In this article, a palladium-catalyzed synthesis of E- and Z-alkenes from alkynes using H2O as the hydrogenation agent was reported. The use of di-tert-butylphosphinous chloride (t-Bu2PCl) and triethanolamine/sodium acetate (TEOA/NaOAc) was essential for the stereo-selective semihydrogenation of alkynes. The general applicability of this procedure was highlighted by the synthesis of more than 48 alkenes, with good yields and high stereoselectivities.
Collapse
|
11
|
Wu Y, Ao Y, Li Z, Liu C, Zhao J, Gao W, Li X, Wang H, Liu Y, Liu Y. Modulation of metal species as control point for Ni-catalyzed stereodivergent semihydrogenation of alkynes with water. Nat Commun 2023; 14:1655. [PMID: 36964163 PMCID: PMC10039052 DOI: 10.1038/s41467-023-37022-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 02/23/2023] [Indexed: 03/26/2023] Open
Abstract
A base-assisted metal species modulation mechanism enables Ni-catalyzed stereodivergent transfer semihydrogenation of alkynes with water, delivering both olefinic isomers smoothly using cheap and nontoxic catalysts and additives. Different from most precedents, in which E-alkenes derive from the isomerization of Z-alkene products, the isomers were formed in orthogonal catalytic pathways. Mechanistic studies suggest base as a key early element in modulation of the reaction pathways: by adding different bases, nickel species with disparate valence states could be accessed to initiate two catalytic cycles toward different stereoisomers. The practicability of the method is showcased with nearly 70 examples, including internal and terminal triple bonds, enynes and diynes, affording semi-hydrogenated products in high yields and selectivity.
Collapse
Affiliation(s)
- Yuanqi Wu
- Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 130012, Changchun, PR China
| | - Yuhui Ao
- Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 130012, Changchun, PR China
| | - Zhiming Li
- Department of Chemistry, Fudan University, 200438, Shanghai, PR China.
| | - Chunhui Liu
- College of Chemical and Materials Engineering, Xuchang University, 461000, Xuchang, PR China
| | - Jinbo Zhao
- Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 130012, Changchun, PR China
| | - Wenyu Gao
- Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 130012, Changchun, PR China
| | - Xuemeng Li
- Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 130012, Changchun, PR China
| | - Hui Wang
- Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 130012, Changchun, PR China
| | - Yongsheng Liu
- Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 130012, Changchun, PR China
| | - Yu Liu
- Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 130012, Changchun, PR China.
| |
Collapse
|
12
|
Liu HY, Neale SE, Hill MS, Mahon MF, McMullin CL. Structural snapshots of an Al-Cu bond-mediated transformation of terminal acetylenes. Chem Sci 2023; 14:2866-2876. [PMID: 36937577 PMCID: PMC10016343 DOI: 10.1039/d3sc00240c] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
The copper(i) alumanyl derivative, [{SiNDipp}Al-Cu(NHCiPr)] (SiNDipp = {CH2SiMe2NDipp}2; Dipp = 2,6-di-isopropylphenyl; NHCiPr = N,N'-di-isopropyl-4,5-dimethyl-2-ylidene), reacts in a stepwise fashion with up to three equivalents of various terminal alkynes. This reactivity results in the sequential formation of cuprous (hydrido)(alkynyl)aluminate, (alkenyl)(alkynyl)aluminate and bis(alkynyl)aluminate derivatives, examples of which have been fully characterised. The process of alkene liberation resulting from the latter reaction step constitutes a unique case of alkyne transfer semi-hydrogenation in which the C-H acidic alkyne itself acts as a source of proton, with the Cu-Al bond providing the requisite electrons to effect reduction. This reaction sequence is validated by DFT calculations, which rationalise the variable stability of the initially formed heterobimetallic hydrides.
Collapse
Affiliation(s)
- Han-Ying Liu
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
| | - Samuel E Neale
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
| | - Michael S Hill
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
| | - Mary F Mahon
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
| | - Claire L McMullin
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
| |
Collapse
|
13
|
Liu Z, Zhang L, Ren Z, Zhang J. Advances in Selective Electrocatalytic Hydrogenation of Alkynes to Alkenes. Chemistry 2023; 29:e202202979. [PMID: 36504420 DOI: 10.1002/chem.202202979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/10/2022] [Accepted: 12/11/2022] [Indexed: 12/14/2022]
Abstract
Selective electrochemical hydrogenation of alkynes to alkenes under ambient conditions is a promising alternative to the traditional energy-intensive and high-cost thermocatalytic hydrogenation. However, the systematic summary on the electrocatalysts and electrolyzers remains lacked. Herein, we demonstrate a comprehensive review about recent achievements in the electrocatalysts including noble metal and non-noble-metal materials. Several effective strategies of catalyst design were developed to improve alkyne conversion, and alkene selectivity, for example, accelerating the formation of active hydrogen species, enhancing alkyne adsorption and suppressing the side reactions. Furthermore, the advantages and disadvantages of various electrolyzers are systematically discussed. Accordingly, major challenges and future trends in this field are proposed.
Collapse
Affiliation(s)
- Zhenpeng Liu
- State Key Laboratory of Solidification Processing and School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Lei Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology and Department of Advanced Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Zhipeng Ren
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology and Department of Advanced Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Jian Zhang
- State Key Laboratory of Solidification Processing and School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
14
|
van Beek CB, Killian L, Lutz M, Weingarth M, Asundi AS, Sarangi R, Klein Gebbink RJM, Broere DLJ. E-selective Semi-hydrogenation of Alkynes under Mild Conditions by a Diruthenium Hydride Complex. Chemistry 2022; 28:e202202527. [PMID: 35979748 PMCID: PMC10092327 DOI: 10.1002/chem.202202527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Indexed: 12/14/2022]
Abstract
The synthesis, characterization and catalytic activity of a new class of diruthenium hydrido carbonyl complexes bound to the tBu PNNP expanded pincer ligand is described. Reacting tBu PNNP with two equiv of RuHCl(PPh3 )3 (CO) at 140 °C produces an insoluble air-stable complex, which was structurally characterized as [Ru2 (tBu PNNP)H(μ-H)Cl(μ-Cl)(CO)2 ] (1) using solid-state NMR, IR and X-ray absorption spectroscopies and follow-up reactivity. A reaction with KOtBu results in deprotonation of a methylene linker to produce [Ru2 (tBu PNNP* )H(μ-H)(μ-OtBu)(CO)2 ] (3) featuring a partially dearomatized naphthyridine core. This enables metal-ligand cooperative activation of H2 analogous to the mononuclear analogue, [Ru(tBu PNP*)H(CO)]. In contrast to the mononuclear system, the bimetallic analogue 3 catalyzes the E-selective semi-hydrogenation of alkynes at ambient temperature and atmospheric H2 pressure with good functional group tolerance. Monitoring the semi-hydrogenation of diphenylacetylene by 1 H NMR spectroscopy shows the intermediacy of Z-stilbene, which is subsequently isomerized to the E-isomer. Initial findings into the mode of action of this system are provided, including the spectroscopic characterization of a polyhydride intermediate and the isolation of a deactivated species with a partially hydrogenated naphthyridine backbone.
Collapse
Affiliation(s)
- Cody B. van Beek
- Organic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceFaculty of ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrecht (TheNetherlands
| | - Lars Killian
- Organic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceFaculty of ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrecht (TheNetherlands
| | - Martin Lutz
- Structural BiochemistryBijvoet Centre for Biomolecular ResearchFaculty of ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrecht (TheNetherlands
| | - Markus Weingarth
- NMR SpectroscopyBijvoet Centre for Biomolecular ResearchDepartment of Chemistry, Faculty of ScienceUtrecht UniversityPadualaan 83584 CHUtrecht (TheNetherlands
| | - Arun S. Asundi
- Stanford Synchrotron Radiation LightsourceSLAC National Accelerator LaboratoryStanford University94025Menlo ParkCaliforniaUSA
| | - Ritimukta Sarangi
- Stanford Synchrotron Radiation LightsourceSLAC National Accelerator LaboratoryStanford University94025Menlo ParkCaliforniaUSA
| | - Robertus J. M. Klein Gebbink
- Organic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceFaculty of ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrecht (TheNetherlands
| | - Daniël L. J. Broere
- Organic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceFaculty of ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrecht (TheNetherlands
| |
Collapse
|
15
|
Hui J, Wang F. Palladium-catalyzed transfer hydrogenation of terminal alkynes using ethanol as the hydrogen donor. JOURNAL OF CHEMICAL RESEARCH 2022. [DOI: 10.1177/17475198221145838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A ligand-promoted, palladium-catalyzed transfer hydrogenation of terminal alkynes using ethanol as the hydrogen donor is developed. The chemical selectivity control is achieved based on ligand regulation. The use of triethanolamine and tetrahydrofuran at 80 °C under N2 is found to be critical for the transfer hydrogenation of terminal alkynes. The general applicability of this procedure is highlighted by the synthesis of 27 terminal alkenes in moderate to good yields.
Collapse
Affiliation(s)
- Jie Hui
- Lianyungang Higher Vocational Technical College of Traditional Chinese Medicine, Lianyungang, P.R. China
| | - Feng Wang
- Kangda College of Nanjing Medical University, Jiangsu, P. R. of China
| |
Collapse
|
16
|
Gong D, Kong D, Xu N, Hua Y, Liu B, Xu Z. Bidentate Ru(II)-NC Complex as a Catalyst for Semihydrogenation of Azoarenes to Hydrazoarenes with Ethanol. Org Lett 2022; 24:7339-7343. [DOI: 10.1021/acs.orglett.2c02866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Dawei Gong
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China
| | - Degong Kong
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518000, P. R. China
| | - Na Xu
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China
| | - Yuhui Hua
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518000, P. R. China
| | - Bo Liu
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China
| | - Zhanlin Xu
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China
| |
Collapse
|
17
|
Li H, Gao Y, Wu Y, Liu C, Cheng C, Chen F, Shi Y, Zhang B. σ-Alkynyl Adsorption Enables Electrocatalytic Semihydrogenation of Terminal Alkynes with Easy-Reducible/Passivated Groups over Amorphous PdS x Nanocapsules. J Am Chem Soc 2022; 144:19456-19465. [PMID: 36197038 DOI: 10.1021/jacs.2c07742] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Highly chemo- and regioselective semihydrogenation of alkynes is significant and challenging for the synthesis of functionalized alkenes. Here, a sequential self-template method is used to synthesize amorphous palladium sulfide nanocapsules (PdSx ANCs), which enables electrocatalytic semihydrogenation of terminal alkynes in H2O with excellent tolerance to easily reducible groups (e.g., C-I/Br/Cl, C═O) and the metal center deactivating skeletons (e.g., quinolyl, carboxyl, and nitrile). Mechanistic studies demonstrate that specific σ-alkynyl adsorption via terminal carbon and negligible alkene adsorption on isolated Pd2+ sites ensure successful synthesis of various alkenes with outstanding time-irrelevant selectivity in a wide potential range. The key hydrogen and carbon radical intermediates are validated by electron paramagnetic resonance and high-resolution mass spectrometry. Gram-scale synthesis of 4-bromostyrene and expedient preparation of deuterated alkene precursors and drugs with D2O show promising applications. Impressively, PdSx ANCs can be applied to the prevailing thermocatalytic semihydrogenation of functionalized alkyne using H2.
Collapse
Affiliation(s)
- Huizhi Li
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, Tianjin 300072, China
| | - Ying Gao
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, Tianjin 300072, China
| | - Yongmeng Wu
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, Tianjin 300072, China
| | - Cuibo Liu
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, Tianjin 300072, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Chuanqi Cheng
- Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Fanpeng Chen
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, Tianjin 300072, China
| | - Yanmei Shi
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, Tianjin 300072, China
| | - Bin Zhang
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, Tianjin 300072, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
18
|
Wang Y, Huang Z, Liu G, Huang Z. A New Paradigm in Pincer Iridium Chemistry: PCN Complexes for (De)Hydrogenation Catalysis and Beyond. Acc Chem Res 2022; 55:2148-2161. [PMID: 35852837 DOI: 10.1021/acs.accounts.2c00311] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The discovery and development of organometallic catalysts is of paramount importance in modern organic synthesis, among which the ligand scaffolds play a crucial role in controlling the activity and selectivity. Over the past several decades, d8 transition-metal complexes of pincer ligands have been developed extensively thanks to their easy structural modification, versatile reactivities, and high stability. One paradigm is the bis(phosphine)-based pincer iridium complexes PCP-Ir, which are highly active for alkane dehydrogenation, partly due to their high thermostability. However, except for alkane dehydrogenation and related transformations, few applications of pincer iridium catalysis have been seen in organic synthesis. This mainly arises from the low functional-group compatibility and poor substrate scope and the limited catalytic chemistry that invariably involves Ir(I/III) redox processes initiated by oxidative addition of substrates to 14-electron (PCP)Ir fragments (the proposed catalytically active intermediates). In this Account, we describe our endeavor on the development of a new family of PCN-Ir complexes with initial intention on creating more efficient alkane dehydrogenation catalysts. The replacement of a soft, σ-donor phosphine arm in the PCP ligands by a harder, π-acceptor N-heteroarene (pyridine or oxazoline) not only provides an additional platform to modify the structural properties but also offers new modes of bond activation and novel reactivities and catalysis. One uniqueness of the PCN-Ir system lies in the formation, via ortho-C(sp2)-H cyclometalation of the pyridine unit in the PCNPy ligand, of the neutral monohydride (PCC)IrIIIHL (L = neutral ligand), which catalyzes positional and stereoselective 1-alkene-to-(E)-2-alkene isomerization. Moreover, the PCN-Ir catalysts effect ethanol dehydrogenation without decarbonylation, allowing for transfer hydrogenation of unactivated alkenes and trans-selective semihydrogenation of internal alkynes with user-friendly ethanol as the H-donor. Another feature originates from the ability of the pentacoordinate hydrido chloride complex (PCN)IrIIIHCl to undergo reversible solvent-coordination-induced-ionization (SCII), furnishing a cationic monohydride [(PCN)IrIIIH(Sol)]+Cl- bearing an uncoordinated Cl anion that effects selective hydrometalation of internal alkynes over the corresponding (Z)-alkenes; the resulting (PCN)IrIII(vinyl)Cl complex undergoes amine-assisted formal alcoholysis involving the protonation of the Cl anion by the activated IrIII-bound EtOH, again via the SCII pathway. Together these elementary reactions lay the foundation for cis-selective semihydrogenation of alkynes with EtOH. Further, the design of the oxazoline-containing chiral complexes (PCNOxa)IrIIIHCl enables asymmetric transfer hydrogenation of alkenes/ketones with ethanol. The efficient catalytic α-alkylation of unactivated esters/amides with alcohols is another case showing the benefit that the PCN-Ir catalyst can offer. These examples illustrate the profound impact of the pincer ligands on the reactivities and catalysis. We hope this Account will provide an in-depth view into the fundamentals of pincer iridium chemistry and ultimately broaden its applications in organic synthesis.
Collapse
Affiliation(s)
- Yulei Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai200032, China
| | - Zhidao Huang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai200032, China
| | - Guixia Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai200032, China
| | - Zheng Huang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai200032, China.,School of Chemistry and Material Sciences, Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou310024, China
| |
Collapse
|
19
|
Luo J, Liang Y, Montag M, Diskin-Posner Y, Avram L, Milstein D. Controlled Selectivity through Reversible Inhibition of the Catalyst: Stereodivergent Semihydrogenation of Alkynes. J Am Chem Soc 2022; 144:13266-13275. [PMID: 35839274 PMCID: PMC9374179 DOI: 10.1021/jacs.2c04233] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Catalytic semihydrogenation of internal alkynes using H2 is an attractive atom-economical route to various alkenes, and its stereocontrol has received widespread attention, both in homogeneous and heterogeneous catalyses. Herein, a novel strategy is introduced, whereby a poisoning catalytic thiol is employed as a reversible inhibitor of a ruthenium catalyst, resulting in a controllable H2-based semihydrogenation of internal alkynes. Both (E)- and (Z)-alkenes were obtained efficiently and highly selectively, under very mild conditions, using a single homogeneous acridine-based ruthenium pincer catalyst. Mechanistic studies indicate that the (Z)-alkene is the reaction intermediate leading to the (E)-alkene and that the addition of a catalytic amount of bidentate thiol impedes the Z/E isomerization step by forming stable ruthenium thiol(ate) complexes, while still allowing the main hydrogenation reaction to proceed. Thus, the absence or presence of catalytic thiol controls the stereoselectivity of this alkyne semihydrogenation, affording either the (E)-isomer as the final product or halting the reaction at the (Z)-intermediate. The developed system, which is also applied to the controllable isomerization of a terminal alkene, demonstrates how metal catalysis with switchable selectivity can be achieved by reversible inhibition of the catalyst with a simple auxiliary additive.
Collapse
Affiliation(s)
- Jie Luo
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yaoyu Liang
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Michael Montag
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yael Diskin-Posner
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Liat Avram
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - David Milstein
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
20
|
Huang F, Huang Z, Liu G, Huang Z. Iridium-Catalyzed Selective trans-Semihydrogenation of 1,3-Enynes with Ethanol: Access to ( E,E)-1,4-Diarylbutadienes. Org Lett 2022; 24:5486-5490. [PMID: 35861651 DOI: 10.1021/acs.orglett.2c02327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A trans-semihydrogenation of 1,3-enynes with ethanol as the hydrogen source was developed using a new (PCN)Ir complex as the precatalyst and tBuNH2 as the cocatalyst. This catalyst system provides an efficient and atom-economical access to unsymmetrical (E,E)-1,4-diarylbutadienes with high yields and stereoselectivities. Monitoring the process revealed that a sequence of cis-semihydrogenation of the triple bond of 1,3-enynes (to form (E,Z)-butadienes) and (E,Z)-to-(E,E) isomerization occurs to form (E,E)-butadienes.
Collapse
Affiliation(s)
- Fengjie Huang
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Zhidao Huang
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Guixia Liu
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Material Sciences, Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| | - Zheng Huang
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Material Sciences, Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
21
|
Qian L, Tang X, Wang Y, Liu G, Huang Z. Asymmetric Transfer Hydrogenation of Diaryl Ketones with Ethanol Catalyzed by Chiral
NCP
Pincer Iridium Complexes. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lu Qian
- School of Chemistry and Material Sciences, Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, 1 Sub‐lane Xiangshan Hangzhou 310024 China
- The State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Xixia Tang
- School of Physical Science and Technology, Shanghai Tech University 100 Haike Road Shanghai 201210 China
| | - Yulei Wang
- The State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Guixia Liu
- The State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- Chang‐Kung Chuang Institute East China Normal University Shanghai 200062 China
| | - Zheng Huang
- School of Chemistry and Material Sciences, Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, 1 Sub‐lane Xiangshan Hangzhou 310024 China
- The State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
22
|
Decker D, Wei Z, Rabeah J, Drexler HJ, Brückner A, Jiao H, Beweries T. Catalytic and mechanistic studies of a highly active and E-selective Co(II) PNNH pincer catalyst system for transfer-semihydrogenation of internal alkynes. Inorg Chem Front 2022. [DOI: 10.1039/d1qi00998b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we report the application of a Co(II) PNNH pincer catalyst system (PNNH = 2-(5-(t-butyl)-1H-pyrazol-3-yl)-6-(dialkylphosphinomethyl)pyridine) for the highly E-selective transfer semihydrogenation of internal diaryl alkynes using methanol and ammonia borane...
Collapse
|
23
|
Kuram MR, Yadav S, Chaudhary D, Maurya NK, Kumar D, Km I. Transfer hydrogenation of pyridinium and quinolinium species using ethanol as a hydrogen source to access saturated N-heterocycles. Chem Commun (Camb) 2022; 58:4255-4258. [DOI: 10.1039/d2cc00241h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catalytic transfer hydrogenation (TH) for the reduction of heterocycles is an emerging strategy for accessing biologically active saturated N-heterocycles. Herein, we report a TH protocol that utilizes ethanol as a...
Collapse
|
24
|
Hale DJ, Ferguson MJ, Turculet L. (PSiP)Ni-Catalyzed (E)-Selective Semihydrogenation of Alkynes with Molecular Hydrogen. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04537] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dylan J. Hale
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax B3H 4R2, Nova Scotia, Canada
| | - Michael J. Ferguson
- X-Ray Crystallography Laboratory, Department of Chemistry, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| | - Laura Turculet
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax B3H 4R2, Nova Scotia, Canada
| |
Collapse
|
25
|
Catalyzed stereo-selective hydrogenation of ynamides to give enamines: Ethanol as a hydrogen donor. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
26
|
Chen K, Zhu H, Li Y, Peng Q, Guo Y, Wang X. Dinuclear Cobalt Complex-Catalyzed Stereodivergent Semireduction of Alkynes: Switchable Selectivities Controlled by H 2O. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ke Chen
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- State Key Laboratory of Oganometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Hongdan Zhu
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Yuling Li
- State Key Laboratory of Oganometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Qian Peng
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Yinlong Guo
- State Key Laboratory of Oganometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xiaoming Wang
- State Key Laboratory of Oganometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
27
|
Yang L, Zhang CP. Revisiting the Balz-Schiemann Reaction of Aryldiazonium Tetrafluoroborate in Different Solvents under Catalyst- and Additive-Free Conditions. ACS OMEGA 2021; 6:21595-21603. [PMID: 34471763 PMCID: PMC8388107 DOI: 10.1021/acsomega.1c02825] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/04/2021] [Indexed: 05/04/2023]
Abstract
The thermal and photochemical Balz-Schiemann reaction in commonly used solvents was revisited under catalyst- and additive-free conditions. The study showed that using low- or non-polar solvents could improve the pyrolysis and photolysis of aryldiazonium tetrafluoroborates, enabling effective fluorination at a low temperature or under visible-light irradiation. PhCl and hexane were exemplified as cheap and reliable solvents for both reactions, providing good to excellent yields of aryl fluorides from the corresponding diazonium tetrafluoroborates. The combination of slight heating with visible-light irradiation was beneficial for the transformation of stable aryldiazonium tetrafluoroborates. Nevertheless, the electronic and steric nature of aryldiazonium tetrafluoroborates still had a pivotal effect on both fluorinations even in these solvents.
Collapse
Affiliation(s)
- Lian Yang
- School of Chemistry, Chemical
Engineering and Life Science, Wuhan University
of Technology, Wuhan 430070, China
| | - Cheng-Pan Zhang
- School of Chemistry, Chemical
Engineering and Life Science, Wuhan University
of Technology, Wuhan 430070, China
| |
Collapse
|
28
|
Selective reduction of alkynes to alkenes with hydrogen or formic acid catalyzed by cis,mer-[IrH2Cl(mtppms)3]. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Wu Y, Liu C, Wang C, Yu Y, Shi Y, Zhang B. Converting copper sulfide to copper with surface sulfur for electrocatalytic alkyne semi-hydrogenation with water. Nat Commun 2021; 12:3881. [PMID: 34162851 PMCID: PMC8222359 DOI: 10.1038/s41467-021-24059-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/02/2021] [Indexed: 11/23/2022] Open
Abstract
Electrocatalytic alkyne semi-hydrogenation to alkenes with water as the hydrogen source using a low-cost noble-metal-free catalyst is highly desirable but challenging because of their over-hydrogenation to undesired alkanes. Here, we propose that an ideal catalyst should have the appropriate binding energy with active atomic hydrogen (H*) from water electrolysis and a weaker adsorption with an alkene, thus promoting alkyne semi-hydrogenation and avoiding over-hydrogenation. So, surface sulfur-doped and -adsorbed low-coordinated copper nanowire sponges are designedly synthesized via in situ electroreduction of copper sulfide and enable electrocatalytic alkyne semi-hydrogenation with over 99% selectivity using water as the hydrogen source, outperforming a copper counterpart without surface sulfur. Sulfur anion-hydrated cation (S2−-K+(H2O)n) networks between the surface adsorbed S2− and K+ in the KOH electrolyte boost the production of active H* from water electrolysis. And the trace doping of sulfur weakens the alkene adsorption, avoiding over-hydrogenation. Our catalyst also shows wide substrate scopes, up to 99% alkenes selectivity, good reducible groups compatibility, and easily synthesized deuterated alkenes, highlighting the promising potential of this method. Highly selective electrocatalytic semi-hydrogenation of alkynes over a noble-metal-free catalyst is highly desirable. Here, authors synthesize sulfur-containing copper nanowire sponges for selective electrocatalytic alkyne semi-hydrogenation using water as the hydrogen source.
Collapse
Affiliation(s)
- Yongmeng Wu
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, Tianjin, China
| | - Cuibo Liu
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, Tianjin, China
| | - Changhong Wang
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, Tianjin, China
| | - Yifu Yu
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, Tianjin, China
| | - Yanmei Shi
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, Tianjin, China
| | - Bin Zhang
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, Tianjin, China. .,Tianjin Key Laboratory of Molecular Optoelectronic Science, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China.
| |
Collapse
|
30
|
Huang Z, Wang Y, Leng X, Huang Z. An Amine-Assisted Ionic Monohydride Mechanism Enables Selective Alkyne cis-Semihydrogenation with Ethanol: From Elementary Steps to Catalysis. J Am Chem Soc 2021; 143:4824-4836. [DOI: 10.1021/jacs.1c01472] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zhidao Huang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yulei Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xuebing Leng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zheng Huang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- Chang-Kung Chuang Institute, East China Normal University, Shanghai 200062, China
- School of Chemistry and Material Sciences, Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
31
|
Gong Y, He J, Wen X, Xi H, Wei Z, Liu W. Transfer hydrogenation of N-heteroarenes with 2-propanol and ethanol enabled by manganese catalysis. Org Chem Front 2021. [DOI: 10.1039/d1qo01552d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A convenient well-defined manganese catalyzed transfer hydrogenation of N-heteroarenes using 2-propanol and ethanol as hydrogen sources is developed. DFT calculations support an outer sphere hydrogenation mechanism.
Collapse
Affiliation(s)
- Yingjie Gong
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Jingxi He
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Xiaoting Wen
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Hui Xi
- Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Zhihong Wei
- Institute of Molecular Science, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Shanxi University, Taiyuan 030006, P. R. China
| | - Weiping Liu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
32
|
Liu J, Wang N, Liu J, Li M, Xu Y, Wang C, Wang Y, Zheng H, Ma L. The Immobilization of Pd(II) on Porous Organic Polymers for Semihydrogenation of Terminal Alkynes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:51428-51436. [PMID: 33164491 DOI: 10.1021/acsami.0c14486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Highly selective catalytic hydrogenation of alkynes to alkenes is a highly important reaction owing to its industrial and commercial application. Specifically, semihydrogenation of terminal alkynes has been more challenging than internal alkenes even using Lindlar catalysts. Also, the high reduction degree state metal-supported catalysts like Pd0/C, Pt0/C, and Ru0/C have been well-known to be used widely in hydrogenation due to their super activity. However, charcoal can absorb a large amount of water; Pd/C with 50% water is convenient on a large-scale synthesis. Charcoal generally bears oxygen groups on its surface, which are responsible for low selectivity and undesired products. Even typically, only 10-60% of the Pd metal atoms are exposed, they still suffer from poor stability in acids owing to leaching. Herein, we intend to design active and stable metal catalysts with features as the following to avoid leaching: having strong interaction with the support and coordinatively unsaturated metal sites or low valence state metals physically isolated from the acid environment. Herein, a highly efficient semihydrogenation of terminal alkynes to produce alkenes has been realized using a heterogeneous Pd(II)/POP-GIEC catalyst, imine-linked, crystalline, and porous organic polymer supporter modified by coordination of Pd(OAc)2 to its walls under mild conditions. Surprisingly, for the first time, modified POP-supported low reduction degree PdII catalysts were synthesized efficiently, and they were successfully used in semihydrogenation of terminal alkynes. The substrate scope was studied and included both unfunctionalized as well as functionalized substituents on the para, ortho, and meta position of aromatic alkynes. The substrate having a substituent with the functionality of fluoro protected at the meta position was semihydrogenated with a high alkyne conversion of 100% and olefin selectivity (up to 99%).
Collapse
Affiliation(s)
- Jianguo Liu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
- Dalian National Laboratory for Clean Energy, Dalian 116023, China
| | - Nan Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jianan Liu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Ming Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Ying Xu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Chenguang Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Yanzhi Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi an 710062, China
| | - Haoquan Zheng
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi an 710062, China
| | - Longlong Ma
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
33
|
Liu J, Wei Z, Yang J, Ge Y, Wei D, Jackstell R, Jiao H, Beller M. Tuning the Selectivity of Palladium Catalysts for Hydroformylation and Semihydrogenation of Alkynes: Experimental and Mechanistic Studies. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03614] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jiawang Liu
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, Rostock 18059, Germany
| | - Zhihong Wei
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, Rostock 18059, Germany
- Institute of Molecular Science, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Shanxi University, Taiyuan 030006, P. R. China
| | - Ji Yang
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, Rostock 18059, Germany
| | - Yao Ge
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, Rostock 18059, Germany
| | - Duo Wei
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, Rostock 18059, Germany
| | - Ralf Jackstell
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, Rostock 18059, Germany
| | - Haijun Jiao
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, Rostock 18059, Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, Rostock 18059, Germany
| |
Collapse
|
34
|
Wang Y, Qian L, Huang Z, Liu G, Huang Z. NCP‐Type
Pincer Iridium Complexes Catalyzed
Transfer‐Dehydrogenation
of Alkanes and Heterocycles
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000097] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Yulei Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Lu Qian
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Zhidao Huang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Guixia Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Zheng Huang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- China School of Chemistry and Material Sciences, Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences 1 Sub‐lane Xiangshan Hangzhou Zhejiang 310024 China
- Chang‐Kung Chuang Institute, East China Normal University Shanghai 200062 China
| |
Collapse
|
35
|
Ekebergh A, Begon R, Kann N. Ruthenium-Catalyzed E-Selective Alkyne Semihydrogenation with Alcohols as Hydrogen Donors. J Org Chem 2020; 85:2966-2975. [PMID: 32027128 PMCID: PMC7343281 DOI: 10.1021/acs.joc.9b02721] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Selective
direct ruthenium-catalyzed semihydrogenation of diaryl
alkynes to the corresponding E-alkenes has been achieved
using alcohols as the hydrogen source. The method employs a simple
ruthenium catalyst, does not require external ligands, and affords
the desired products in > 99% NMR yield in most cases (up to 93%
isolated
yield). Best results were obtained using benzyl alcohol as the hydrogen
donor, although biorenewable alcohols such as furfuryl alcohol could
also be applied. In addition, tandem semihydrogenation–alkylation
reactions were demonstrated, with potential applications in the synthesis
of resveratrol derivatives.
Collapse
Affiliation(s)
- Andreas Ekebergh
- Chemistry and Biochemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Göteborg, Sweden
| | - Romain Begon
- Chemistry and Biochemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Göteborg, Sweden
| | - Nina Kann
- Chemistry and Biochemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Göteborg, Sweden
| |
Collapse
|
36
|
Gong D, Hu B, Yang W, Kong D, Xia H, Chen D. A Bidentate Ru(II)-NC Complex as a Catalyst for Semihydrogenation of Alkynes to (E)-Alkenes with Ethanol. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00074] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dawei Gong
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemical Engineering & Technology, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - Bowen Hu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemical Engineering & Technology, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
| | - Weiwei Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemical Engineering & Technology, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
| | - Degong Kong
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemical Engineering & Technology, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
| | - Haiping Xia
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - Dafa Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemical Engineering & Technology, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
| |
Collapse
|
37
|
Mousavi S, Nazari B, Keshavarz MH, Bordbar AK. A Simple Method for Safe Determination of the Activity of Palladium on Activated Carbon Catalysts in the Hydrogenation of Cinnamic Acid to Hydrocinnamic Acid. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Sajjad Mousavi
- Department of Chemistry, Malek-ashtar University of Technology, Shahin-shahr 83145/115, Iran
| | - Behzad Nazari
- Department of Chemistry, Malek-ashtar University of Technology, Shahin-shahr 83145/115, Iran
| | - Mohammad H. Keshavarz
- Department of Chemistry, Malek-ashtar University of Technology, Shahin-shahr 83145/115, Iran
| | | |
Collapse
|
38
|
Decker D, Drexler HJ, Heller D, Beweries T. Homogeneous catalytic transfer semihydrogenation of alkynes – an overview of hydrogen sources, catalysts and reaction mechanisms. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01276a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemoselective semihydrogenation of alkynes to alkenes with E- or Z-stereoselectivity is among the most important transformations in the synthesis of highly functional organic building blocks.
Collapse
Affiliation(s)
- David Decker
- Leibniz-Institut für Katalyse e.V. (LIKAT)
- 18059 Rostock
- Germany
| | | | - Detlef Heller
- Leibniz-Institut für Katalyse e.V. (LIKAT)
- 18059 Rostock
- Germany
| | | |
Collapse
|
39
|
Pilar Lamata M, Passarelli V, Carmona D. Recent Advances in Iridium-Catalysed Transfer Hydrogenation Reactions. TOP ORGANOMETAL CHEM 2020. [DOI: 10.1007/3418_2020_59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
40
|
Wang C, Gong S, Liang Z, Sun Y, Cheng R, Yang B, Liu Y, Yang J, Sun F. Ligand-Promoted Iridium-Catalyzed Transfer Hydrogenation of Terminal Alkynes with Ethanol and Its Application. ACS OMEGA 2019; 4:16045-16051. [PMID: 31592175 PMCID: PMC6777128 DOI: 10.1021/acsomega.9b02191] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
A ligand-promoted iridium-catalyzed transfer hydrogenation of terminal alkynes with ethanol and its application has been developed. Highly chemical selectivity control is achieved based on ligand regulation. 1,2-Bis(diphenylphosphino)ethane was found to be critical for the transfer hydrogenation of alkynes. The general applicability of this procedure is highlighted by the synthesis of 30 terminal alkenes with a good yield. In addition, we conducted drug effect studies of phenelzine using zebrafish as the vertebrate model. Phenelzine shows a significant effect on promoting vascular proliferation and inhibiting nerve growth. The results of these studies have an important reference value for promoting drug research in cerebrovascular diseases, epilepsy, mania, and psychosis.
Collapse
Affiliation(s)
| | | | | | - Yufeng Sun
- Medical School, Institute
of Reproductive
Medicine, Nantong University, Nantong 226019, China
| | - Rui Cheng
- Medical School, Institute
of Reproductive
Medicine, Nantong University, Nantong 226019, China
| | - Banghua Yang
- Medical School, Institute
of Reproductive
Medicine, Nantong University, Nantong 226019, China
| | - Yirong Liu
- Medical School, Institute
of Reproductive
Medicine, Nantong University, Nantong 226019, China
| | - Jinfei Yang
- Medical School, Institute
of Reproductive
Medicine, Nantong University, Nantong 226019, China
| | - Fei Sun
- Medical School, Institute
of Reproductive
Medicine, Nantong University, Nantong 226019, China
| |
Collapse
|